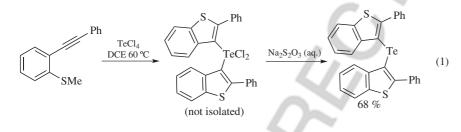
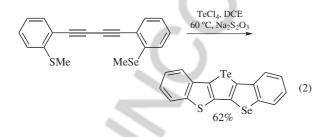

Tellurium Tetrachloride

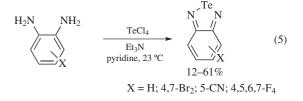
The reaction of TeC1₄ with 'BuNHLi in toluene at -100 °C (followed by slow warming to 23 °C) gives rise to three products, in amounts that depend on the molar ratio of the reactants. When the ratio was 2:7, the major product was isolated in 63% yield as very moisture-sensitive yellow crystals. When the molar ratio of TeCl₄ to 'BuNHLi was 1:4, the two products were isolated in 41 and 17% yield, respectively (eq 4).³



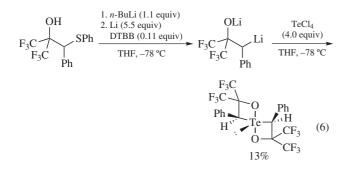
 $\begin{array}{ll} [10026-07-0] & {\rm TeCl}_4 & ({\rm MW:}\ 269.41) \\ {\rm InChI} = 1{\rm S/Cl4Te/c1-5}(2,3)4 \\ {\rm InChIKey} = {\rm SWLJJEFSPJCUBD-UHFFFAOYSA-N} \end{array}$


Physical Data: mp 224 °C, bp 380 °C, density 3.26 g mL^{-1} at 25 °C.

Form Supplied in: powder, crystals, or chunks.


Cyclization Reactions. TeCl₄ acts as a bis-electrophile in the reaction with a simple alkyne. It performed well in the double-electrophilic cyclization (DEC) of methyl 2-(phenylethynyl)phenyl sulfide when reacted in 1,2dichloroenthane (DCE) at 60 °C to give the dibenzo[b]-thiophenyl telluride. In the reaction with TeCl₄, the initial product formed was the dibenzo[b]thiophenyl dichlorotelluride, which converted to telluride upon reductive workup (Na₂S₂O₃) (eq 1).¹

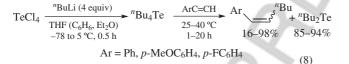
DEC of the mixed selenosulfide with TeCl_4 followed by reductive workup (Na₂S₂O₃) produced the first reported heteroacene containing all three thiophene, selenophene, and tellurophene heterocycles (62%) (eq 2).¹



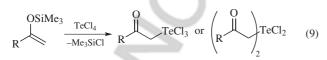
It was found that TeC1₄ adds reproducibly to butadiene in refluxing acetonitrile forming 2,5-dihydrotellurophene 1,1dichloride (62% yield) and 1,4-dichloro-2-butene. When the reaction was carried out in toluene, the yield could be improved to 95%, but unfortunately the reaction was not reproducible in this solvent, often depositing large amounts of elemental tellurium (eq 3).² Moisture-sensitive benzochalcogenadiazoles were synthesized from 1,2-phenylenediamines by the action of TeCl_4 in pyridine at 23 °C (eq 5).⁴

The direct substitution of tellurium tetrachloride with LiCHPhC(CF₃)₂OLi generated by Yus' method involves successive treatment of hydroxyalkyl phenyl sulfide with *n*-BuLi and excess metallic lithium in the presence of a catalytic amount of 4,4-di-*t*butylbiphenyl (DTBB) in THF at -78 °C. Adding excess of TeCl₄ at -78 °C and further warming to the room temperature gave a single isomer of 1,5-dioxa-4,4-telluraspiro[3.3]heptane in 13% yield as an air stable solid (eq 6).⁵

Q1

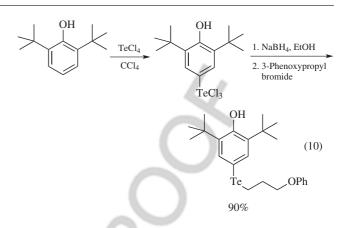


Addition Reactions. The use of tellurium tetrachloride as a reagent was studied for different substrates and proceeded at low temperature $(0-5 \text{ }^{\circ}\text{C})$ in good yield (eq 7).⁶

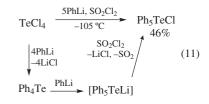

$$R^{1} = H, CH_{3}, C_{6}H_{5}; R^{2} = H, CH_{3}; R^{3} = H, CH_{3}$$

Tetrabutyltellurium was prepared by the reaction of TeCl4 with 4 equiv of "BuLi in diethyl ether at 0 °C and with 1 equiv of aryl acetylenes at room temperature to afford butyl addition products (eq 8).⁷

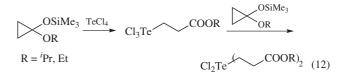
Q3

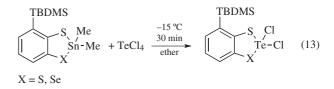


The reaction with silyl enolethers was found to proceed under mild conditions to give two products, the ratio depending on the amount of TeCl_4 . The equilibrium between products was also examined (eq 9).⁸

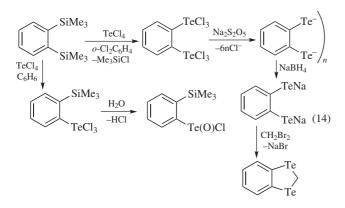


R = Me, *n*-heptyl, *i*-Bu, *i*-Pr, *t*-Bu, 1-adamantyl, Ph, *p*-MeOC₆H₄


3,5-Di-tertbutyl-4-hydroxyphenyl 3-phenoxypropyl telluride was obtained in 90% overall yield from commercially available 2,6-di-tert-butylphenol by reaction with tellurium tetrachloride followed by sodium borohydride reduction of the resulting aryltellurium trichloride to a tellurolate and alkylation with 3-phenoxypropyl bromide (eq 10).⁹

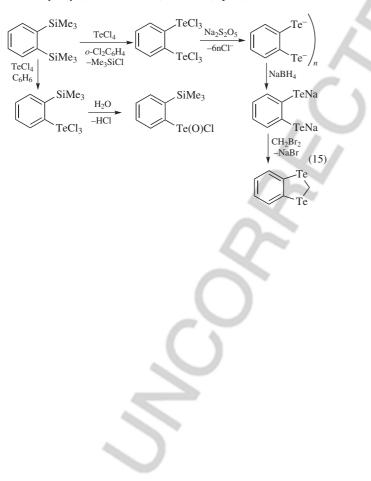

 Ph_5TeLi was prepared by reaction of 5 M equiv of PhLi with 1 equiv of TeCl₄ in THF at -105 °C. Treatment of this material Ph_5TeCl with SO_2Cl_2 provided Ph_5TeCl . Since the one-pot reaction involves the intermediate generation of Ph_4Te , the temperature was maintained at -78 °C for 2 h after the addition of 4 M equiv of PhLi to TeCl₄. The reaction mixture was concentrated in vacuo, and the residue was washed with acetonitrile and recrystallized from CH₂Cl₂/hexane (eq 11).¹⁰

Tellurium tetrachloride readily reacted with cyclopropanone ketals in a stepwise manner, giving the monoalkyltellurium compound and the dialkyl compound in accordance with the stoichiometry of the reagents (eq 12).¹¹



Substitution Reactions. 4-*tert*-Butyldimethylsilyl-2,2dimethylbenzo[1,2-d][1,3,2]dichalcogenastannoles, synthetic equivalent of unstable ortho benzeneditelluraols, were prepared by the ortho lithiation followed by stannylation (eq 13).¹²

A tellurane was synthesized by two methods in excellent yields. 4,7-Diisopropyl-2,2-dimethyl-1,3,2-benzodithiastannole was reacted with an equimolar amount of 2,2-dichloro-4,7-diisopropyl-1,3,2-benzodithiatellurole at -78 °C under argon to give the desired tellurane, 2,2-spirobi[4,7-diisopropyl-1,3,2-benzodithiatellurole] in 100% yield. Alternatively, 4,7-diisopropyl-2,2-dimethyl-1,3,2-benzodithiastannole reacted with


a half-molar amount of tellurium tetrachloride at -78 °C under an argon atmosphere to give the tellurane in 82% yield (eq 14).¹³

Benzo-l,3-ditellurole was prepared by a four-step synthetic procedure starting from 1,2-bis(trimethylsilyl)benzene. The substitution of both trimethylsilyl groups by TeCl₃ groups occurs via heating in *o*-dichlorobenzene at reflux for 2 h to afford 1,2-bis(trichlorotelluro)benzene in 46% yield. Using solvents with lower boiling points (benzene or toluene), only allows substitution of one trimethylsilyl group, giving rise to *o*-trimethylsilyl(trichlorotelluro)benzene (eq 15).¹⁴

- 1. Gupta A.; Flynn B.L., Org. Lett., 2017, 19, 1939.
- 2. Bergman J.; Engman L., J. Am. Chem. Soc., 1981, 103, 2715.
- 3. Chivers T.; Gao X.; Parvez M., J. Am. Chem. Soc., 1995, 117, 2359.
- Garrett G.E.; Gibson G.L.; Straus R.N.; Seferos D.S.; Taylor M.S., J. Am. Chem. Soc., 2015, 137, 4126.
- Kano N.; Takahashi T.; Kawashima T., *Tetrahedron Lett.*, 2002, 43, 6775.
- 6. Albeck M.; Tamari T.; Sprecher M., J. Org. Chem., 1983, 48, 2276.
- Han L.B.; Kambe N.; Ogawa A.; Ryu I.; Sonoda N., Organometallics, 1993, 12, 473.
- Han L.-B.; Kambe N.; Ikura M.; Ryu I.; Sonoda N., *Heteroatom Chem.*, 1993, 4, 229.
- Johansson H.; Shanks D.; Engman L.; Amorati R.; Pedulli G. F.; Valgimigli L., J. Org. Chem., 2010, 75, 7535.
- 10. Minoura M.; Sagami T.; Akiba K., Organometallics, 2001, 20, 2437.
- 11. Nakamura E.; Oshino H.; Kuwajima I., J. Am. Chem. Soc., **1986**, 108, 3745.
- 12. Ogava S.; Yamashita M.; Sato R., Tetrahedron Lett., 1995, 36, 587.
- Ogawa Sat.; Ogawa Sh.; Yoshida M.; Muraoka H., *Heteroatom Chem.*, 2011, 22, 586.
- Sadekov I.D.; Rivkin B.B.; Galdjieva P.I.; Minkin V.I., *Heteroatom Chem.*, 1991, 2, 307.

Nataliya Korol & Mikhailo Slivka Uzhgorod National University, Uzhgorod, Ukraine

Author Query

Q1 Please provide the structure of the title compound.

Q2 Please provide the key for the title compound.

Q3 Please check if the intended meaning of the sentence "Tetrabutyltellurium was...butyl addition products." is retained after the edits.