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Abstract: Public databases of NCI-60 tumor cell line screen 

results and measurements of molecular targets in the NCI-60 

panel give the opportunity to assign possible anticancer 

mechanism to compounds with positive outcome from 

antitumor assay. Here, the novel protocol of NCI databases 

mining where inferences are based on the visualization is 

presented and utilized with the aim to identify putative 

biological routes of 4-thiazolidinones anticancer effect. As a 

result, highly potent 4-thiazolidinone-pyrazoline-isatin 

conjugates show the similarity of activity patterns with 

puromycin and CBU-028 and their pattern is also highly  

correlated with fraction of methylated CpG sites in CD34, 

AF5q31 and SYK. Several compounds from this group show 

strong negative correlation with fraction of methylated CpG 

sites in HOXA5. Thiopyrano[2,3-d][1,3]thiazol-2-ones bearing 

naphtoquinone fragment were found to possess the same 

activity pattern as fusarubin does. But none of the studied 4-

thiazolidinone derivatives has activity fingerprint similar to 

standard anticancer agents. The obtained results bring 

medicinal chemistry closer to the understanding of basic 

nature of 4-thiazolidinones effect on cancer cells. 
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1 Introduction 

The search for new anticancer agents is one of the leading 

directions in medicinal chemistry. Developmental 

Therapeutics Program (DTP) of National Cancer Institute, 

USA (NCI) plays an important role in the discovery of 

antitumor drugs providing support both to private and 

academic researchers.
[1]

 The NCI-60 Tumor Cell Line Screen 

is a part of the DTP anticancer drug discovery program and 

is designed to screen compounds for potential anticancer 

activity utilizing 60 different human tumor cell lines, 

representing leukemia, melanoma and cancers of the lung, 

colon, brain, ovary, breast, prostate, and kidney.
[2]

 This 

screen is unique in that the complexity of a 60 cell line dose 

response produced by a given compound results in a 

biological response pattern. Using the activity pattern it is 

possible to assign a putative mechanism of action to a test 

compound, or to determine that the response pattern is 

unique and not similar to that of any of the standard 

prototype compounds included in the NCI database. In 

addition, following characterization of various cellular 

molecular targets in the 60 cell lines, it may be possible to 

select compounds most likely to interact with a specific 

molecular target.
[3,4]

 For the purpose of activity pattern 

analysis, the COMPARE program has developed and is 

accessible at http://dtp.nci.nih.gov/compare/.
[5,6]

 More 

comprehensive web-based tool for NCI data analysis have 

appeared recently.
[7]

 Consequently, multitarget approach to 

the search of new antitumor medicines was given much 

attention during the last years 
[8-10]

. 
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our in-home library were tested since 2005 for 

cytotoxicity in vitro against NCI-60 cancer cell-line panel 

and significant number of compounds possessing 

different levels of anticancer activity have been 

identified.
[11,12]

 The majority of papers reporting 

synthesis and biological evaluation of these 4-

thiazolidinones were supported with COMPARE analysis 

of hit compounds anticancer pattern.
[13-19]

 The results 

show that the correlation between activities of highly-

potent 4-thiazolidinones and standard anticancer agents 

is rather weak, supposing some non-common or even 

novel mechanism of biological action. The closest to 4-

thiazolidinones known patterns belong to tubulin 

polymerization inhibitors,
[13,14]

 dihydroorotate 

dehydrogenase inhibitors,
[15]

 topoisomerase II inhibitors 

and alkylating agents,
[16]

 inhibitors of protein or RNA 

synthesis.
[17]

 The diversity of these patterns assumes 

the presence of several different mechanisms in the 4-

thiazolidinones library. But it remains unclear whether 

these mechanisms correspond to above mentioned or 

they present some new ones. Moreover, since only 

sporadic observations were available, there is a great 

chance to be deceived by chance correlation. This work 

provides systematic computational search for possible 

mechanisms and is intended to shed some light on the 

routes of 4-thiazolidinones anticancer activity. The 

methods used to discover the knowledge from the 

database of biological evaluation results belong to the 

field of data mining.  

The idea of data mining in the NCI databases is not 

new. Shi et al. published a series of papers devoted to 

the cluster analysis of NCI-60 tumor cell line screen 

results.
[20-22]

 They used hierarchical cluster analysis with 

average linkage to find relations between molecular 

structure of ellipticine analogs and their activity pattern 

and additionally have found correlation between p53 

status of cell culture and its sensitivity to ellipticine 

derivatives.
[20,21]

 Also, all public (as for 1999 year) 

compounds from NCI database were studied with 

principal component analysis and hierarchical 

clustering.
[22]

 The relationships between gene 

expression patterns and anticancer activity patterns 

were investigated by Scherf et al. in 2000.
[23]

 Fang and 

co-workers have developed web-based (though not 

publicly available) tools for mining the NCI anticancer 

databases that extends standard COMPARE 

algorithm.
[24]

 Rabow et al. used Kohonen's self-

organizing maps to identify the relationships between 

chemotypes of screened agents and their effect on four 

major classes of cellular activities: mitosis, nucleic acid 

synthesis, membrane transport and integrity, and 

phosphatase- and kinase-mediated cell cycle 

regulation.
[25]

 Bykov et al. compared cancer cells growth 

inhibition profiles for PRIMA-1 (low-molecular weight 

with antitumor activity) with known anticancer agents 

and level of p53 protein expression in cancer cells by 

means of cluster analysis and linear regression.
[26]

 

Blower et al. used NCI data in order to find correlations 

between molecular substructure classes and gene 

expression data.
[27]

 Marx et al. highlighted the 

dependence of activity pattern on the structure of p-

quinones using data mining techniques.
[28]

 Wang and co-

workers studied distributions of NCI compounds features 

in contrast with other chemical databases and reported 

SMART fragments that are present in active compounds 

but absent in non-active.
[29]

 Glover et al. revealed new 

mitochondrial complex I inhibitors with data mining of 

NCI's anticancer screening database.
[30]

 The NCI data 

also have been used to predict not only activity, but 

generalized cytotoxicity as well.
[31]

 The strength of 

associations of anticancer patterns and levels of 

molecular expression in these works were measured 

mainly by Pearson's correlation coefficient. The 

advantage of such statistics is its unsensitivity to mean 

activity values, since the same mechanisms can be 

acted at different levels of effect. But there are also two 

drawbacks caused mostly by the specific design of both 

biological and computational experiments. Pearson's 

correlation coefficient treats all deviations between 

corresponding elements (cell lines) equally important, 

while experimental accuracy differs among cell lines. In 

other words, when performing repeated testings of the 

same compound, each cell line has its own standard 

deviation of results sample. To overcome this point we 

propose to use weighted Pearson's correlation 

coefficient, adjusting each cell line with the corresponing 

weight based on standard deviation. The second 

drawback is the high probability of false findings. Few 

years ago a broad discussion of this problem took 

place.
[32-35]

 Indeed, having tens and even hundreds of 

thousands of correlation coefficients it is easy to find 

strong correlations without any underlying relationship. 

And uncertainty in the activity measure (biological assay 

error) improves the chance. To handle the last point for 

NCI data, Reinhold et al.
[7]

 proposed to give much 

confidence to those results where average correlation 

between repeated measurements is high (more than 0.6), 

to remove individual probes that has low correlation with 

other in repeated testing and to consider results from 

only one experiment less reliable. To decrease the 

overall likelyhood of false positives we offer to use both 

high threshold for correlation coefficient values and 

visualization control. The main argument that makes a 

claim reliable is replication of that claim. Since the same 

activity pattern belongs to different (though structurally 

similar) compounds, their average activity fingerprint is 

much more close to the real activity pattern and each 

activity fingerprint of those compounds can be treated as 

a replicated measure of the same quantity. In other 

words, the correlation should be treated as significant if 

it is both high enough and is observed for the whole 

bunch of similar activity fingerprints. If compared 

variables represents the same essence (activity 

fingerprints of compounds in the current case), in order 

to find significant correlation it is rational to project them 

on a single plane with dimensionality reduction 

techniques. And when compared variables have different 

nature (e.g. activity fingerprint and molecular expression 

profile), the special kind of correlation plots called "heat 

map" can be utilized for this purpose. Taking these 

suggestions into account, we present new protocol for 

mining of NCI data. Its application on the analysis of 4-

thiazolidinones anticancer activity data should bring us 

closer to the understanding of basic nature of 4-

thiazolidinones effect on cancer cells, so that is the main 

purpose of current artic 

2 Data Mining Protocol 
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The DTP 60-cell line screening is a two-stage process, with 

the first evaluation of all compounds against the 60 cell lines 

at a single dose of 10 µM and the second evaluation of only 

compounds possessing biological activities that exceed a 

certain threshold value at five doses (including 10 µM). Both 

assays data have been downloaded from public web source 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html  

(September 2012 release). The results for each compound 

are reported as the percent growth of treated cells when 

compared to untreated control cells. It ranges from -100% to 

100% (the result of 100% means that treated cells growth is 

the same as untreated, 0% means that cancer cells stopped 

growing and -100% means that all treated cancer cells have 

died. There are concepts of "activity pattern" and "activity 

fingerprint" often used interchangeably and related to the 

biological response profile. The next convention is proposed 

and further utilized in the article. The variation in growth 

percents of 60 cell lines treated with the same single 

compound represents activity fingerprint of this compound. 

Mathematically, it is the set of normalized growth percents 

(z-scores). So activity fingerprint is the observed property of 

any compound. Consequently, the set of close activity 

fingerprints that represents some common activity 

mechanism is called activity pattern. Activity pattern is the 

real feature of activity mechanism, but all our knowledge 

about it comes through activity fingerprints. In other words, 

we can say about activity pattern when two demands are 

met: i) similar activity fingerprints are observed for a number 

of compounds, ii) the overall biological response level of 

these compounds significantly differs from control testing.  

So our major goal is to find anticancer activity 

patterns among 4-thiazolidinone derivatives compared 

with other compounds with known activity and also to 

reveal the relationships between these patterns and 

cancer cell molecular expression data.  

In this study two assumptions are made: i) 

compounds having the same activity pattern share the 

same mechanism and ii) the variance of cancer cells 

growth percents across cell lines exceeds the error of 

experiment. Both assumptions are supported by a 

number of publications 
[4,23,25,26,30]

.  

The proposed protocol of NCI data mining consists of 

four steps: 

1. To estimate the border between active (that 

can possess some activity pattern) and non-

active compounds (no pattern exists); 

2. To find the associations between 4-

thiazolidinones and NCI public compounds 

from single-dose dataset and to reveal activity 

patterns; 

3. To find the associations between 4-

thiazolidinones and standard anticancer 

agents; 

4. To identify possible molecular targets through 

comparison between 4-thiazolidinones activity 

patterns and levels of cancer cell molecular 

expression. 

The methods used at each step are disclosed further 

in correspondent subsections. 

All computations are performed using R 2.15.1
[36]

 – 

the language and environment for statistical data 

analysis. For some prespecified tasks additional 

packages "flexmix" (estimation of Kullback-Leibler 

divergence),
[37]

 "ggplot2" (figures preparation),
[38]

 "tsne" 

(dimensionaliy reduction with t-Stochastic Neighbor 

Embedding),
[39]

 "plyr" (routine data manipulation)
[40]

 and 

"gplots" (heatmap visualization of relationships between 

cancer cells gene expression characteristics and activity 

fingerprints of 4-thiazolidinones)
[41]

 have been used. 

 

2.1 Estimation of the Border between Active and Non-

active Compounds 

Boyd and Paull argued that the concept of "activity" should 

be employed only in individualized context for purposes of a 

given study that contains a decision point(s) dependent upon 

the assigned definitions.
[4]

 Since the ultimate goal of the 

majority of papers in anticancer drug development is to 

discover highly-potent compounds, the "activity" threshold 

usually is based on the theoretical possibility of medicinal 

application. Thus the threshold requires that a compound 

should possess activity at the micromolar level (like in the 

paper of Fang et al.
[24]

 for example). But in the current study 

we are interested not in the overall activity, but in the pattern 

of it. And there are a lot of compounds that are acting 

through some mechanisms but their activity level is rather 

low to have some possible practical application. It is rational 

to involve them into computational analysis in order to 

increase data amount. To do this we should provide more 

tolerant threshold. Making an assumption that mean growth 

percents of cancer cells treated by non-active compound 

should be normally distributed with center location at 100% 

(that value represents the same growth of treated cells as 

untreated are showing), it is possible to find such subset of 

data that possess empirical distribution closest to theoretical 

one. This subset will represent non-active compounds, and 

all others should be treated as active (in the context of 

current study). For similar purpose earlier we have used 

Student's t-criterion to test the null hypothesis that subset 

mean is equal to 100%.
[42]

 This approach solves the problem, 

but does not take into account the differences in the shapes 

of empirical and theoretical distributions. Here we propose 

the more reliable method based on Kullback-Leibler 

divergence. Particularly, in the case of single dose assay, the 

Kullback-Leibler divergence between empirical and 

theoretical distributions is evaluated as function of activity 

threshold at a grid of 1000 values covering the interval from 

80 to 90 percents of cancer cell growth. The desired 

threshold corresponds to the minimum of this function. This 

minimum is found to be equal to 0.0993 (some difference in 

distributions shapes is still present) and is observed at mean 

growth percent ( GP ) = 86.76 that is pretty close to the 86% - 

the threshold found earlier
[42]

 (the lower precision of later is 

due to the much smaller dataset). For sure, there are 

compounds in non-active subset that possess some low 

anticancer activity and non-active compounds are present in 

active subset as well. Given threshold should be treated as 

optimal one that distinguishes two subsets most accurately. 

Additionally, we had an idea to make the partitioning using 

standard deviations. Actually, non-active and non-selective 

cytotoxic compounds should have small standard deviation 

of testing results (no activity pattern), while active 

compounds should vary in their activity level across different 

cell lines. The similar approach was utilized by Rabow et al. 

in 2002.
[25]

 But the plot of mean activity values vs standard 

deviations (Fig. 1) shows that the difference between 

standard deviations of highly potent and non-active 

compounds is rather vague. This plot shows also interesting 

detail concerning compounds with extremely high cancer 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
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cells growth percent. Though two compounds with both high 

mean growth percent and high standard deviation may 

represent assay failures (top right corner in the figure), 

another four compounds located inside the circle (NSC750 – 

busulfane, NSC178265 – Rhamnolipid R1, NSC303861 - S-

(N-methylcarbamate) cysteine ethyl ester monohydrochloride, 

NSC360036 - neolignan from Clerodendron inerme) seems 

to be cancer cells growth enhancers. Two of the mentioned 

results are confusing: busulfane is well-known alkylating 

antineoplastic agent and S-(N-methylcarbamate) cysteine 

ethyl ester monohydrochloride was reported as possessing 

some anticancer activity by Jayaram et al.
[43]

 

 

Figure 1. Spatial distribution of mean values and standard 

deviations from one-dose NCI anticancer assay. Possible 
cancer cells growth enhancers are outlined with circle. 

2.2 Searching for Associations between 4-

Thiazolidinones and NCI Public Compounds from 

Single-Dose Dataset. 

3813 Compounds from NCI one-dose assay dataset and 134 

compounds from our in-home library of 4-thiazolidinones 

were considered as active using the found threshold 

GP =86.76%. Pearson's correlation coefficient is the usual 

statistics to describe the similarity between two activity 

fingerprints.
[6]

 When using raw growth percent values, 

Person's correlation coefficient is preferred over other 

similarity metrics due to its capability to allow (to not take into 

account) differences in mean activity values. Indeed, 

Pearson's correlation coefficient is closely related to the 

squared Euclidean distance between two normalized 

vectors:  

)),(1(2),(2 yxcorn
norm

y
norm

xD  , 

where D
2
 is squared Euclidean distance, n – the length of 

vectors and cor(x,y) denotes Pearson's correlation coefficient 

between two raw vectors. 

So the similarity between two activity fingerprints can be 

estimated using the correlation coefficient between raw 

growth percents. But this approach has a small 

drawback: all cell lines are treated equally, while each 

cell line differs from the others in its sensitivity to 

chemotherapeutics. In other words, some cell lines show 

low variability in repeated testings, while the others show 

high. Thus it is rational to assign weights for each line and 

calculate weighted Pearson's correlation coefficient. This 

weights are based on standard deviations (Fig. 2.), obtained 

from multiple testing of single compound - methotrexate 

(NSC 740) at 10
-5

 M. The weights are calculated as follows: 


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i
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where σi is the standard deviation of i
th
 cell line. 

The standard deviations obtained from multiple 

testing of single compounds are asymptotically 

equivalent to the errors of experiment. Additionally, the 

mean standard deviation has been calculated as square 

root of mean of cell lines variances (since averaging 

standard deviations has no sense) and is equal to 14.98. 

This number represents the standard error of experiment. 

Comparing the 14.98 with standard deviations of cancer 

cells growth percents across cell lines (Fig. 1.), we can 

find only few compounds that show inhibitory effect (are 

active) and, simultaneously, have standard deviation 

comparable with standard error of experiment. Therefore, 

the assumption that the variance of cancer cells growth 

percents across cell lines exceeds the error of 

experiment is met for almost all tested compounds. 

Returning to the data mining protocol, the pairwise 

weighted correlation coefficients were obtained for each 

compounds pair, where the first compound is taken from 

the NCI one-dose assay dataset and the second – from 

4-thiazolidinones library. The distribution of correlation 

coefficients (Fig. 3.) is almost gaussian with positive 

shift of center. This may be explained by the presence of 

the significant amount of non-specific cytotoxics among 

tested compounds. These cytotoxics together with 

chance correlations should follow normal distribution. In 

order to find significant correlations, the minimization of 

Kullback-Leibler divergence between empirical and 

theoretical distributions has been utilized once more. 

This divergence was evaluated as a function of 

correlation coefficient threshold at a grid of 100 values 

covering the interval from 0.8 to 0.6. The minimum of 

divergence is found to be equal to 0.00136 (the empirical 

distribution is pretty close to gaussian) and is observed 

at correlation coefficient threshold = 0.700. Again, this 

threshold does not separate significant correlations from 

non-significant precisely, but is rather the optimal trade-

off between false positives and false negatives.  

Then we have filtered the data, leaving only those 

NCI compounds that correlate at least to one of the 4-

thiazolidinones with r>0.700. That results in a correlation 

matrix of 574 compounds, which was hard to visualize 

due to overplotting. Moreover, all data visualization 

techniques were trying to preserve the relations between 

the compounds with low activity level as well as with 

high one. Since the number of low-active molecules was 

much larger, the relationships between highly active 

compounds were neglected to some extent. These 

issues became the reason for further data reduction. In 

this way, only compounds which possess mean growth 

percent of treated cancer cells < 20 have been retained. 

The reduced dataset consists of 38 compounds from NCI 
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database and 25 thiazolidinones. The whole data 

manipulation process is disclosed in Fig. 4. 

 

 

Figure 2. Standard deviations of methotrexate multiple testing 
results for different cancer cell lines 

 

Figure 3. Histogram of correlation coefficients between activity 

fingerprints of active ( GP <86.76) compounds from NCI public 
database and from in-home library of 4-thiazolidinones 

  

Figure 4. The flowchart of data processing and filtering for 
one-dose assay results mining 

It is worth to mention, that visualization of correlation 

matrix with dimensionality reduction techniques gives the 

possibility to pinpoint chance correlations, unlike the 

analysis of raw correlation coefficients does. Specifically, 

the inferences from such figures are based on joint 

spatial distribution of data, but not on the single pairwise 

correlation. Therefore such approach is preferred over 

the frequentists' statistical tests of significance since it 

much less suffers from multiple comparison problem.  

The rather new method for data visualization called t-

SNE (t-Stochastic Neighbor Embedding) has been 

employed to show the mutual location of activity 

fingerprints.
[39]

 This technique is based on the 

representation of distance between datapoints in high-

dimensional space into corresponding conditional 

probabilities of neighborhood between given points and 

is capable to retain the local structure of the data while 

also revealing some important global structure (such as 

clusters at multiple scales). The method proved its 

efficacy in chemoinformatics, winning the Merck 

visualization challenge (October 2012) at kaggle.com – 

the platform for data prediction competitions. It is 

implemented in R, Python and MATLAB and also can be 

utilized within CheS-Mapper.
[44]

 The matrix of pairwise 

correlation distances 1-r, where r is weighted Pearson 

correlation coefficient, was the subject of dimensionality 

reduction with t-SNE, selecting the best result from ten 
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runs (as recommended in the official web-page of the 

algorithm
[45]

). 

2.3 Searching for Associations between 4-

Thiazolidinones and NCI Standard Anticancer Agents 

Since compounds from NCI standard agents database are 

absent in the public results of one-dose anticancer assay, we 

performed an additional study looking for correlation between 

4-thiazolidinones and standard agents activity fingerprints. 

The activity data for standard agents has been extracted 

from dose-response database (available at 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html) at 10 

µM (one-dose assay is carried out with the same 

concentration) and averaged through several repeated tests. 

These results were merged with 134 4-thiazolidinones 

having GP < 86.76%. The matrix of pairwise correlation 

distances have been formed the same way as it is described 

above and then was submitted to t-SNE visualization 

algorithm. The flowchart of this process is presented in Fig. 5. 

 

Figure 5. The flowchart of data processing and filtering for 
standard agents activity mining 

2.4 Identification of Possible Molecular Targets for 4-

Thiazolidinones with Anticancer Activity 

The data used for molecular target search has been 

downloaded from official NCI web-page.
[46]

 It consists of 

several datasets:  

1. the data from smaller-scale measurements 

(includes protein, mRNA, miRNA, DNA 

methylation, mutations, SNPs, enzyme activity, 

metabolites); 

2. cDNA array data from the Weinstein (NCI) and 

Brown & Botstein (Stanford) groups
[23,47]

; 

3. Affymetrix U133 array data from Gene Logic, Inc; 

4. Affymetrix U95A data from Novartis, averaged 

data (from triplicate arrays); 

5. Affymetrix U133 array data from Chiron. 

In order to estimate the strength of association 

between molecular characteristics of cancer cells and 

activity fingerprints the function that describes the 

relationship should be predefined. This function should 

be monotonic since the activity can only constantly 

increase or decrease with the change of molecular 

characteristics across cell lines but cannot change the 

direction. For example, it cannot sometimes increase 

and then sometimes decrease. This is the only 

preliminary knowledge we can use. Thus, being guided 

by Occam's razor principle, one of the simplest 

monotonic functions – the linear function has been 

chosen as the link between two studied variables. So the 

weighted Pearson's correlation coefficient has been 

utilized in this case as well. 

The correlation matrices of different characteristics of 

NCI-60 tumor cell lines versus 134 4-thiazolidinones 

possessing GP < 86.76% have been obtained for each 

dataset. The characteristics that have no any high 

correlation coefficient with at least one compound's 

activity fingerprint were removed, and the resulting 

matrices were visualized by heat maps.  

3. Results and Discussion 

3.1 Searching for Associations between 4-

Thiazolidinones and NCI Public Compounds from 

Single-Dose Dataset. 

Visualization of activity fingerprints (Fig. 6) shows that there 

are at least 5 distinct patterns among studied compounds. 

Since all NCI compounds in the figure were selected as 

those showing high correlation with at least one of the 4-

thiazolidinones, and there is a group of NCI compounds far 

from any 4-thiazolidinone (located at the left part of Fig. 6), 

we can conclude that this case represents the issue of 

chance correlations. In fact, i) several 4-thiazolidinones are 

correlated with above mentioned NCI compounds (their 

activity fingerprints are correlated to be more exactly); ii) 

these NCI compounds are correlated with each other; iii) the 

same 4-thiazolidinones are strongly correlated with other 

compounds, while the NCI compounds do not. All this 

together is forming the picture, where the left and partially 

the right groups consist of NCI compounds only and are 

located separately from others. The structures of other NCI 

compounds were subjected to the literature search and the 

most interesting findings are identified in the plot (Fig. 6) and 

listed in Table 1 together with the closest 4-thiazolidinones. 

 

Figure 6. Visualization of activity fingerprints. Compounds from 

in-home database are represented with hollow circles, while 

compounds from NCI public one-dose assay data are 
represented with filled ones. 

http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
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NSC-757836 is an optical isomer of puromycin that 

inhibits protein synthesis by binding to RNA and causing 

premature release of protein from the synthetic site of 

the ribosome.
[48,49]

 Les-3987 activity fingerprint is highly 

correlated with NSC-757836, assuming the same mode 

of antiproliferative action. The activity fingerprint of CBU-

028 is located rather close to this pair. CBU-028 is a 

bifunctional compound with a membrane-binding domain 

and a p97/VCP inhibiting activity, disrupting protein 

homeostasis in endoplasmic reticulum. Les-3833 is the 

closest compound to CBU-028 with weighted correlation 

coefficient r = 0.712. Given results suggest that 4-

thiazolidinones conjugated with substituted pyrazoline 

and isatin fragments act through inhibition of protein 

synthesis, but this inhibition may be conducted with two 

different mechanisms. There is also a group of five 

similar 4-thiazolidinones possessing the same structural 

template as Les-3987 and Les-3833 and located 

separately but not so far from CBU-028. In our opinion, 

this point does not support the hypothesis about some 

other activity mechanism, but should be treated as 

algorithm's artifact. Actually, the perplexity parameter of 

t-SNE was equal to 5. In t-SNE, the perplexity may be 

viewed as a knob that sets the number of effective 

nearest neighbors.
[45]

 This way five similar 4-

thiazolidinones formed a compact single group weakly 

interacting with other neighbors. So the activity 

mechanism of this group can be the same as other 4-

thiazolidinones conjugated with substituted pyrazoline 

and isatin fragments have. Further, the same mode of 

action is observed for fusarubin and thiopyrano[2,3-

d][1,3]thiazol-2-ones with similar naphtoquinone 

fragment. Fusarubin is the pigment isolated from 

Fusarium solani possessing antibacterial and antitumor 

properties.
[50]

 This finding encourages to test the 

antibacterial activity of mentioned thiopyrano[2,3-

d][1,3]thiazol-2-ones. The strongest correlation (r = 

0.792) was observed between Les-3183 and NSC-24692. 

NSC-24692 is 2,4,7-tribromotropone and it is found to be 

active in 48 assays from 228 listed in PubChem, while 

Les-3183 is rhodanine derivative with two peptide bonds. 

Taking into account complete dissimilarity of these two 

structures and the fact that rhodanines are known as 

promiscuous compounds
[51]

 we can assume that both 

compounds and maybe their neighbors as well are pan 

assay interference compounds. 

It is worth to notice that among given 38 highly potent 

NCI public compounds whose activity fingerprints 

strongly (r>0.700) correlates with 4-thiazolidinones 

fingerprints more than a half are really located far from 

4-thiazolidinones on the visualization plane (Fig. 6). 

Using common analysis of raw correlation coefficients, 

the relationships with these compounds could be 

(mistakenly) treated as significant. In such a way the 

proposed visualization helps us to avoid false 

discoveries. 

Table 1. 4-Thiazolidinones and Compounds from NCI Public Database Showing Similar Activity Fingerprints  

4-Thiazolidinone derivatives NCI public compounds Weighted correlation coefficient 

S

N

O

N
N

Cl

O
CH

3

N
H

O

Cl

 

Les-3987, GP =-58.01 

ClH

O

OH

OH

O

ON NH

N

N

NH
2

N

N

CH
3

CH
3

CH
3

 

NSC-757836, optical isomer of puromycin – well-

known anticancer agent that inhibits protein 

synthesis by binding to RNA, GP =-44.28 

r=0.741 

S

N

O

N
N

O

N
H

O

Br

CH
3  

Les-3833, GP =-59.81 

OH

O O

O

O

NH
N

N
+

 

CBU-028, bifunctional compound with a 

membrane-binding domain and a p97/VCP 

inhibiting activity,
[52]

 GP =-36.64 

r=0.712 

S

N
HS

O

O

O

O

CH
3

OCH
3

 

Les-2443, GP = 1.76 

O

OH
OH

OH

O

O

O

CH
3

CH
3

 

Fusarubin is the pigment isolated from Fusarium 

solani possessing antibacterial and antitumor 

properties, GP =5.93 

r=0.722 
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N

S

O

S

N
H O

Cl

O

N
H Cl

 

Les-3183, GP =-7.32 

Br

O

Br

Br
 

NSC-24692, 2,4,7-Tribromotropone, GP =-18.27 

(Pubchem: tested in 228 assays, active in 48). 

r=0.792 

 

Figure 7. Activity fingerprints of standard agents and 4-thiazolidinones. 

3.2 Searching for Associations between 4-

Thiazolidinones and NCI Standard Anticancer Agents 

The visualization (Fig. 7) fairly distinguishes different 

mechanisms of standard agents (except few non-trivial 

compounds). Additionally, some standard agents (especially 

antimitotics) have noticeably small mean activity values, 

indicating that average cancer cells growth percent is not a 

perfect outcome for design of new antitumor medicines. We 

can see also that low-active 4-thiazolidinones activity 

templates are diverse and differ from those of standard 

agents. Moreover, 4-thiazolidinones with high activity show 

distinct pattern also. Several 4-thiazolidinones (containing 

pyrazoline and isatin fragments) are close to topoisomerase 

II inhibitors, but the corresponding correlation coefficients lie 

within the range 0.51-0.67 and none of them exceeds 0.70. 

So, 4-thiazolidinones do not show any of the standard 

anticancer mechanisms. 

3.3 Identification of Possible Molecular Targets for 4-

Thiazolidinones with Anticancer Activity 

Searching for associations between the data from smaller-

scale measurements and 4-thiazolidinones activity 

fingerprints, we have found that the most active group of 

compounds (the first one from the left in Fig. 8.) is correlated 

with methylation of CpG sites in CD34 (MT13805), AF5q31 - 

ALL1 fused gene from chromosome 5q31 (MT9796), and 

SYK (MT8619) (Fig. 8). This group consists of 15 4-

thiazolidinones with pyrazoline and isatin fragments. The 

methylation data comes from M. Ehrich et al.
[53]

 and 

represents fraction of DNA methylated. Since low cancer 

cells growth percents are related to high activity, the high 

methylated fraction of CD34 and AF5q31 in cancer cells 

makes the cells more sensible to compounds of interest, but 

the influence of SYK methylated fraction is reverse. The 

protein encoded by AF5q31 (also known as AF4/FMR2 

family, member 4) belongs to the AF4 family of transcription 

factors involved in leukemia. The SYK gene encodes spleen 

tyrosine kinase which is widely expressed in hematopoietic 

cells and is involved in coupling activated immunoreceptors 

to downstream signaling events that mediate diverse cellular 

responses, including proliferation, differentiation, 

phagocytosis and cell-cell adhesion.
[54]

 Spleen tyrosine 

kinase can activate the oncogenic transcription factor “The 

Signal Transducer and Activator of Transcription 3” (STAT3) 

to induce expression of STAT3 target genes that improves 

resistance of human B-lineage leukemia/lymphoma cells to 

oxidative stress-induced apoptosis.
[55]

 The group of 4-

thiazolidinones with pyrazoline and isatin fragments includes 

subgroup (the first 4 compounds in Fig. 9) that shows strong 

negative correlation with methylated fraction of CpG sites in 

HOXA5 (MT4654). Hypermethylation of HOXA5 lowers its 

expression and is observed in clear cell renal cell 

carcinoma,
[56]

 acute myeloid leukemia,
[57]

 oral squamous cell 

carcinoma,
[58]

 non-small cell lung cancer
[59]

 etc, and in all 

cases were related to poor prognosis. These 4 compounds 

are listed in table 2 and were found to be highly active 

exactly in cells with large fraction of methylated HOXA5.



 

 

Figure 8. The correlation matrix of 4-thiazolidinones activity fingerprints versus NCI-60 cell characteristics obtained from smaller-

scale measurements. The columns correspond to compounds activities while rows represent fractions of methylated CpG sites in 
different genes. 

Table 2. Compounds Showing High Negative Correlation 

Between Their Activity Fingerprint and Fraction of Methylated 

CpG Sites in HOXA5.  

ID Structure 
GP
 

Weighted 

correlation 

coefficient 

Les-

3640 N
NS

N

O

NH

O

N

CH
3

CH
3

 

-40 -0.622 

Les-

3639 

N
NS

N

O

N

O

Cl

CH
3  

-54 -0.763 

Les-

3643 N
N

Cl

S

N

O

NH

O
 

-57 -0.712 

Les-

3645 
N

N

Cl

S

N

O

N

O

O

CH
3

 

-40 -0.657 

Similar activity fingerprints of Les-3643 and Les-3645 

support our previous hypothesis about the hydrolysis of 

N-acethyl fragment prior to interaction with biotarget.
[42]

  

There are few other single high correlations observed 

for highly potent 4-thiazolidinones (Table 3.). 

Remarkably that the thiopyrano[2,3-d][1,3]thiazol-2-one 

and 2-thioxo-4-thiazolidinone (rhodanine) derivatives 

(Les-2443 and Les-3183 respectively) do not show any 

significant relationships with studied cancer cells 

characteristics. 

Taking cDNA microarray data,
[23,47]

 much less 

relationships have been identified (Fig. 9). The most 

active group of compounds (the first one in Fig. 10) 

shows common, though not very strong positive 
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correlation with malonyl CoA:ACP acyltransferase 

(mitochondrial) (GC13049) and IFI27- interferon alpha-

inducible protein 27 (GC13627). The last is 

overexpressed in patients with chronic myeloproliferative 

neoplasms.
[60]

 The sign of correlation coefficients 

suggests that high expression of both genes is related to 

lower activity levels of these compounds. Les-3183 

(rhodanine derivative) was found to be correlated 

(r=0.847) with interferon alpha-inducible protein 27 as 

well.  

The heat maps obtained with mRNA expression data 

from GeneLogic Inc, Novartis and Chiron are almost 

identical and does not highlight any significant findings. 

These figures are provided as supporting information.

Table 3. The Strongest Correlations Found Between 4-Thiazolidinones Activity Fingerprints and Cancer Cells Characteristics 

Obtained from Smaller-Scale Measurements. 

ID Structure GP  Cell characteristics 

Weighted 

correlation 

coefficient 

Les-850 
S

N

N

O

N

OH
OH

 

1 

Fraction of methylated 

CpG sites in FANCG 

(MT5858) 

-0.816 

Les-3988 
S

N

O

N N

O

O

CH
3

NH

O

Cl

CH
3

 

1 

Fraction of methylated 

CpG sites in CD34 

(MT13805) 

-0.845 

Les-4185 
N

NS

N

O

NH

O

OH

Br

Cl  

19 

Fraction of methylated 

CpG sites in COPG2  

(MT5479) 

0.871 
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Figure 9. The correlation matrix of 4-thiazolidinones activity fingerprints versus NCI-60 cell characteristics obtained from cDNA 

microarray. The columns correspond to compounds activities while rows represent log(mRNA levels in cell line/mRNA levels in 

reference pool). 

3 Conclusions 

The proposed protocol of NCI data mining shows its 

capability to find significant associations and relationships 

while filtering out high correlations produced by chance. The 

visualization of results is a powerful approach for decision 

making. Using t-SNE algorithm, the group of highly potent 4-

thiazolidinone-pyrazoline-isatin conjugates was found to 

have common pattern of antitumor activity. This pattern is 

significantly close to puromycin and a novel promising 

anticancer agent CBU-028. Both of them inhibit protein 

synthesis, but in different ways: the pyromucin disrupts 

protein formation while CBU-028 – protein degradation, 

halting protein synthesis through negative feedback loop. 

The strong correlation of these compounds activity 

fingerprints with fraction of methylated CpG sites in CD34, 

AF5q31 and SYK have been observed. AF5q31 expression 

plays important role in tumor cells proliferation and 

metastasis, while SYK is novel promising target for the 

development of anticancer agents. There is also common, 

though not very strong positive correlation of current group 

with malonyl CoA:ACP acyltransferase (mitochondrial) and 

IFI27 - interferon alpha-inducible protein 27. Several 

compounds from this group show strong negative correlation 

with methylated fraction of CpG sites in HOXA5, currently 

viewed as prognostic marker for a set of malignant tumors. 

These results outline further directions of biochemical studies. 

Additionally, thiopyrano[2,3-d][1,3]thiazol-2-ones bearing 

naphtoquinone fragment have been found to possess the 

same activity pattern as fusarubin does. Fusarubin is an 

antibiotic with antitumor properties. So the hypothesis about 

antibacterial properties of such thiopyrano[2,3-d][1,3]thiazol-

2-one derivatives is useful side result of current 

computational study. One of the other highly potent 4-

thiazolidinone derivatives, namely Les-3183 seems to be pan 

assay interference compound. Generally, none of the studied 

4-thiazolidinones has activity fingerprint similar to standard 

anticancer agents. The obtained results produce new 

hypotheses about the routes of 4-thiazolidinones anticancer 

effect. Confirmation of them will bring medicinal chemistry 

closer to the development of new 4-thiazolidinone-based 

anticancer drug. 

Supporting information 

The correlation matrices of 4-thiazolidinones activity 

fingerprints versus different cancer cells characteristics 

visualized with heat maps. These characteristics are the 

follows: 
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Fig. S1 - the data from smaller-scale measurements 

(includes protein, mRNA, miRNA, DNA methylation, 

mutations, SNPs, enzyme activity, metabolites); 

Fig. S2 - cDNA array data from the Weinstein (NCI) and 

Brown & Botstein (Stanford) groups; 

Fig. S3 - Affymetrix U133 array data from Gene Logic, Inc; 

Fig. S4 - Affymetrix U95A data from Novartis, averaged data 

(from triplicate arrays); 

Fig. S5 - Affymetrix U133 array data from Chiron. 

Translation of NCI target pattern identifiers (row 

names) into corresponding gene information can be 

performed via NCI web-service 

http://dtp.nci.nih.gov/mtweb/search.jsp 
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