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Artificial neural networks on the base of neural-like computational 
units have many applications and are intensively used for solving 
numerous important practical tasks [1]. It should be mentioned 
that many different models of neuron has been proposed. The 
one of more important features of these units is the activation 
function determining their outputs. Historically, the first proposed 
units had activation functions of threshold type according to de
veloped models of brain cells. Using this type of activation Rosen
blatt [2] designed the incremental consistent algorithm for the per- 
ceptron learning. The simple proof of it convergence was given by 
Novikoff [3]. Then Minsky and Papert [4] proved that Rosenblatt's 
algorithm is inefficient in general case. Peled and Simeone were 
the first to produce a polynomial time algorithm for the threshold 
recognition problem [5]. They proposed linear programming ap
proach based on polynomial-time Karmarker’s algorithm.

It is well known that the threshold unit is incapable solving 
many rather easy recognition tasks [4] (e. g. the famous XOR- 
problem). The using of neurons with more complicated activation 
functions allowed surmounting this constrain. Historically, the one 
of the first designed advanced device were multi-threshold neural 
units [6]. But the efficient learning techniques for multi-threshold 
neuron based neural networks aren’t developed even in the case 
of one node.

The present paper is devoted to the study of simplest case of 
multi-threshold units, namely bithreshold neurons. The paper con
sists of four sections. In the second section we focus our attention 
on complexity of learning of bithreshold neurons. Our main result 
is that the learning of bithreshold neurons is NP-complete. In the 
third section we describe the type of decision lists which repre
sents bithreshold Boolean functions. This question is important 
in view of the known polynomial learning methods for decision 
lists [7-9]. Thereby we can separate the subclass of rather “well 
learnable” bithreshold Boolean functions. In the last section we 
consider the learning of feedforward neural nets on the base of 
“smoothed” bithreshold neurons.

Main definitions
The bithreshold neurons with n inputs is defined by a triplet (w, 
tv t2), where w e R " is  the weight vector and tv t2 e R (tl < t2) are 
the thresholds. The neuron output y is defined by

a, i f /, < (w ,x )< i2,

b, otherwise.

We consider neurons with binary ( {a,b} =  Z  ) or bipolar {{a,b} 
= E2) outputs, where Z, = {0,1}, E2 = {—1,1}. if f, = -oo, then we 
obtain the ordinary threshold neuron. The triplet (w, t , i,) is the 
structure vector of the bithreshold neuron.

The bithreshold neuron with bipolar output performs a clas
sification of R" by mapping every vector in R” to a +1 or a -1 . 
Geometrically, the bithreshold neuron has two separating parallel 
hyperplanes that define its decision region, as opposed to just 
one separating surface that defined the decision region of the tra
ditional threshold neuron.

Let A is the finite set in the space R”. Then bithreshold neuron 
makes such dichotomy (A+, A~) of the set A:

A" = {xe A\ t x < (w ,x )< i ,} ,  A+ - A \ A ~ .

This partition we call a “bithreshold” dichotomy and we cal 
hreshold separable” the sets A + and A~. In the most important s 
cial case A =  Z 2 or A = E \. We call Boolean function /(x,,.... 
Z 2—► Z2 a “bithreshold function”, if exists bithreshold neuron * 
the structure (w, tv t2) that / (x )  = 0 «> <  (w ,x )  < t2. Let h  
denote the set of all n-valued bithreshold Boolean function.

Complexity of synthesis procedure
A polynomial time algorithm is one with running time 0 ( r s), v. - 
r  is the size of input and s, .s < 1 is some fixed integer. The s 
of an input to an algorithm can be measured in various ways 
algorithms working with neurons it is naturally to take as a size 
input the capacity of learning sample.

We shall show that if the Z ^  NP conjecture is true, then a  
exist a polynomial time verification algorithm checking the pc 
bility of realization of the arbitrary Boolean function on one 
hreshold unit. The learning of bithreshold Boolean function is t 
complete all the more.

Let C is a class of Boolean function: C = {C„ } ,, n e  
C„ < z | / | / : Z 2 -> Z 2J. In the complexity theory the folic»« 
problem is well-known.
MEMBERSHIP(C)
Instance: A disjunctive normal form formula cp in n variables 
Question: Does the function f  represented by cp belong to C.

Anthony proved [8] that MEMBERSHIP(C) is NP-comple.s 
all classes satisfying following properties:

1) for e v e ry /e  C and arbitrary i e {1,..., « }, both funco 
f ( x v ...,xj_1, l , x M ,...,xn) and f ( x v ...,x._l ,0,xi+v...,xn) belong to

2) for every n e N ,  the identically 1-function belongs to C
3) there exists t s N  such that Ck { / 1 / :  Z 2 -»  Z2}. 

Proposition 1. The task o f verification o f the membership tc 
class o f bithreshold Boolean functions is NP-complete.
Proof. We show that class LB T  = { LBTn} n>] satisfies cond:: 
1-3. Condition 1 follows from Shannon expansion f ( x v ..., x  
f ( x t ,...,xn_„ 0 ) x „ v l ) x „ .  If Boolean function/l 
x j  can be generated on realized on the bithreshold neuron i 
the structure (w  =  (w1,...,w„_1,w „) ,r1, f2), then / ( x , , . . . ,x  
and /(x j, .. . ,x „_ ,,0 )  can be realized on bithreshold na 
ns with structures ((w 1;..., wB_,),t, -  wn,/, -  wn) respect-» 
( ( w j C o n d i t i o n  2 is evident. Condition 3 follow f 
the fact that i fn > 2  Boolean function x, © x 2 © ...© x „ doesn : 
long to LBTn [10]. Therefore subject to [8] MEMBERSHIP(Lc' 
NP-complete.
Proposition 2. The task o f verification o f the bithreshold se: 
bility o f the finite set A+ and A~ is NP-complete even in the : 
A* u  A~ cz {a,b]", where a  e R, b e R (a ± b) and the we 
coefficients may be restricted to be from the set {—1,+1}. 
Proof. We use the results of Blum and Rivest from [11], where 
shown that the following training problem to be NP-complete

The 3-Node Network with AND output node restricted so 
any or all of the weights for one hidden node are required :: 
opposite to the corresponding weights of the other and arr 
all the weights are required to belong to {-1 ,+ 1 }, since the 
known NP-complete problem Set-Splitting [12] can be reduce 
this task.

It is easy to verify that the arbitrary dichotomy (A+,A~) is 
hreshold if and only if it can be realized on neural netw c 
mentioned type. Really, x e A ~  < » ( w ,x ) < i2 and ( - w ,x )
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and the transformation from the basis {a,b} to the basis Z2 can 
be made using a standard linear transformation of variables (the 
same is true for synaptic weights).

Representation of bithreshold Boolean 
function by decision lists
Decision lists are proposed by Rivest in [7]. For many application 
[7, 8] decision lists are more useful than classical disjunctive or 
conjunctive normal forms.

Let K  is arbitrary finite sequence of Boolean
functions of n variables. A function / :  Z2 —> Z2 is said to be de
cision list based on sequence K  if it can be evaluated using a 
sequence of i f  then else command as follows, for some fixed {c,, 
c2,...,c  }, (c. e Z2, i  = 1

if / , (x )  = l  then se t/(x ) = Cj

else i f^ ( x )  = 1 then se t/(x ) = c2

else if^ (x )  = 1 then se t/(x ) = c 
else setf ( x )  = 0.

More formally, a decision list based on K is defined by a seque
nce

where f  g K , cj e Z 2, ( i  = 1,2, . . . , r ) . The values of the function/  
are defined by

/ «
if j  = m i n : f  (x )  = l |  exists, 

otherwise.

Example. Let A- = { x ^ x ^ X j } .  The decision list

/  = (jc1x3,0 ) , ( x2,1 ) ,(x1,1) .

may be thought of as operating in the following way on Z 2. First, 
those points for which x,x3 is true are assigned the value 0: these 
are (1,0,0), (1,1,0). Next the remaining points for which x2 is sati
sfied are assigned the value 1: these are (0,1,0), (0,1,1), (1,1,1). 
Finally, the remaining points for which xj is true are assigned the 
value 1: this accounts for (0,0,0), (0,0,1), leaving only (1,0,1), 
which is assigned value 0. At easy to verify that we obtain the 
following function x jx2 v  xjx3 v  x2x3.

The relationship between decision lists and threshold Boolean 
functions was established in [9]. Antony showed (see [8]) that any 
1 -decision list (that is, a decision list based over the set K  of single 
literals ) is the threshold function.

We present the similar result concerning the representation of 
bithreshold Boolean functions.
Proposition 3. If the members o f the decision list

satisfy following conditions:
1) f .  is an arbitrary Boolean function o f two variables assigned 

the value 1 on two points (i = l,2 , . . . , r - l) ;
2 )  c =  1 ,z'= l,2,...,r,
and the function f  is bithreshold, then f is  the bithreshold Boo

lean function.
Proof. We use the induction on r, that the number of members in 
the decision list. The base case, r =  1, is easily seen to be true 
because every Boolean function of two variables is bithreshold 
(it is sufficient to verify the realizability of the functions x  ® y  and 
x <=> y , as other 14 functions can be realized on single threshold 
units). Suppose, as an inductive hypothesis, that our proposition 
is true for all decision lists of cardinality no more r. Let we have the
following decision lists /  = ( f , c,) , ( / 2,c2) .... ( / r ,cr ) , ( / r+1,cr+1)
of the length r  + 1. By the inductive hypothesis the decision list

f '  =  ( f 2,c2) , . . . , ( f r ,cr ) , ( f r+l,cr+I) defines a bithreshold Boolean 
function. Let the corresponding bithreshold neuron has structure 
(w ', i, ', i2), and let d  =  V '' i |w'| + |/l | +  |f,| + l .  From conditions 1)- 
2) follow that the term { f ‘, c x) can has the following values:

1. (0,1);
2. (1,1);
3. (x.,1);

M V ) :  v
5. [XjXj vX jXplJ;
6.1 xpCj \ /XjXj , l ) .
In the first case let w  = w ' , t x= t [ , t 2 = t2. In the second

case let w  =  0 , tt = 1 , t2 = 2 .  In the third case let w = w ' + <7e; , 
/, - t ' l , t 2 = t2, where e. =  (0,...,0,1,0,...,0). In the forth case let 
w  = w '-fife ,., = t [ - d , t 2 =t'2- d .  In the fifth we can as sume
w  = w  ' +  de1 + dej , tl = t [  + ~d,t2 = t'2+ d . In the last case let 
w  = w ' +  nfe -  d t j , t{ = t[, t2 = t'2..

Prove that in each case the decision list f  is the bithreshold 
Boolean function realizable on the bithreshold unit with the struc
ture (w, tf). It is evident in two first cases.

In the third case for every x =  (x ,,...,x ;, . . . ,x ^ )e Z 2 
( w, x ) = (w ' + fife,., x )  = (w ', x ) + dx,..

If x. = 1, then the output value of the decision list is equal to 
1 and

( w ,x )  = (w ',x )  + d >  _ X |v v ' |+ ^ |w '|  + |/2| +  1 > t'2 = T
7=1 7=1

Thus, in this case the output value for the bithreshold neuron 
is equal to one for the decision list. If x. =  0 then ( w ,x ) = (w ',x ). 
By the inductive hypothesis the decision list / '  = ( / 2,c, 
( f r ’ cr ) ’ {fr+ u cr+\) is the bithreshold function realizable on the bit
hreshold neuron with the structure (w ', r ', /2) . Since = t. ,t'2 = t2 
that in the case x. = 0 the output of the bithreshold neuron is iden
tical to the out of the decision list. Thus, the function fis  realizable 
on the bithreshold with the structure (w, t , t2). The proof in case 
4 is similar.

Let us consider case 5. Let x e Z". If x  =  0 and x  = 0, then2 i j

(w, x) = (w',X) < X K I  < X k |  + |f'| +1 < i,' + = /,.

Ifx. = 1 andx. = 1, then

(w , x ) = (w ', x ) +  2 d > - ± \ w [ \  +
n *=■

+ 2d  > |f21 + | + |fj | + |f21 +1 ^  t2 + d  = t2.
*=i

In both cases the output of the bithreshold neuron is equal to 1. It 
corresponds to the output value of the decision list. Ifx  =  l , x .  =  0 
or x. =  0, Xj.=  1, then (w , x ) =  ( w ', x )  =  c/.

Since = t[ + d , t2 =t'2+ d, then in both cases the output value 
of bithreshold neuron with the structure (w, tv t2) is equal to one 
of the neuron with the structure (w ',t[,t'2),  which by the inductive 
hypothesis is equal to the output of the decision list. The proof in 
case 6 can be given by similar reasons.
Corollary 1. If  a Boolean function o f n variable can be represen
ted as follows:

/(x i,...,x „ ) = g (xi,...,x„)

VX,“1 V...VX,“' vxf'xi'1 v x fx ?  V ...V x f x f "  V x Pmx{m%
A v-n . VÄ.,

jm 7-
v-4.

7-  K  ■

where g (x ,,. .. ,x „)  is an arbitrary bithreshold Boolean function, 
x 1 = x ,x °  = x ,  a,. e Z 2 (/ = 1,...,/), f ) j  e .Z2,Y j e Z j =  
then f is the bithreshold function.
The proof follows from the proposition 3 and the evident fact [8] that 
if the decision list satisfies c .=  l , i =  then /  =  7 jv . . . v  f r 
Corollary 2. The Boolean function f  defined by the following de
cision list

/  = (y j ,1) , . . . , ( / r , 1) , (x ra; „ c r+| ) , . . . , ( x ra; m,cr+m),
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where or,- e Z2, cr+l e Z2, / = l,...,/n  is the bithreshold Boolean 
function if f r satisfy the conditions of the proposition 3.

The proof follows from the proposition 3 and from [8] (accor
ding to the theorem 3.9 the decision list of the following form 
{x “h ,c r + l {xr"m,cr+m\ is the threshold and so the bithreshold 
Boolean function).

Feedforward neural nets with smoothed 
bithreshold activation function
Let us consider the problem of learning the neural net on the base 
of bithreshold neurons. As we have shown in section 2 these task 
is hard even for one neuron. These difficulties can be bypassed 
in the same way that one for traditional threshold neurons. It is 
enough to consider the neurons with continuous differentiable 
activation function. We call it the smoothed bithreshold function. 
Corresponding neuron can be named smoothed bithreshold neu
rons. It is possible to consider numerous smoothed analogue of 
hard bithreshold activation function (1). The ones of simplest are 
following:

y  =  l - 2 e ~ l 2 , (2)

2 2
v = ----------------------------------+ 1 (3)7 1 + g-ioc*-» i + e->°(~'> ' V '

Its plots are shown on Fig. 1 (the plot of the function (3) is “closer” 
to the plot of the hard bithreshold function (1)).

F i g .  1 .  T h e  p l o t s  o f  t h e  s m o o t h e d  b i t h r e s h o l d  a c t i v a t i o n  f u n c t i o n s  

< 2 M 3 )

R y s .  1 .  W y k r e s y  w y g t a d z o n y c h  f u n k c j i  d w u p r o g o w y c h

We describe here a fairly simple neural net based on smo
othed bithreshold neurons, namely the feedforward net (i.e. the 
multilayer perceptron). We used backpropagation to learn such 
nets. The network error and weight corrections are traditional and 
corresponding formulas are omitted.

Simulation
To compare the performance of feedforward neural nets based on 
smoothed bithreshold neurons and sigmoid nets we have imple
mented a simulation tests. We describe results of two typical tests 
of nets learning in online mode, in which we use the activa-

2
tion function (2) or (3), modified logistic sigmoid y  = ----- =— 1,

1 1 + e *
y  = tanh x  and rational sigmoid y  = -------- .

1+ 1*1
In the first test we learned feedforward 100-10-3 nets (100 

inputs, 10 hidden nodes and 3 outputs) for different activation 
functions on 100 different learning samples, each containing 500 
training examples uniformaly distributed in hyperparallelepiped 
[-1,1]103. For every net 1000000 iteration of backpropagation pro
cedure are applied. The learning rate parameter was individualy 
chosen for every type of activation function.

Tabl. 1. Learning in the case of uniform distributed samples 

Tab. 1. Uczenie w przypadku probek o rozktadzie rownomiernym

Activation function Average total 
sample error

Maximum error | 
on example

modified logistic 31,27 0,38

tanh x 44,81 0,34

rational sigmoid 53,49 0,85

smoothed bithreshold (2) 30,04 0,35

As seen in Table 1, the empirical result prove that average 
total sample error was the least for smoothed bithreshold (2). The 
maximum error on example for this function is also fine in respect 
of other functions.

In the second test we trained 100-40-1 feedforward nets to 
map classical „hard” function XOR of 100 variables (strictly speak
ing we use the bipolar form of XOR). In the Table 2 are given the 
result of computer simulation. The learning sampe size was equal 
to 1000. For every net 300000 iteration of backpropagation pro
cedure are applied.

Tabl. 2. Learning XOR function 

Tab. 2. Uczenie funkcji logicznej XOR

Activation function Maximum error on example

modified logistic 1,99

tanh x 1,99

rational sigmoid 1,87

smoothed bithreshold (3) 0,24

As seen in Table 2, learning finished successively only in the 
case of network based on smoothed bithreshold (3).

Conclusion
Neural-like systems on the base of bithreshold neurons are stu
died. The hardness of bithreshold neurons learning is establis
hed. The conditions are found providing that decision list realizes 
a bithreshold logic function. The smoothed bithreshold activation 
functions are proposed. The experimental results confirm how 
effective developed approach is in learning feedforward neurai 
networks.
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