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Abstract. We consider slightly generalized Maxwell equations with electric and magnetic
currents and charges densities of the gradient type. Among other versions of the Maxwell
system these equations differ by the extended symmetry properties. Such system of equations is
invariant with respect to a 256-dimensional algebra, and this algebra is not yet the maximum of
possible symmetry. The longitudinal components of both vectors of electric and magnetic field
strengths, together with two corresponded scalar waves, are found as the exact solution of such
generalized Maxwell equations. The longitudinal wave component of the electric field strength
vector itself is found as an exact solution of the standard Maxwell equations with fixed current
and charge of the gradient type. This wave is corresponded to the scalar wave component,
which is propagated in the same direction. The analysis of found solutions demonstrates that
longitudinal components are located near the corresponded current and charge densities, which
are the sources of such fields. The relationship with modern experiments is considered briefly.

1. Introduction
The theoretical and experimental description of the longitudinal electromagnetic waves is a
subject of the different level discussions. There is a lot of indications of the existence of
such waves in different media. Note, e.g., the longitudinal waves in plasmons and in plasma.
Nevertheless, these oscillations only sometimes are considered as the electromagnetic ones. On
the other hand, it is well known fact that the Maxwell equations for the free electromagnetic
field contain only the transverse solutions.

Recently in [1] a simple experimental method for generating an intense longitudinal electric
field from transverse electromagnetic waves (laser pulses) with radially symmetric polarization
has been presented. The laser-generated longitudinal electric field was observed in two
dimensions and distinguished from the transverse component using the optical Kerr shutter
method. Authors of [2] experimentally demonstrated that a radially polarized field can be
focused to a spot size significantly smaller than for linear polarization. For strong focusing, a
radially polarized field leads to a longitudinal electric field component at the focus which is sharp
and centered at the optical axis. Experimental and theoretical investigations in [3] demonstrates
that the longitudinal field component has the maximal amplitude where the ”‘usual”’ field
component is zero. The high-power industrial CO2 laser is applied. Authors of [4] studied
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that, when focused, a radially polarized beam has a net longitudinal field useful for particle
acceleration and, perhaps, other unique applications.

The goal of this paper is to contribute in the problem by means of standard classical
electrodynamics, e. g., an exact solutions of well defined physical and mathematical systems
of equations. Presented below result that the longitudinal wave component of the electric field
strength vector is the exact solution of the standard Maxwell equations with specific gradient-
type case of electric current and charge densities can be verified by anyone after individual
substitution into standard Maxwell system with corresponding sources.

Note that one can find some confusion in using the notions ”longitudinal electric wave” and
”longitudinal wave component of the electric field strength vector”. It leads to the confusion in
understanding.

The question about longitudinal electromagnetic waves is the old problem of classical
electrodynamics. The first theoretical model has been considered in [5]. Longitudinal
electromagnetic waves between parallel plates were investigated.

The hypothesis about the longitudinal electromagnetic waves, which presence in the
mathematical formalism follows from the massless Dirac equation (on the basis of a link between
the massless Dirac and slightly generalized Maxwell equations), was suggested in [6]. The start
in [6] was related to the results [7]. Following [6, 7], in [8, 9] we presented our preliminary
point of view on this problem. The general solution of such kind of the Maxwell equations has
been found. The conclusion that the longitudinal electric waves can exist within the framework
of standard Maxwell electrodynamics in the case, when the electric currents and charges have
specific gradient-like form, has been suggested. Such longitudinal electric wave appears [8, 9] in
the pair with scalar wave.

However, the problem on the longitudinal electromagnetic waves can be considered
independently (without any relation to the massless Dirac equation and the Maxwell equations
in the Dirac-like form).

Below (see also [10]) the longitudinal wave component of the electric field strength vector
−→
E

is found as the exact solution of the standard Maxwell equations with specific partial case of
electric current and charge densities.

In the period after our publications [8, 9] an interest to the problem of longitudinal
electromagnetic waves in electrodynamics has been arose. Other approaches to the problem
should be briefly mentioned as well, see, e. g. [11, 12]. Nevertheless, the generalization of
classical electrodynamics to admit a scalar field and longitudinal waves mentioned in [12] was
known already from [8, 9].

Note that in [13] scalar potential wave together with a longitudinal electric field
−→
E in the

direction of propagation has been detected by a ball antenna. Nevertheless, the authors of [14–
16] have been doubted in this result both from the theoretical [14, 15] and experimental [16]
points of view. The authors of [16] tried to repeat the experiment [13] without any success.
In [15] it is proved that the authors of [13] detected classical TEM waves emitted by currents
flowing in the Earth and launched by the ball antenna used in the experiment.

Here the contemporary status of our original approach started from [6–9] is presented.

2. Exact solution of the Maxwell system with gradient-type electric sources
As ordinarily in field theory, the system of units ~ = c = 1 is used. Further, in the Minkowski
space-time M(1, 3) = {x ≡ (xµ) = (x0 = t, −→x ≡ (xj))};µ = 0, 3, j = 1, 2, 3, the variable xµ

denote the Cartesian (covariant) coordinates of the points of the physical space-time in the
arbitrary-fixed inertial reference frame.

Consider the Maxwell equations in the form

∂0
−→
E − curl

−→
H = −gradE0, ∂0

−→
H + curl

−→
E = 0, (1)
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div
−→
E = −∂0E

0, div
−→
H = 0.

Compare with the standard Maxwell equations for the free field

∂0
−→
E − curl

−→
H = 0, ∂0

−→
H + curl

−→
E = 0, (2)

div
−→
E = 0, div

−→
H = 0,

and with the standard Maxwell system with electric sources.
From the physical point of view, equations (1) are the partial case of the standard Maxwell

equations (the partial case of a standard classical electrodynamics). In this case, the current
−→
j (x) and charge ρ(x) densities have the form

−→
j (x) = −gradE0(x), ρ(x) = −∂0E

0(x). (3)

The mathematical point of view shows that objects (1) and (2) are the different partial
differential equations. Indeed, the general solution of the system (2) is well known and is given
by the transverse electromagnetic waves only

−→
E (x) =

1

(2π)
3
2

∫
d3k

√
ω

2

{[
c1
k⃗
e⃗1 + c2

k⃗
e⃗2

]
e−ikx +

[
c∗1
k⃗
e⃗ ∗
1 + c∗2

k⃗
e⃗ ∗
2

]
eikx

}
, (4)

−→
H (x) =

i

(2π)
3
2

∫
d3k

√
ω

2

{[
c1
k⃗
e⃗1 − c2

k⃗
e⃗2

]
e−ikx −

[
c∗1
k⃗
e⃗ ∗
1 − c∗2

k⃗
e⃗ ∗
2

]
eikx

}
.

Here (
−→
E (x),

−→
H (x)) are the real electric and magnetic field strengths, c1

k⃗
, c2

k⃗
are the complex

quantum-mechanical momentum-helicity amplitudes of a photon (the amplitudes of the
transverse electromagnetic waves),

kx ≡ ωt− k⃗x⃗, ω ≡
√

k⃗2, (5)

and the 3-component basis vectors (e⃗1, e⃗2, e⃗3), which, without any loss of generality, can be
taken as

e⃗1 =
1

ω
√

2(k1k1 + k2k2)

∣∣∣∣∣∣
ωk2 − ik1k3

−ωk1 − ik2k3

i(k1k1 + k2k2)

∣∣∣∣∣∣ , e⃗2 = e⃗ ∗
1 , e⃗3 =

k⃗

ω
, (6)

are the eigen vectors of the quantum-mechanical helicity operator for the spin s = 1.
The general solution (4) is ordinarily found by the Fourier method, and the normalization

factor C ≡
√

ω
2(2π)3

in (4) is taken from the condition

P0 =
1

2

∫
d3x

(−→
E 2 +

−→
H 2

)
=

∫
d3k ω

(∣∣∣c1
k⃗

∣∣∣2 + ∣∣∣c2
k⃗

∣∣∣2) . (7)

It is interesting to find the general solution of the system (1), which is expected to have
another (maybe not only transverse) form. The Fourier method in the corresponding rigged
Hilbert space leads to the general solution

−→
E (x) =

1

(2π)
3
2

∫
d3k

√
ω

2

{[
c1
k⃗
e⃗1 + c2

k⃗
e⃗2 + αk⃗e⃗3

]
e−ikx +

[
c∗1
k⃗
e⃗ ∗
1 + c∗2

k⃗
e⃗ ∗
2 + α∗

k⃗
e⃗ ∗
3

]
eikx

}
,

−→
H (x) =

i

(2π)
3
2

∫
d3k

√
ω

2

{[
c1
k⃗
e⃗1 − c2

k⃗
e⃗2

]
e−ikx −

[
c∗1
k⃗
e⃗ ∗
1 − c∗2

k⃗
e⃗ ∗
2

]
eikx

}
, (8)
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E0(x) =
1

(2π)
3
2

∫
d3k

√
ω

2

(
α
k⃗
e−ikx + α∗

k⃗
eikx

)
.

It is easy to see that here the electric field strength
−→
E (x) contains (together with the ordinary

transverse waves) the longitudinal wave as well. This longitudinal electric wave is determined by
the amplitude α

k⃗
. The scalar function E0(x) specifies the electric current and charge densities

in the Maxwell system (1). The scalar wave E0(x) is longitudinal as well and is determined by
the amplitude α

k⃗
.

The validity of the solution (8) can be verified by the direct substitution of (8) into equations
(1).

3. Exact solution of the Maxwell system with gradient-type electric and magnetic
sources
Consider the Maxwell-like system of equations

∂0
−→
E − curl

−→
H = −gradE0, ∂0

−→
H + curl

−→
E = −gradH0, (9)

div
−→
E = −∂0E

0, div
−→
H = −∂0H

0.

Equations (9) contain both electric and magnetic gradient-type current and charge densities.
System (9) is directly related to the massless Dirac equation (see e.g. the consideration in
[17–19] and the references therein).

The general solution of the system (9) is given by

−→
E (x) =

∫
d3k C

{[
c1
k⃗
e⃗1 + c2

k⃗
e⃗2 + (c3

k⃗
+ c4

k⃗
)e⃗3

]
e−ikx +A

}
,

A ≡
[
c∗1
k⃗
e⃗ ∗
1 + c∗2

k⃗
e⃗ ∗
2 + (c∗3

k⃗
+ c∗4

k⃗
)e⃗ ∗

3

]
eikx,

−→
H (x) = i

∫
d3k C

{[
c1
k⃗
e⃗1 − c2

k⃗
e⃗2 + (c3

k⃗
− c4

k⃗
)e⃗3

]
e−ikx −B

}
, (10)

B ≡
[
c∗1
k⃗
e⃗ ∗
1 − c∗2

k⃗
e⃗ ∗
2 + (c∗3

k⃗
− c∗4

k⃗
)e⃗ ∗

3

]
eikx,

E0(x) =

∫
d3k C

[
(c3

k⃗
+ c4

k⃗
)e−ikx + (c∗3

k⃗
+ c∗4

k⃗
)eikx

]
,

H0(x) = i

∫
d3k C

[
(c3

k⃗
− c4

k⃗
)e−ikx − (c∗3

k⃗
− c∗4

k⃗
)eikx

]
,

C ≡
√

ω
2(2π)3

is the normalization factor. Here both the electric field strength
−→
E (x) and

the magnetic field strength
−→
H (x) contain (together with ordinary transverse waves) the

corresponding longitudinal waves as well. These longitudinal electric and longitudinal magnetic
wave are given by the amplitudes c3

k⃗
+ c4

k⃗
and c3

k⃗
− c4

k⃗
, respectively. The scalar functions

(E0(x), H0(x)) specify the electromagnetic currents and charges densities in the Maxwell-like
system of equations (9). The scalar waves (E0(x), H0(x)) are longitudinal as well.

In our articles [17–19], the system of equations (9) is called as the slightly generalized
Maxwell equations with gradient-type sources. Indeed, at the first step, the system (9) is the

generalization of the Maxwell equations because it contains the condition div
−→
H ̸= 0 and the

nonzero magnetic current density in the equation ∂0
−→
H + curl

−→
E = −gradH0. Nevertheless, at

the second step the system (9) is the simplification (specification) of the Maxwell equations. Its
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electromagnetic currents and charge densities are the partial gradient-type forms of the general
form of the electromagnetic sources.

Thus, the system of equations (9) due to the conditions ∂0
−→
H+curl

−→
E ̸= 0, div

−→
H ̸= 0 is not the

standard Maxwell electrodynamics. Therefore, it is better to start the experimental detection of
the longitudinal electromagnetic waves in the experimental modeling of the situation given by
the system (1), which is inside the standard Maxwell electrodynamics. This system of equations

predicts an existence of the longitudinal component of the vector of electric field strength
−→
E .

The arguments in the prospect of system (9) are not so evident. Nevertheless, let us mention
(i) that system (9) has the maximally possible symmetry properties among the Maxwell and the
Maxwell-like systems of equations. In [17] the 256 dimensional algebra of invariance of equations
(9) was mentioned. The equations (9) have been considered in the terms of complex functions

E ≡ E − iH =

∣∣∣∣ −→
E − i

−→
H

E0 − iH0

∣∣∣∣ . (11)

Taking into account the symmetries found recently in [20–26], the number 256 can be increased.
Let us recall that the role of the symmetry principle in electrodynamics is known from the times
of Maxwell and Heaviside.

(ii) The system of equation (9) has the property of the Fermi–Bose duality. It can describe
both the massless spin 1/2 particle-antiparticle doublet of the fermions and the massless spin
(1,0) doublet of bosons (photon and massless spinless boson). In the terms of complex 4-vector
(11) equations (9) has the manifestly covariant form

∂µEν − ∂νEµ + iεµνρσ∂
ρEσ = 0, ∂µEµ = 0, (12)

and the form of massless Dirac equation

γ̃µ∂µE = 0, (13)

with specific Clifford–Dirac algebra γ matrix representation

γ̃0 =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣∣∣C, γ̃1 =

∣∣∣∣∣∣∣∣
0 0 0 1
0 0 −i 0
0 i 0 0
−1 0 0 0

∣∣∣∣∣∣∣∣C, (14)

γ̃2 =

∣∣∣∣∣∣∣∣
0 0 i 0
0 0 0 1
−i 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣C, γ̃3 =

∣∣∣∣∣∣∣∣
0 −i 0 0
i 0 0 0
0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣∣C,
where C is the operator of complex conjugation, CE ≡ E∗, γ̃µγ̃ν + γ̃ν γ̃µ = 2gµν .

(iii) The system of equations (9) considered in the specific medium [27, 28] can be applied to
inneratomic phenomena and describe the hydrogen spectrum [17–19] (another approach to the
hydrogen spectrum description on the basis of stationary Maxwell equations in this medium is
given in [29, 30]). In [29, 30] and [17–19] the role of longitudinal components is evident.

Therefore, there is some sense in experimental modeling the situation given by the system (9)
in the problem of the longitudinal electromagnetic waves investigation. Of course, the advantages
of system (1), which is inside the standard electrodynamics, are evident.

Note that solution (8) can be found both by the direct application of the Fourier method and
as a partial case of solution (10).

The validity of solution (10) can be verified by the direct substitution of (10) into equations
(9).
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4. The subsystems of the Maxwell-like equations with gradient-type electric and
magnetic sources
Due to the above mentioned properties, the system of equations (1) is the most interesting
subsystem of the Maxwell-like equations (9) (in the problem of longitudinal electromagnetic
waves consideration). Equations (1) follow from equations (9) after substitution H0 = 0 ⇒
c3
k⃗
= c4

k⃗
. In this case, in solution (8) the amplitude of the longitudinal wave α

k⃗
= 2c3

k⃗
. This

partial case of (9) is presented in Sec. 2 in details.
Another interesting subsystem of (9) follows from (9) after the substitution E0(x) = 0. In this

case, the vector
−→
H (x) of the magnetic field strength contains the longitudinal wave component.

Other properties of the general solution are similar to (8) and are to (8) in evident symmetry.

Nevertheless, the interest to this case is lower then for H0 = 0 case. The conditions div
−→
H ̸= 0

and ∂0
−→
H + curl

−→
E ̸= 0 are not in the framework of the standard Maxwell electrodynamics.

5. Conclusion
The electric field strength vector

−→
E (x) that contains the longitudinal wave component is found

as the exact solution of the standard Maxwell equations with the partial gradient case of electric
current and charge densities (3). The explicit form of this solution is given in (8). Note that the

set of general solutions (8) of such Maxwell equations contains the vector
−→
E (x) together with the

scalar field E0(x), which is longitudinal as well. The validity of the solution (8) can be verified
by the direct substitution of (8) into equations (1). Thus, the link between the longitudinal
electric waves and the standard Maxwell electrodynamics is demonstrated. The author has a
hope that corresponding experimental situation can be created by modeling the sources (3) and
may be useful. Moreover, the experiments in [1–4] look like to be the physical reality of such
longitudinal electric waves.

The analysis of (3) and (8) demonstrates that longitudinal components are located near the
current and charge densities. Indeed, the current and charge densities (3) and the longitudinal
components in the solution (8) are determined by the same amplitudes α

k⃗
, α∗

k⃗
. The best

examples of corresponding physical reality are such big charges as the whole water area of
closed sea, the Earth in general, their oscillations and corresponding longitudinal electric and

scalar waves. The subclass of the functions
−→
j (x), ρ(x) from (3) is generated by the oscillating

charges in plasma, plasmons and laser beams [1–4]. Longitudinal electric wave in [1–4] appears
after the interaction of circularly polarized transverse electromagnetic waves. The authors are
considered now the possibility of experiment in solid samples.
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