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Abstract The transition from the He atom to the complex
atoms description in the method of interacting configurations
in the complex number representation has been presented.
As a first step the problem of ionization of H− and Li+ ions
is considered. The spectroscopic characteristics of the Be,
Mg and Ca atoms in the problem of the electron-impact
ionization of these atoms are investigated. Few results in the
photoionization problem on the 1P autoionizing states above
the n=2 threshold of helium-like Be++ ion are presented.
The energies and the widths of the lowest 1S, 1P, 1D, and
1F autoionizing states of the Be, Mg atoms, and the lowest
(1P ) autoionizing states of Ca atom, are calculated. We con-
sider briefly both a review of our previous results (together
with results of other authors) and new calculations of our
group. A brief review of the methods of the quasi-stationary
states calculation is given.

Keywords Electron-impact Ionization of Atom, Au-
toionizing States, Quasi-stationary States, Interacting
Configurations Method

1 Introduction

Investigations of autoionization phenomena in the frame-
work of the problems dealing with the ionization and the
electron scattering by atoms and ions were separated in the
last decades into an independent branch of theoretical ato-
mic physics. The scientific interest to the description of the
processes of excitation and decay of quasi-stationary states is
associated with a necessity to specify the parameters of ele-
mentary processes, which are used in theoretical estimations
and calculations in plasma physics, laser spectroscopy, so-
lid state physics, and crystallography, at the development of
technological methods of isotope separation at the atomic le-

vel, the designing of coherent ultra-violet and x-ray radiation
generators, as well as in other physical domains.

The results of experimental researches concerning the au-
toionizing states (AIS) located between the first and second
ionization thresholds for helium and helium-like ions were
qualitatively explained on the basis of the theory of isola-
ted Fano resonance and in the diagonalization approxima-
tion. The appearance of new experimental data on resonance
structures in partial cross-sections of helium photoionization
above the threshold of excited ion formation (more exactly, in
the interval between the second and third thresholds, to which
the AIS energies converge in the atomic ionization problem)
brought about a number of theoretical issues dealing, first of
all, with the description of the interaction of a considerable
number of overlapping quasi-stationary states, which decay
through several open channels. Theoretical calculations and
the analysis of resonance structures decaying into several sta-
tes of a residual ion should be carried out, in the general case,
with regard for all interconfiguration interactions.

One of the first theoretical methods that made it possible
to obtain results coinciding with experimental data was the
method of overlapping configurations or the method of in-
teracting configurations. In the terminology adopted in this
work, this formalism is called the method of interacting con-
figurations in the real number representation (see Section 5).
An important step of the theory became the method of inte-
racting configurations in the complex number representation
(ICCNR method). This method was developed in works [1–
3] and successfully applied to the description of the quasi-
stationary states of helium formed at its electron ionization
in the energy interval above the threshold of excited ion for-
mation.

At the modern stage in the development of this method,
a principal possibility is its application to the calculation of
ionization processes in more complicated atomic structures.
Our way was a step by step transition from the He atom des-
cription [1–4], to the problem of ionization of H−, Li+ ions
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[5, 6] and to the investigations of enough complex Be, Mg,
Ca atoms, see, e. g., [7–13]. Few results in the photoio-
nization problem on the 1P AIS above the n=2 threshold of
helium-like Be++ ion are presented as well. The results were
reported at the international conferences [5, 7–10] as some
approbation of the method and found data. The complete
description of the method formalism was given in [4], see,
e. g., [13] as well. In [14] the choice of the ground state
wave function for such precision calculations of the quasi-
stationary states parameters has been considered and discus-
sed. The comparison with theoretical calculations in other
methods has been considered as well.

As one can see in the literature, beryllium [15–36], mag-
nesium [15, 16, 18, 37–51] and calcium [52–58] atoms turns
out to be the promising objects for researches; H− [59–69],
Li+ [70–76], Be++ [71, 72] ions, as well. In the start of our
step by step program from helium to complex atoms we deal
with the lowest AIS of Be, Mg, Ca atoms and H−, Li+, Be++

ions. Note that today the physics of resonances phenomena in
atomic shells considers different quasi-stationary states, con-
verging to the high-lying thresholds, see, e.g. [76, 77]. Mo-
reover, different complicated processes in atomic shells are
under consideration. Thus, the ICCNR method in future has
the wide domain of applications.

2 Few other well-defined and popu-
lar methods of atomic characteris-
tics calculations

Since we deal with the quantum-mechanical three body
problem (see the reaction (1) below) let us consider ((at le-
ast, briefly) the main methods for studying the three-particle
quantum-mechanical scattering phenomena.

The Faddeev equations. The first well-defined mathema-
tical method is based on Faddeev equations, see, e. g., [78–
80]. Indeed, some times the three body problem in quantum
mechanics can be solved with the help of Faddeev equations.
Nevertheless, this method is applied rarely for the calculati-
ons in atomic problems. The reason is in the long-range pro-
perty of Coulomb potential and, as a consequence, in the slow
convergence of the corresponding series. Therefore, usually
the method is applied for the simplest atomic systems [78–
80]. As an example, the method was applied for the (e, H)
system, in which the hydrogen negative ion bound state and
the lowest members of the resonances in both the singlet and
the triplet J = 0 series were calculated [78]. Further, in
[79] the AIS of He atom were calculated. The resonance
ionization by fast protons was studied, which was possible
for the short-range nuclear potential. In [80] the scattering
of electrons and positrons on hydrogen atom below the n=2
threshold was investigated. Thus, the Faddeev equations are
not applied for the complex atoms AIS calculations. The-
refore, the Faddeev–Merkuriev integral equations [81] look
more preferable for the calculation of processes in atomic

shell.
On the other hand both the Faddeev and ICCNR methods

are based on the Lippmann-Schwinger-type equations. In-
deed, the Faddeev formalism is started from the indication of
the absence of uniqueness in the Lippmann-Schwinger solu-
tions. This fact indicates some similarity between methods.
However, the difference appears in T-operator analysis. Mo-
reover, we do not appeal to three particle potential. Some
other details about the three body problems with short-range
interactions, application of Faddeev equations as well, can be
found in [82].

The Fano method. Nevertheless, the start of theoretical
calculations of resonance cross-sections in the photoioniza-
tion problem is associated with the Fano paper [83]. The be-
ginning of resonance profiles analysis can be found in [83]
as well. The task of the new theory construction, which
can take into account the coupled channels and can con-
tain the spectroscopic characteristics of the interacting quasi-
stationary states as the method parameters, has been formula-
ted.In [84] the classification of two-electron excitation levels
of helium has been suggested. Further, Fano demonstrates
[85] that in the case of few interacting AIS, which decay into
one open channel, the photoionization cross-section can be
presented with explicit choosing of the members correspon-
ding to the resonance process. The theory of isolated quasi-
stationary state, which is observed in the cross-sections as the
resonance, has been formulated by Fano in the paper [83]. In
[86] the detailed description of the method has been given.

Diagonalization approximation. This method was very
useful 50 years ago for investigations of the resonance scat-
tering of slow electrons by many-electron atoms and ions. In
this period it was a step forward. It was some unification of
closed coupled channel approximation and interacting con-
figuration method, in which only the diagonal elements of
corresponding matrix were taken into account. The method
was carried into atomic physics from the previous successful
applications in the nuclear physics [87, 88]. Thus, the diago-
nalization approximation was developed and realized by V.V.
Balashov et al in articles [89, 90]. Further, see, e.g. [91], the
method has been applied successfully for the quasi-stationary
states description in the problems of photoionization and io-
nization of atoms by electron impact in the region between
the first and second ionization thresholds. The form reso-
nances have been described in this method in the paper [92].
The studied problems have a peculiarity. The excited quasi-
stationary states decay occurs into one open channel. The
detailed diagonalization method description can be found in
[91]. The possibility of application to other type experiments
has been considered. Moreover, the diagonalization approx-
imation was very useful in the investigations of scattering of
photons and electrons on complex atoms ions, see, e.g., V.I.
Lengyel et al [93] and the references therein.

The Shore method. In main ideas and principles this met-
hod is near diagonalization method. It is shown that in the
case of non-interacting resonances the total cross-section of
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ionization with few AIS excitation in the form of simple for-
mulas can be found. The parameters look like the Fano for-
mulae, see, e.g. [94]. Nevertheless, the author of the mo-
nograph [95] does not determine the explicit expressions for
his parameters. Shore parameters are determined from the
solution of the integral equation system with singular kerns.
In the isolated resonance approximation the system of this
linear parameters is equivalent to the Fano system of para-
meters. Today this system is widely used for the analysis and
comparison of resonance curves, obtained in the experiments
of different types.

Closed coupled channels approximation. The method
was developed by Burke group in Belfast, see, e. g., [96,
97]. The important necessary principle has been realized.
The formulation of this principle can be as follows. Theore-
tical calculations and the analysis of resonance structures de-
caying into several states of a residual ion should be carried
out, in the general case, with taking into account the com-
plete set of interconfiguration interactions [96, 97]. Note that
isolated resonance approximation does not lead to the coin-
cidence with experimental data in such problems. The clo-
sed coupled channels approximation has been applied to the
problems of photoionization and scattering of electrons by
ions [96, 97]. Further application of method was realized in
wide-range problems of photon and electron collisions with
atoms and ions. The details can be found in [98]. Quantum-
mechanical close coupling approach to molecular collisions
can be found in [99]. Thus, the closed coupled channel met-
hod [96–99] was a step forward in investigations of resonant
processes.

Note on density functional theory. The difficulties in AIS
theoretical description lead to the appearance of methods,
which essentially depend from parameters taking from the
experiment, not from the pure theory. Therefore, such appro-
aches are not independent methods. The popular method of
that kind is the density functional approach, see e.g. review
in [100]. Thus, density functional theory, unfortunately, does
not belong to so called exact quantum-mechanical methods.
Moreover, the unique approach is absent. Many different va-
riants of formalism have been developed by researches. Furt-
hermore, in the problem of complex atoms AIS description
all existing density functional approaches deal with essential
difficulties. Therefore, obtained results are not of decisive
character. Let us continue with independent theoretical ap-
proaches.

R-matrix method. A step forward in the development of
the calculation technique in the framework of coordinate re-
presentation of the closed coupled channels approximation
was given by R-matrix method, where the R-matrix forma-
lism for the solution of the integro-differential equations sy-
stem has been applied. Such method was suggested in the pa-
per [101] of Wigner-Eisenbud for the solution of the nuclear
physics problems. For the case of atomic physics the method
has been modified in the papers of Burke, Taylor, Berringon,
Eissner and Norrington, see, e.g. [102], where the calculation

procedure has been presented in details. Today the R-matrix
method is the most spread in the complex atoms AIS inves-
tigations [36, 102, 103]. This method is widely applied for
the scattering of photons and electrons on the complex atoms
both in ordinary [102] and B-spline [103] formalism.

The methods of interacting configurations. Here, con-
trary to the ICCNR method, this formalism is called the met-
hod of interacting configurations in the real number repre-
sentation. It often becomes necessary to demonstrate the role
of different multiconfiguration interactions in the resonance
profiles formation, when the AIS excitation by the electrons
and photons is studied. In the framework of coordinate re-
presentation of closed coupled channels method the realiza-
tion of this procedure is difficult, because in the channel of
reaction the separation of single configuration, which corre-
sponds to the concrete quasi-stationary state excitation, is im-
possible (Note that AIS, which are different only in the main
quantum number, belong to one and the same channel). The
analysis of such problems is convenient to fulfill in the fra-
mework of the methods, which follows from the shell model
of nucleus. The configuration interaction method, see, e.g.
[104], has been used at first in the problems with configura-
tions overlapping of many particle systems discrete spectrum
in nucleus. In the papers of Feshbach [105] and Bloch [106]
the direct generalization of the method for the states with
continuous spectrum has been given. In atomic physics the
problem of configuration interaction method equations appli-
cation for the direct calculations of the distribution of the os-
cillations strengths transitions into the continuous spectrum
has been considered by Fano [83–86]. Nevertheless, only the
numerical methods of the integral equations solutions for the
direct photoionization process have been formulated. In or-
der to include the AIS calculation the method of [83–86] has
been applied. Unfortunately, the obtaining of results for few
AIS decay into few channels is impossible. This problem was
overcome by the ICCNR method introducing, see, e.g. [1-4].
Note that the ordinary formalism of configuration interaction
method (in our terminology the method of interacting con-
figurations in real number representation) still is useful for
calculations of processes in atomic shells [107].

The method of K-harmonics. This method has been
described in details by Peterkop [108]. Some further deve-
lopment can be found in [109–111]. As it is ordinary for
such methods the wave function expansion over some basis
function is used. In order to simplify the method of solution
the part of expansion, which is related to functions of the con-
tinuous spectrum and gives the integro-differential equations,
is presented as the set in terms of K-harmonics or hyperspher-
ical functions. Some exact formulae for K-harmonics method
are given in [112].

The hyperspherical coordinates method. The method
of K-harmonics is nearby to hyperspherical coordinates met-
hod, see, e.g., [66], in which the energetic positions of AIS
can be calculated with good accuracy, but the calculation of
widths meets some problems. This method has some simi-
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larity to Faddeev approach. The success of this method is
evident, see, e.g., [66, 113]. However, the hyperspherical
coordinates method is working good only for few body sys-
tems (here with Coulomb interaction too) and is not applied
for the complex atoms AIS investigations as well.

The multiconfiguration Hartree–Fock method. Useful
multiconfiguration Hartree–Fock method has been developed
by C. Froese Fischer [114–116], especially the program for
numerical calculations.

The random phase approximation with exchange met-
hod. The RPAE method is based on few physically available
assumptions. The electrons in atom are considered as some
dense gas. This assumption corresponds to low level of re-
sidual interaction of electrons in comparison with its kinetic
energy. The method is described in details in [117]. The ex-
amples of application, e. g., for some states of Ar atom, are
given in [118]. The application of multiconfiguration rela-
tivistic random-phase approximation for Be can be found in
[19].

The method of complex coordinate rotation has been
developed by Y. Ho [73, 119–121]. The essence of the met-
hod is the Ritz variational principle generalization, which
gives the possibility for the calculations with complex test
functions. At the manifold of the test function parameters
the minimization of the Hamiltonians eigen values results as
the vector of complex energies of the resonances under con-
sideration. Note that method of complex coordinate rotation,
as well as other methods bases on the Ritz variational prin-
ciple, is formulated only for the calculations of wave functi-
ons, which describe the coupled states in two-electron sys-
tems, see, e. g., [73]. In [119] Hylleraas type wave functi-
ons are used to calculate resonance parameters for intrashell
states (the two electrons occupy the same shell), and pro-
ducts of Slater-orbitals are used for intershell states (the two
electrons occupy different shells). In [122] the configuration-
interaction basis functions are applied.

3 General description of the method
In this section, the backgrounds of the method are briefly

described.
The ICCNR method is a well-defined quantum-mechanical

method for the calculation of parameters of atomic systems.
This method is a development and a generalization of the
known method of interacting configurations in the real num-
ber representation. It has some advantages in comparison
with the standard method of interacting configurations in the
real number representation and other calculation methods
for the energies and widths of quasi-stationary atomic sta-
tes. First, this is a capability of finding not only the energies,
but also the widths of quasi-stationary states. Second, there
are new possibilities for the resonance identification. The
ICCNR method makes it possible, on the basis of the results
of calculations, to estimate the contribution of each resonance
state to the cross-section of the process and, if the resonance

approximation is applicable, to introduce a set of parameters
that determine the energies and the widths of quasi-stationary
states, as well as the contours of resonance lines in the ioni-
zation cross-sections. This approach also enables the appli-
cability of approximate methods to the estimation of cross-
sections in specific problems to be studied and the limits of
their validity to be determined. Those advantages make it
possible to successfully apply the ICCNR method not only
to scattering processes, but also to much more complicated
processes of atom ionization by electrons.

4 Motivation and goals
We presented here our step by step transition from the He

atom description via the problem of ionization of H−, Li+

ions up to the enough complex atoms (such as Be, Mg and
Ca) investigations. One of the goals of these investigations
is to demonstrate that the ICCNR method can be useful for
the complex atoms study on the level of popular R-matrix
approach, see, e. g., [36].

The ICCNR method is applied here to the calculation of
spectroscopic characteristics of AIS of Be, Mg and Ca atoms
in the problem of the electron-impact ionization of these
atoms. In particular, the energies and the widths of the lo-
west (1S, 1P, 1D, and 1F ) AIS of Be, Mg and Ca atoms are
calculated. The important stage is the problem of ionization
of H−, Li+ ions.

The exact quantum-mechanical methods are welcome here
because the experimental investigations of beryllium are
complicated due to its chemical properties. Furthermore, the
atomic shell of Be atom is not simple and is not very com-
plex. Therefore, this atom is enough suitable object for the
beginning of the application of the ICCNR method to the
compound atomic systems investigations.

Here some results for Be atom [15–20] are compared with
the calculations on the basis of ICCNR method. Further ana-
lysis of literature shows that beryllium atom until today is
the interesting experimental and theoretical problem [15–36].
The authors of [15–36] prefer the approbation of their expe-
rimental and theoretical methods in the investigations of pro-
cesses in the beryllium atomic shell.

Similarly, some results for Mg atom [18, 37, 38] are com-
pared with our calculations in ICCNR method. Furthermore,
our results (found in ICCNR method) for Ca atom are compe-
red with experimental and theoretical investigations [52–54].

One of the goals of our research is to illustrate the capabili-
ties of the ICCNR method in the determination of spectrosco-
pic characteristics of complicated atoms. Quasi-stationary
states were studied in such multielectron atomic systems as
Be, Mg, Ca atoms and H−, Li+ ions [5, 7–10]. The capa-
bilities of the method were illustrated briefly by the exam-
ple of the atomic ionization by the electron impact [5, 7–10],
which are challenging for researches. The analysis of the loss
spectrum of ejected electrons made it possible to compare in-
directly the obtained results with the results of studies of the
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scattering problem. The results were reported at the interna-
tional conferences [5, 7–10]. This journal presentation is the
expanded consideration of [5, 7–10].

5 Formalism of the method
Let us recall the foundations of the ICCNR method for the

study of the processes of atomic ionization by the electron
impact. Consider the equation of the examined reaction

A(n0L0S0) + e−(
−→
k 0)→ A+(nl1) + e−(

−→
k 1) + e−(

−→
k ),

(1)
where

−→
k 0,
−→
k 1,
−→
k are the momenta of the incident, ejected,

and scattered electrons, respectively. Then the generalized
oscillator strength of the transition for the incident electron
in the Born approximation is given by

dfnl1
dE

(Q) =
E

Q2

∑
lL

|〈nL1El|
n∑
j=1

exp(i
−→
Q−→ri )|n0L0S0〉|2.

(2)
In this formula E = k20 − k2 is the energy loss,

−→
Q =

−→
k0 −−→

k is the transmitted momentum, and |nl1El : LS0〉 is the
wave function of an atom with total momentum L and spin
S0 provided that an electron with momentum l and energy
E is in the field of ion A+, whose electron has the quantum
numbers |nl1〉. The function of the atomic ground state is
given by |n0L0S0〉.

Note that process (1) is a much more complicated physical
phenomenon in comparison with the electron scattering by an
atom. Exact theoretical calculations of such processes consti-
tute a problem for modern theoretical physics. Therefore, the
consideration of this problem for multielectron atoms in the
framework of the ICCNR method is an important and chal-
lenging scientific step.

The choice of the wave function for the ground state is
dictated by a desirable accuracy of the final results of calcu-
lations. In the case of two-electron systems, this is a multipa-
rametric Hylleraas-type wave function [123], and, in the case
of Be atom, this is, as a rule, a Hartree-Fock wave function
obtained in the multiconfiguration approximation [114–116].
In our papers we used the Tweed [124] wave function as well,
see [14] for details. The system of equations in the ICCNR
method has the following form:

(En − E)aEiλn +
∑
λ′

∫ ∞
0

bEiλλ′(E′)Vnλ′(E′)dE′, (3)

∑
m

aEiλmV
∗
mλ′(E′) + (E′ − E)bEiλλ′(E′) = 0.

The multipliers aEiλm and bEiλλ′(E′) are the coefficients of ex-
pansion of the wave function ΨE

λ (−→r1 ,−→r2) in the basis

ΨE
λ (−→r1 ,−→r2) =

∑
m

aEiλm|m〉+
∑
λ′

∫ ∞
0

bEiλλ′(E′)|λ′E′〉dE′.

(4)

The basis wave functions satisfy the conditions

〈m|Ĥ|n〉 = Enδnm, 〈λ′E′|Ĥ|λE〉 = Eδλλ′δ(E − E′),
(5)

where Ĥ is the total Hamiltonian of the system.
The formal solution for the multiplier bEiλλ′(E′) is given by

bEiλλ′(E′) = P

∑
m a

Ei
λmVmλ(E)

E − E′
+ [Aλλ′ (6)

±iπ
∑
m

aEiλmVmλ′(E)]δ(E − E′),

where Vmλ(E) = 〈m|Ĥ|λE〉. The matrix Aλλ′ depends on
the asymptotic properties of the basis functions |λE〉. Sub-
stitution of Eq. (6) into Eq. (3) transforms the system of
equations obtained in the ICCNR method into a system of
linear algebraic equations for the coefficients aEiλm:

(En − E)aEiλn +
∑
m

[Fnm(E)− iγnm(E)]aEiλm (7)

= −
∑
λ′

Aλλ′Vλ′n(E),

The latter can be expressed in terms of eigenvectors and ei-
genvalues of the complex matrix

Wnm(E) = Enδnm + Fnm(E)− iγnm(E), (8)

where
γnm(E) = π

∑
λ

Vnλ(E)Vλm(E); (9)

Fnm(E) =
1

π

∫ ∞
0

γnm(E)

E − E′
dE′.

The analysis of formulas (8) and (9) allows one to compare
various approximations, which can be done in the ICCNR
method. One can see that, in the framework of this method,
the following approximations are possible:

1) the method of interacting configurations in the real num-
ber representation; this approximation corresponds to the
neglect of complex components iγnm(E) in matrix (8);

2) the diagonalization approximation in the real number
representation consists in that the sum of all non-diagonal
members Fnm(E)− iγnm(E) in the matrix Wnm(E) is neg-
lected;

3) the diagonalization approximation involving the transi-
tions outside the energy surface (or the diagonalization ap-
proximation in the complex number representation) arises if
the term Fnm(E) is neglected in calculations.

The account for all members in matrix (8) is, in essence,
the ICCNR method, the advantages of which over the indica-
ted approximations are obvious.

After determining the eigenvectors and eigenvalues of the
matrix Wnm(E), we can calculate the energies and widths of
quasi stationary states that are located above the threshold of
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excited ion formation [1, 2]. The partial amplitudes of the
resonance ionization can be determined as follows:

T|0〉→|λE〉(E) = tdirλ (E) +
∑
m

Hmλ(E)

εm(E) + 1
. (10)

The quantities in formula (10) are defined by the relations

tdirλ (E) =
√
C(E)〈λE|t̂|0〉, (11)

Hmλ(E) = 2Ṽmλ(E)[tm(E)− iτm(E)]Γ−1m (E), (12)

where

tm(E) =
√
C(E)〈F̃Em |t̂|0〉, τm(E) =

√
C(E)〈χEm|t̂|0〉.

(13)
Hence, the expressions for the cross-sections become para-
metrized

σλ(E) = σdirλ (E)+
∑
m

Γm(E)Pmλ(E) + εm(E)Qmλ(E)

ε2m(E) + 1
.

(14)
The real functions Pmλ(E) and Qmλ(E) of the total

energy E are the doubled real and imaginary, respectively,
parts of the complex function Nmλ(E), which looks like

Nαm(E) =
∑
λεα

Hmλ(E)(tdirλ (E)+
∑
n

Hmλ(E)

εn(E)− εm(E) + 2i
)∗.

Hence, the resonance ionization cross-section is determined
by a collection of the following functions of the total energy
E: σdirλ (E),Nαm(E), εm(E), and Γm(E). See more details
about the formalism of the method (for two electron systems)
in the article [4].

6 The results of the calculations
Here the electron-impact ionization of the H−, Li+ ions

and Be, Mg, Ca atoms in the interval of AIS excitation are
considered.

6.1 The positions of the autoionizing states of the H−
and Li+ ions, converging to the threshold n=3

The results of the calculations for electron-impact ioniza-
tion of H−, Li+ ions are presented. The ICCNR method is
used. The positions of four lowest AIS of the H− ion and
three lowest Li+ ions, converging to the threshold n=3, are
given in the Tables 1 and 2, respectively. The comparison
with experimental and theoretical results of other authors is
presented in these tables as well.

Furthermore, first and forth resonances of Table 1 can be
compared with AIS E=12.650, Γ=0.02758 and E=12.837,
Γ=0.00163 in [59], respectively. Moreover, three quasi-
stationary states of Table 2 can be compared with resonances
E=175.80, E=178.18 and E=179.37 in [70], respectively.

Table 1. Energies and widths of the lowest AIS of the H− ion, converging
to the threashold n=3, in the ICCNR method

No E, eV Γ, eV E, eV [63] Γ, eV [63]
1 12.6598 0.0304 12.6586 0.0329
2 12.7801 0.0010 12.7677 0.0012
3 12.8479 0.0026 12.8382 0.0030
4 12.8591 0.0018 12.8416 0.0022

No E, eV Γ, eV E, eV [60] E, eV [61]
1 12.6598 0.0304 12.6605 12.6602
2 12.7801 0.0010 12.7656 12.7658
3 12.8479 0.0026 12.8330 12.8332
4 12.8591 0.0018 12.8394 12.8408

Table 2. Energies and widths of the lowest 1P AIS of the Li+ ion, conver-
ging to the threshold n=3, in the ICCNR method

1P E, eV Γ, eV E, eV [72] Γ, eV [72]
1 175.58 0,281 175.77 0.321
2 178.27 0,071 178.58 0.078
3 179.45 0,016 179.60 0.019

1P E, eV Γ, eV E, eV [71] Γ, eV [71]
1 175.58 0,281 175.49 0.272
2 178.27 0,071 178.10 0.068
3 179.45 0,016 - -

6.2 Energies and widths of the lowest autoionizing sta-
tes of Be atom

In brief report [7], using the ICCNR method, the investiga-
tion of the electron-impact ionization of a Be atom in the AIS
excitation interval has been started, and the spectra of energy
loss were analyzed. The photoionization of this atom has
been studied as well. The AIS that arise in this problem can
be compared with the AIS that are formed in the problem of
electron scattering at the corresponding ion. In calculations,
the Coulomb wave functions were used as basis configurati-
ons. For every term, up to 25 basis configurations were taken
into account.

Table 3 contains the results of our calculations for the
energies and the widths of the lowest AIS of a Be atom
(1S, 1P, 1D, and 1F ). These resonances are found in the
ICCNR approximation in the problem of the electron-impact
ionization of an atom. These results are compared with the
energies and the widths of AIS obtained in the paper [18],
where another problem of electron scattering by a Be+ ion is
discussed. Therefore, such comparison is indirect. Further-
more, in Table 4, the energies of 1P states, which are located
between the first and second ionization thresholds of a be-
ryllium atom, are compared with the results of calculations
obtained by other authors [15–20].
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Table 3. Energies and widths of the lowest AIS (1S, 1P, 1D, and 1F ) of
a beryllium atom obtained in the ICCNR approximation in the problem of
the electron-impact ionization of an atom. In the paper [18], the energies of
AIS were calculated in the diagonalization approximation in the framework
of the problem of electron scattering by a Be+ ion

1S E, eV Γ, eV E, eV [18] Γ eV [18]
3s2 16.42 0.0803 16.40 0.0818
3p2 18.65 0.0110 18.57 0.0116
3s4s 18.82 0.0351 18.74 0.0358
3s5s 19.48 0.0163 19.45 0.0167
3s6s 19.77 0.00869 19.75 0.00884
3s7s 19.96 0.00518 19.92 0.00527
1P E, eV Γ eV E, eV [18] Γ eV [18]

3s3p 17.70 0.157 17.68 0.169
3s4p 18.85 0.0318 18.83 0.0321
3s5p 19.45 0.00601 19.41 0.0062
3s6p 19.73 0.0157 19.68 0.0161
3p4s 19.81 0.00328 19.77 0.0033
3s7p 19.89 0.0274 19.82 0.0282
3s8p 19.95 0.0140 19.93 0.0143
1D E, eV Γ eV E, eV [18] Γ eV [18]

3s3d 17.62 0.0214 17.56 0.0220
3p2 18.31 0.0224 18.67 0.0230
3s4d 19.09 0.0378 19.09 0.0389
3s5d 19.60 0.0121 19.56 0.0128
3d2 19.67 0.00789 19.63 0.0796
3s6d 19.81 0.00331 19.79 0.0034
1F E, eV Γ eV E, eV [18] Γ eV [18]

3p3d 18.96 0.0203 18.95 0.0214
3s4f 19.43 0.0149 19.43 0.0155
3s5f 19.72 0.0070 19.70 0.00717
3s6f 19.88 0.0023 19.85 0.00235
3s7f 19.95 0.00021 19.94 0.00023
3s8f 19.97 0.0019 - -

In the literature, there are no similar results obtained on the
basis of exact computational methods, in particular, on the
basis of the method of interacting configurations and, moreo-
ver, on the basis of the ICCNR one. The comparison with the
results of paper [18] found in the diagonalization approxima-
tion (see Table 3) is indirect, because it deals with a different
object in a different problem. Nevertheless, it really eviden-
ces the reliability of the results obtained here.

Here we are able to add energies and the widths in the pho-
toionization problem of the 1P AIS below the n=3 threshold
of helium-like Be++ ion. The first three 1P resonances above
the n=2 threshold are presented. The results are compared
with theoretical calculations of [78, 79]. These results are
presented in Table 5.

Table 4. Comparison of the energies obtained with the use of the ICCNR
method for the AIS of a beryllium atom, which are located between the
corresponding first and second ionization thresholds, with the results of other
authors

1P E, eV E, eV [15] E, eV [16] E, eV [17]
2p3s 10.71 10.71 10.93 10.77
2p3d 10.84 11.86 11.86 11.86
2p4s 12.03 11.97 12.10 12.07
2p4d 12.42 12.47 12.50 12.49
1P E, eV E, eV [18] E, eV [19] E, eV [20]

2p3s 10.71 10.73 10.63 10.91
2p3d 10.84 11.85 12.03 11.83
2p4s 12.03 12.09 12.09 12.09
2p4d 12.42 12.49 12.61 12.44

Table 5. Comparison of the energies and the widths obtained with the use
of the ICCNR method for the AIS below the n=3 threshold of a helium-like
Be++ ion with the theoretical results of other authors (the first three 1P
resonances above the n=2 threshold are under consideration)

E, eV Γ, eV E, eV [71] Γ, eV [71] E, eV [72] Γ, eV [72]
329.18 0.318 329.50 0.324 329.55 0.412
333.24 0.0081 333.35 0.086 333.69 0.088
337.47 0.0019 - - 337.66 0.0023

6.3 Electron-impact ionization of a Mg atom in the in-
terval of the excitation of autoionizing states

The investigation of the ionization of Mg atoms (and Mg+

ions) by photons and electrons is a challenging problem,
which is proved by both experimental and theoretical papers
of many authors (see, e.g., publications [8, 9, 18, 37, 38] con-
sidered here). In brief articles [8, 9], we started to study the
electron-impact ionization of a Mg atom in the AIS excita-
tion interval with the use of the ICCNR method. In Table 6,
the results of our calculations for the energies and the widths
of the lowest AIS (1S, 1P, 1D, and 1F ) of a Mg atom obtai-
ned in the electron-impact ionization problem in the ICCNR
approximation are presented.

First, our results are compared with similar states that are
formed in the problem of electron scattering by Mg+ ions
[18] (see Table 6). Since another problem has been consi-
dered in paper [18] – namely, the scattering one – such a
comparison is indirect. In [18] the calculations were carried
out in the diagonalization approximation. Second, in the fra-
mework of the problem of the electron-impact ionization of
atoms, the energies of 1P -states must coincide with those
obtained in the problem of photoionization of a Mg atom.
Therefore, a direct comparison of our results with experimen-
tal ones [37] and with the results of calculations on the basis
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of the R-matrix method [38] can be made. In Table 7, the
energy positions and the widths calculated for the 1P AIS of
a magnesium atom with the use of the ICCNR method are di-
rectly compared with the experimental data of paper [37] and
the theoretical data obtained with the help of the R-matrix
formalism [38], as well as with the problem of electron scat-
tering by a Mg+ ion [18].

Table 6. Energies and widths of the lowest AIS (1S, 1P, 1D, and 1F ) of a
Mg atom obtained in the ICCNR approximation in the problem of electron-
impact ionization of an atom. In paper [18] the energies of autoionizing
states were calculated in the diagonalization approximation in the framework
of the problem of electron scattering by a Mg+ ion

1S E, eV Γ eV E, eV [18] Γ eV [18]
4s2 13.08 0.0987 13.06 0.1010
3d2 14.61 0.0480 14.66 0.0502
4s5s 14.92 0.0425 14.97 0.0473
4s6s 15.48 0.0196 15.53 0.0185
3d4d 15.59 0.0140 15.64 0.0129
4s7s 15.78 0.0115 15.80 0.0107
4s8s 15.80 0.0069 - -
1P E, eV Γ eV E, eV [18] Γ eV [18]

4s4p 14.15 0.157 14.18 0.143
3d4p 15.01 0.172 14.95 0.162
4s5p 15.34 0.0324 15.29 0.0301
4s6p 15.68 0.0682 15.64 0.0667
3d4f 15.77 0.0481 15.74 0.0448
4s7p 15.85 0.0059 15.86 0.0048
3s8p 19.95 0.0140 19.93 0.0143
1D E, eV Γ eV E, eV [18] Γ eV [18]

3d4s 13.62 0.262 13.66 0.272
3d2 14.31 0.253 14.38 0.269
4d4s 14.89 0.0192 14.96 0.0189
3d5s 15.28 0.0869 15.30 0.0951
4p2 15.47 0.0570 15.49 0.0578

3d4d 15.58 0.0865 15.55 0.0876
4s5d 15.69 0.0258 15.66 0.0248
1F E, eV Γ eV E, eV [18] Γ eV [18]

3d4p 14.15 0.0225 14.66 0.0230
4s4f 15.01 0.0110 15.28 0.0113
3d5p 15.34 0.0540 15.53 0.0589
3d4f 15.53 0.0052 15.63 0.0053
4s5f 15.68 0.0201 15.71 0.0205
3d6p 15.77 0.0104 15.88 0.0109
4s6f 15.85 0.0125 15.90 0.0131

Thus, the original scientific results found with the help of
the ICCNR method for the energies and the widths of the lo-
west AIS (1S, 1P, 1D, and 1F ) of a Mg atom in the problem
of electron-impact ionization of this atom are presented (see
Table 6). Their novelty consists in the application of the exact
calculation method, namely, the method of interacting confi-

gurations and, the more so, the ICCNR method. The com-
parison with the calculations of corresponding energies and
widths of AIS carried out in the diagonalization approxima-
tion in the problem of electron scattering by Mg+ ions (Table
6) is indirect (a different object in a different problem), but
really testifies to the reliability of the results obtained. Some
of the results obtained here, namely, the energy positions of
the 1P AIS of a Mg atom, can be directly compared with the
experiment and the R-matrix calculations (see Table 7). The
results of calculations carried out with the use of the ICCNR
method are in good agreement with the corresponding cal-
culations using the R-matrix method [38] and experimental
results [37] (see Table 7).

Table 7. Comparison of the energies and the widths of the AIS of a magne-
sium atom obtained with the use of the ICCNR method with the experiment
[37] and R-matrix calculations for 1P -states [38] (paper [38]: the photoioni-
zation problem and the photoionization threshold; work [18]: the scattering
problem)

1P E, eV Γ eV E, eV [18] Γ eV [18]
4s4p 14.15 0.157 14.18 0.143
3d4p 15.01 0.172 14.95 0.162
4s5p 15.34 0.0324 15.29 0.0301
3d5p 15.53 0.0775 15.56 0.0758
4s6p 15.68 0.00682 15.64 0.00667
3d4f 15.77 0.0481 15.74 0.0448
4s7p 15.85 0.00592 15.86 0.00476
4s8p 15.90 0.0087 - -
3d6p 15.93 0.0295 - -
4s9p 15.95 0.0011 - -

1P E, eV Γ eV E, eV [38] Γ eV [38] E, eV [37]
4s4p 14.15 0.157 14.2213 0.3921 14.18
3d4p 15.01 0.172 14.9048 0.6078 -
4s5p 15.34 0.0324 15.3133 0.0931 -
3d5p 15.53 0.0775 15.7264 0.0890 15.24
4s6p 15.68 0.00682 15.6653 0.0142 15.61
3d4f 15.77 0.0481 - - -
4s7p 15.85 0.00592 15.8675 0.0095 15.83
4s8p 15.90 0.0087 15.9802 0.0111 15.98
3d6p 15.93 0.0295 16.007 0.0417 -
4s9p 15.95 0.0011 16.065 0.0019 16.06

6.4 Electron-impact ionization of a Ca atom in the in-
terval of the excitation of autoionizing states

The application of ICCNR method to calculate the lowest
AIS of calcium atom was begun in work [10]. The energies
and the widths of the lowest 1P -states were calculated. The
results were compared with the data obtained by other aut-
hors. In Table 8, besides the results of our calculations [10],
the experimental data [52] and the results of theoretical cal-
culations [53, 54] are shown. Their analysis testifies that the
classification of AIS proposed in work [53] is possible. The
results of our calculations agree well with the theoretical data
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obtained by other authors.

Table 8. Comparison of the energies and the widths obtained with the use of
the ICCNR method for the AIS of a Ca atom with the theoretical results of
other authors [53, 54] and the experiment [52]

1P E, eV E, eV [52] E, eV [53] E, eV [54]
3d5p 6.601 6.59 6.604 6.633
3d6p 7.033 7.02 7.038 7.080
3d7p 7.397 7.39 7.342 7.415
3d8p 7.465 7.47 7.471 7.502
3d9p 7.551 - 7.556 7.575
3d10p 7.610 - 7.614 7.624
4p5s 7.159 7.13 7.166 7.300
3d4f 6.937 - 6.938 6.960
3d5f 7.240 7.25 7.248 7.260
3d6f 7.425 - 7.427 7.427
3d7f 7.523 - 7.529 7.527
3d8f 7.591 - 7.596 7.593
1P Γ eV Γ eV [52] Γ eV [53] Γ eV [54]

3d5p 0.0801 0.21 0.0702 0.0846
3d6p 0.0059 0.17 0.0056 0.0067
3d7p 0.0451 - 0.0509 0.0399
3d8p 0.0261 0.14 0.0232 0.0315
3d9p 0.0163 - 0.0141 0.0282
3d10p 0.0140 - 0.0101 0.0207
4p5s 0.0129 0.15 0.0139 0.0132
3d4f 0.00006 - 0.000004 0.00001
3d5f 0.0059 - 0.0028 0.00003
3d6f 0.0019 0.17 0.0014 0.0024
3d7f 0.0009 - 0.0011 0.00007
3d8f 0.00007 - 0.00008 0.00006

7 Conclusions
The method of interacting configurations in the complex

number representation, which was applied earlier to the des-
cription of quasi stationary states of a helium atom [1–3], is
under consideration. The calculation of the ionization pro-
cesses for more complicated atomic systems is suggested.
New results as well as the brief review of our previous in-
vestigations are presented. In the problem of the electron-
impact ionization the spectroscopic characteristics of the lo-
west AIS of Be, Mg, Ca atoms and H−, Li+, Be++ ions
were studied. The energies and the widths of the lowest AIS
(1S, 1P, 1D, 1F ) of Be, Mg atom, together with the lowest
(1P ) AIS of Ca atom and Li+, Be++ ions, were calculated.
Lowest quasi stationary states of H− ion were studied as well.
The found results were compared with known experimental
data and calculations on the basis of other methods. Hence,
we may draw conclusion about a successful verification of

the ICCNR method for the calculation of AIS of complex
atoms and the processes of electron-impact ionization and
excitation of such atoms.
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