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Abstract. A synergetic model of the transition to a non-crystalline state is proposed, which 
enables us to investigate the temperature dependence of the microscopic parameters (mean-
square displacements, the proportion of atoms in soft atomic configurations, power 
constants) under the influence of the external control parameter – the cooling velocity. 
Their analysis has been performed on the basis of experimental researches for non-
crystalline semiconductors of the system As–S(Se). It has been shown that formation of 
self-organized structures in the non-crystalline solids is carried out in accordance with the 
technological conditions of obtaining as a method of the system self-organization. The 
dependence of the period and lifetime of self-organized structures on the cooling velocity 
has been studied. The established value of the period of spatial inhomogeneity Lc ≈ 
10…102 Å correlates with the nanosized midlle order in non-crystalline materials of the 
system As-S(Se) and decreases with increasing the cooling velocity. 
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1. Introduction 

Non-crystalline semiconductor materials are fruitful and 
unique objects of practical and fundamental applications 
[1-5]. This is primarily correlated with the technological 
conditions of their preparation, the possibility of a wide 
variation of structural-sensitive parameters, the search for 
new areas of application [3-6]. The direction of 
semiconductor structures development with comple-
mentarity properties of nanocomposite materials and 
synergy of energy saving technologies with the 
corresponding implementation of anticipated structural-
sensitive properties is extremely important and relevant 
[4, 7, 8]. In addition, physics of self-organization 
processes in non-crystalline systems is not isolated or 
unitary, but, on the contrary, represents only a part of a 
rather broad class of analogous phenomena in open 
systems [8-10]. The ideas that underlie the concept of 
self-organization processes in non-crystalline solids 
proved to be quite fruitful, and today they have wide 
practical application both in physics of semiconductors 
[9, 11], as well as in adjacent fields – physics of 
biocompatible media, materials of the artificial 
intelligence and information technologies [5, 11-14]. 

The paper presents synergetic effect of obtaining 
semiconductor materials with formation of self-organized 
structures. The aim of this research was to establish the 
regularities of forming the self-organized structures and 
corresponding realization of anticipated structural-
sensitive properties, to determine their functional 
parameters, in particular nanosized levels of structuring 
and lifetime, to compare the results with known 
empirical relationships. 
 
2. Formation of the self-organized structures in the 

non-crystalline systems 

2.1. Concepts and investigation methods  

Let us consider the system and corresponding conditions 
for obtaining non-crystalline semiconductor materials by 
cooling the melt [1, 2]. In a non-equilibrium non-
crystalline system (NCS) for a non-adiabatic process in 
which non-crystalline materials are produced, the amount 
of heat dQ from the environment (thermostat) is equal 
dQ = TdS [8, 15]. In this case, it is necessary to consider 
the flow of negative entropy from the surrounding 
environment 0)( ≤= qfdSe , where q is the external 

control parameter, which is defined by the velocity of 
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change in temperature. The kinetics of temperature 

changes 
dt

dT
 for the system is determined by an equation 

that takes into account the processes of heat conduction 
and heat exchange:  

 

( ) ( )TQT
t

T
C −⋅χ=

∂

∂
⋅ρ graddiv , (1) 

 
where C, ρ, and χ are heat capacity, density and thermal 
conductivity of the system, Q(T) is heat-exchange with 
the environment with a heat-transfer coefficient ηh. Initial 
and boundary conditions: 
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It is taken into account that the sample of NCS 

materials in the form of a cylindrical rod with a radius r0 
and length d is located along the axis z, the temperature 
of the thermostat is TTS. Obtaining the materials of NCS 
by cooling the rinse is a complex of physical-and-
chemical processes that occur in highly non-equilibrium 
conditions [1-3]. The non-equilibrium conditions of the 
system are caused by the temperature gradient between 
the cooled surface and the surrounding environment (the 
thermostat). The transition to a non-crystalline state 

occurs at cooling speeds of the system cq
dt

dT
q ≥= , 

where qc is the limiting cooling speed, under which in the 
system no germ cell capable of crystalline phase is 
formed. According to the Arrhenius ratio [7], the period 
of formation of a crystalline nucleus is the characteristic 
value 
 


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
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RT
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where the activation energy of crystallization is La, the 
universal gas constant is R [1]. Having differentiated the 
left and right sides in the ratio (2) in time, we obtain 
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The limit cooling speed can be defined as the limiting 
velocity at the crystallization temperature T = Tm and is 
equal  





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−
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a
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RT
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2

. (3) 

The temperature distribution T(r, z) and the speed of 
its change T(r, z)/dt can be obtained according to Eq. (1) 
by using numerical methods taking into account the 
thermophysical characteristics of the material and the 
specific heat transfer conditions that correspond to the 
glass production method, as well as the values of the 
technological parameters of the quenching process and 
the sizes of the received material NCS. The calculation is 
considerably complicated when taking into account the 
condition of the cooled surface (the presence of random 
contaminants or oxides), which affects the heat transfer 
process [3]. The influence of the relevant factors can be 
taken into account in the introduction of the theoretical 
consideration of the phenomenological heat-transfer 
coefficient ηh, which is determined on the basis of 
experimental studies under different technological 
conditions of production and is a certain characteristic  
for the chosen method of obtaining a range of values  
[2, 11].  

Using the definition of the coefficient of thermal 

conductivity 
C

aT
ρ

χ
= , the reduced coefficient of heat-

transfer 
Cd

a h

ρ

η
=η , in the one-mode approximation [7] 

we rewrite the equation (1) as follows:  
 

( )TTa
L

T
a

t

T
TST −+−=

∂

∂
η

χ
2 . 

 
Here, Lχ is the characteristic scale of thermal 
conductivity. 

The characteristic time intervals of temperature 
changes in the cooling system satisfy inequalities 

tT << texp, where 
T

T
a

L
t

2
χ

=  is the characteristic time of 

change in temperature that is due to the temperature 
conductivity. According to the definition of kinematic 

viscosity 
ρ

η
=ν visc  and determining the time of 

relaxation of the state of the system 
G

trel
viscη

=  and the 

velocity of sound 
ρ

==
G

M

zfa
S f 2

2
0 , where ηvisc is the 

viscosity, G is the shift modulus, the condition tT << texp 

and trel ≈ texp  takes the form 
2
f

T
TT

S

a
ta

ν
<< . Since the 

spatial dimension of the thermal conductivity is 

characteristic TT taL =χ , then the condition tT << texp 

means that Lχ should be smaller than the value 

f

T

S

a
L

ν
= . The physical content of this inequality  

is  expressed  in  hydrodynamic  equation  12 <<ωε kT tt , 
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Fig. 1. Formation of a non-crystalline state (external  
control parameters are the cooling velocity q and obtaining 
conditions Iξ).  
 
 
according to which the value of the product of the time of 
heat conduction tT and convection tε is much smaller than 
the square of the inverse frequency of the sound ωk (here, 

it was taken into account that kL ≈ 1, 21
kν=τ−

ε , ωk ≈ Sf k, 

12 =ωττ ε krel  and the wave vector is k). For the non-

crystalline solids of the system As–S(Se) with 
characteristic values of parameters (Sf ≈ 105 cm/s, 
ρ ≈ 3…4.5 g·cm–3, C ≈ 0.5…0.9 J·g–1·K–1,  
χ ≈ 10–3…10–2 W/(K·cm), ν ≈ 1011…1014 cm2/s,  
ηh ≈ 10–3…10–2 W/(cm2·K), aT ≈ 2.4·10–4…6·10–2 cm2/s 

[1-5]) we get 23 10...10 −−χ
≈

L

L
. Consequently, the 

condition 1<<
χ

L

L
 is fulfilled for the non-crystalline 

solids [6, 11, 17]. 
 
2.2. Synergetics approach 

For the non-crystalline system in contact with the 
thermostat, statistical averages describing the system in 
this state can be obtained in the framework of the concept 
of non-equilibrium statistical operator [8]. It should be 
noted that the free energy, entropy of the NCS state are 
not state functions (as in the equilibrium case), since they 
depend on the external control parameter q (Fig. 1, (dS)e 
is an entropy flux that exists due to exchange a mass, 
energy and information with the environment, and (dS)i 
is an entropy production inside the system).  

But, at the same time, as shown by Haken ([8, 10]), 
they can be used to describe the behavior of strongly 
non-equilibrium systems, in particular dependence on q, 
based on a formal analogy between non-equilibrium 
transformations and second-order phase transitions [13-
15]. We will analyze the kinetics of changing the system 
parameters, namely, the proportion of atoms in soft 
configurations σ and the reduced mean-square 

displacements along the bond 236 rDy ll
αα=  and 

perpendicular to it 24 rDy tt
αα=  (r is the interatomic 

distance) in a strongly non-equilibrium conditions (the 
expediency and adequacy of the application of these 
values is analyzed in detail by the authors [14, 15]). The 
parameters of the system σ, yl, yt determine the behavior 
of structural-sensitive properties of the NCS materials: 
modulus of shift (≈yt), deformation values (≈yl), and 
middle order (≈σ). Having expanded F in degrees of 
system deviation from equilibrium and limited to the first 
members of the schedule, we have:  
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where such notation is introduced: 
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 (index “e” corresponds to the 

equilibrium state). Since, as the numerical analysis 
shows, the quadratic and higher order terms of 
decomposition F by ηy are insignificant (≈ 10–6…10–9) as 
compared with η3 (≈ 10–2) and η4 (≈ 10–3), then in the 
expansion (4) we can limit the quadratic by 

lyη  and 

tyη  terms:  
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For the purpose to describe the kinetics of changes 

in order parameters, we use the Landau–Khalatnikov 
equation [8, 10]  
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which allows one to shift in the relations (6) to the 
following system of nonlinear kinetic equations: 
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The first terms in equations (7) describe the 
dissipative process of relaxation of the fraction of atoms 
in the soft configurations, deformation and shift to 

equilibrium state with the relaxation time 1−=τ ijij a , and 

the second terms determine the process of interaction of 
collective modes. We use the principle of the hierarchy 
of time scales [10, 15] and subordination of the modes of 
Prigozhin to strongly nonequilibrium systems [8]. The 
characteristic time intervals for changing the field of 
deformation and the interatomic distance of the system 
during the cooling process satisfy the inequalities 
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ly << , and expttrel ≈ , locyy ttt
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≤,  and, 

always, are fulfilled, since s10, 12−≈
tl yy tt  [16]. Taking 

into account the above estimates, we can approximate it 
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This allows you to reduce the number of order 
parameters: 
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and consider the temperature field, the fields of 
deformation and the shift of atoms self-consistent with 
the field of distribution in soft atomic configurations. 
Hence, we can write (7) in the form 
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We will restrict ourselves to this section by 

considering the external controlling parameter, it is the 
cooling velocity: )(qfdSe =  (Fig. 1). Then, the 

coefficients of decomposition are functions of 
temperature, pressure and control parameter, the cooling 
velosity: ( )qPTaa ,, 00 = . Since it is in equilibrium  

0=δF , 0=edS , 02 >δ F , and 0=η . 

 
Then, in order to make this, the coefficient 

( )qPTa ,,0  should be positive, i.e., ( ) 0,,0 >qPTa . In a 

non-equilibrium state  
 

0≠δF , 0≤edS , 0≠η  and ( ) 0,,0 <qPTa . 

 
Stationary states with non-zero order parameter 
 

b
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6

442 0
2 −±−

=η   

are implemented with ( ) 0,,0 <qPTa . Consequently, 

when transitioning to a non-equilibrium state with a non-
zero parameter of order, the decomposition factor 

( ) 0,,0 =ccc qPTa . The following conditions should be 

also fulfilled: ( ) ( ) 0,, ,0,, >= cccccc qPTbqPTc , as if 

approaching a point Tc, Pc, qc from the equilibrium state 
should be a positively defined form of the second 
derivative. Thus, in the process of cooling the melt and in 
the transition to a non-crystalline state, the value 

( )ccc qPTa ,,0  can be approximated by the expression:  
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which goes into ( ) qaqPTa ccc

~,, 00 −≈  at 1~ <<q . In 

(8), we use the reduced critical velocity q~ , which is 
determined from the condition (3) and depends on the 
characteristics of the system, in particular the nature of 
the interatomic interaction. The main emphasis in the 
proposed approach is on the common features of the 
transition to a non-crystalline state, namely, the study of 
the effect of non-equilibrium on the formation of non-
uniform structures. For this purpose, considered is the 
given velocity q~ , which does not depend on the type of 

chemical bond.  
 
3. Three-dimensional bifurcation diagram and 

branching of solutions 

Hence, on the basis of the relations (1)–(8), we obtain the 
following self-consistent system of equations with 
respect to the fraction of atoms in soft atomic 
configurations σ, the mean-square displacements 

( )αα
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tt Dy  :  

( ) ( )

( ) . 

,,~~

3

2
32

01

t

t

l

l

y

y

t

y

y

l

yF

yFbcqaF

τ

η
=

τ

η
=η+η+η−=σ

 (9) 

 



SPQEO, 2019. V. 22, N 2. P. 299-309. 

Mar’yan M.I., Yurkovych N.V., Seben V.  Nanosized levels of the self-organized structures in the non-crystalline … 

303 

Here, the functions F1(σ), F2(yl), F3(yt) are defined 
according to the equations [9, 15] 
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Here, 0Vθ=τ  is the reduced temperature, 0VP ϕ=ξ  

00 VG  are the parameter of the anisotropy of the 

potentials. This self-consistent system of equations  
(9)–(11) makes it possible to investigate the dynamic 
stability and temperature behavior of the system under 
non-equilibrium phase transformations ( )0≠q , by using  

the calculation results obtained for equilibrium 
transformations (q = 0).  

The solution of the resulting system of equations 
(9)–(11) is carried out numerically using the iterative 
procedure and object-oriented modeling [14]. The results 
of calculations are presented in Fig. 2 in the case of 
different cooling velocity. We will analyze the pecu-
liarities of changing the dynamic stability of the system 
with the change of the external control parameter – the 
cooling velocity q, in particular with cqq ~~ → . Solutions 

of the system of equations for the proportion of atoms in 
the soft configurations and the mean-square displace-
ments of atoms have, at one value of the control 
parameter and the temperature, at least two stable states 
that differ in the degree of dynamic stability and ordering 
(Fig. 2). The first region covers the state of the system at 
cooling speeds cqq ~~ < , which contains the transition 

from a dynamically unstable to a dynamically stable solid  

 
 

Fig. 2. Branching of the solutions of the characteristic equation 
at different of the external control parameter q. 
 
 
(crystalline, quasi-crystalline) state and is accompanied 
by an abnormal increase in elastic constants with 
simultaneously abrupt decrease in the atomic fraction in 
soft atomic configurations and the amplitude of the 
mean-square displacement at lowering the temperature.  

As can be seen from Fig. 2, the degree of statistical 
disordering in a solid increases with cqq ~~ →  (a sharp 

change is observed in the transition to a quasi-crystalline 
state on the part of the metastable state, a supercooled 
liquid) and, thus, increases the temperature transition 
interval of the supercooled liquid. A quasi-linear 
dependence of the system parameters in the considered 
change interval for a dynamically stable crystalline 
branch is observed (Fig. 2, branch a-b). At cqq ~~ <  in the 

region of transition temperatures mτ=τ , the proportion 

of atoms in soft atomic configurations and the mean-
square displacements of atoms vary jump-like (the value 
of this change decreases with the growth of q~ ). 
Consequently, the macroscopic properties of the system 
are in proportion to σ, yl (for example volume), and their 
derivatives )(τσ′ , )(τ′

ly  (for example, the coefficient of 

linear expansion, heat capacity) have an anomaly at 

cqq ~~ → . The second region, which is realized at cqq ~~ > , 

is characterized by a continuous anomalous increase in 
the stiffness of the frame and elastic constants, a 
continuous decrease of σ, yl with a decrease in 
temperature (Fig. 2). So, the curve ( )q~,τσ  at cqq ~~ =  
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delimits in the temperature range cτ≥τ  the existence of 

metastable supercooled liquid and a dynamically stable 
non-crystalline system. It determines the lower boundary 
of the potential in the temperature range from τ0 before τc 
to cooling cqq ~~ <  (τ0 is the synthesis temperature) of the 

existence of a supercooled state. The temperature τc on 
the curve 

cqq
q ~~)~,(

=
τσ  (for which the metastable states 

degenerate) is the coexistence temperature at a given 
pressure of three states, crystalline, liquid, and non-

crystalline: 0
2

2

=










∂τ

σ∂

τc

.  

Investigation of the behavior of thermodynamic 
properties in the system in the vicinity { }cc q,τ  causes 

separate interest. It should be noted that the correlated 
decrease in the intensity of atomic oscillations, their 
amplitudes and the growth of the elastic constants in  
the transition from the metastable supercooled melt to  
the non-crystalline solid state indicates the presence  
of macroscopic  processes at  the level of  microstructural 
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Fig. 3. Bifurcation dependence of the reduced mean-square 
displacement of atoms yl at temperature τ = 0.1 on the cooling 
speed q/qc.  
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Fig. 4. Bifurcation dependence of the fraction of atoms  
in configurations σ at temperature τ = 0.1 on the cooling speed 
q/qc. 

rearrangement, for which, in accordance with the values 
of the control parameter q~ , a non-crystalline structure 

with a parameter of ordering η takes place. The order 
parameter that we use is determined by the spontaneous 
appearance of non-zero values of the displacement 
module and depends on the degree of system deviation 
from the equilibrium state (Figs. 3, 4). The structure 
formed at cqq ~~ >  is the result of the loss of the dynamic 

stability in the basic equilibrium state, when the tempera-
ture in the region decreases mτ≤τ . This structure arises 

due to the self-consistent amplification of fluctuations 
(mean-square displacements of atoms, their fraction in 
soft atomic configurations) that reach the mesoscopic 
level and make a stable new structure [15].  

This method of organizing the structure corresponds 
to and defines self-organized structures. Formation of a 
self-organized structure in non-crystalline solids, when 
cooling the system, is due to self-consistent creation of 
regions of soft atomic configurations and the temperature 
behavior of structural-sensitive characteristics that 
correspond to the minimum energy dissipation for given 
external parameters, cooling speed and technological 
regimes of obtaining [14]. This circumstance is essential 
for a non-crystalline system and allows the non-
crystalline structure to be determined through self-
organization. Under self-organization, in this case, the 
macroscopic manifestation of processes occurring at the 
microscopic level, the fields of dynamic and static 
displacements of atoms, is understood, which causes 
spontaneous formation of the non-zero component of 
shift module (Fig. 4). It should be emphasized that the 
nature of the dependence of the degree of disordering in 
non-crystalline solids on q~  correlates with the change of 

elastic constants at a given temperature, when their 
growth q~  decreases and the framework of the material 

becomes more labile and capable of rearrangement under 
the influence of external factors [5, 9]. Formation of a 
self-organized structure in non-crystalline solids under 
cooling is related to the self-consistent creation of the 
“soft”-state domains and results from the temperature 
behavior of the structures under evolution towards those 
changes that may promote the minimum energy 
dissipation and facilitate the technological process. 
Functional organization of the very self-organized 
structure is also defined by the selected qualitative 
energy that is selected ordering from chaos. These 
methods are determined through external control 
parameters and form the appropriate types of ordering.  

The transition to a non-crystalline state can be 
considered as a process of the self-organization with 
using the principles of synergetics [12, 19]. The choice of 
a nonlinear mathematical model of a dynamic object that 
is a non-crystalline system in the process of action of an 
external controlling parameter is reduced to a system of 
nonlinear equations. Based on the above, we will analyze 
the features of the qualitative behavior of the transition to 
a non-crystalline state, depending on the external control 
parameter  –  the cooling speed (Fig. 5).  The presence of 
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Fig. 5. Obtaining of the non-crystalline materials as a self-
organized process in an open system. 

 
 

self-organization processes and formation of self-
organized structures in the transition to a non-crystalline 
state involve a whole series of unique properties and 
states of semiconductor materials [14]. One this feature is 
nano-level structuring and fractality of lifetime. 

 
4. Nanosized levels structuring of the self-organized 

structures 

Let’s analyze the influence of the nonlocal distribution of 
the order of the system parameter η. In this case, the 
equation (7) takes the form [17, 18]: 
 

( )( ) η∆⋅+η−η−η+=
∂

∂η
Dbcqa

t

32
0

~1ln(arctan . (12) 

 
Here, D is the diffusion coefficient, ∆ is Laplacian, 
which describes the diffusion type non-locality. The 
equation (12) is solved at the initial and boundary 
conditions for NCM in the form of a cylindrical rod with 
the radius r0 and length d, located along the axis z. To 
find out the stability of the system, we consider 
infinitesimal perturbations of the solutions of the thermo-
dynamic branch  
 

( ) ( ) .,, trtr s δη+η=η  (13) 

 

Here, ( )tr,δη  is a deviation of the system from a 

homogeneous stationary state ηs, caused by random 
fluctuations ( ( ) 1, <<δη tr ). Let’s rewrite the term 

( )tr,δη  in the form of a Fourier series expansion: 

 
( ) { }∑ λ+⋅=δη

k

tikrAtr exp, . (14) 

 
Here, A is the amplitude mode with wave vector k and 
increment of attenuation λ. 

Substituting (14) into (13) and linearizing on the 
small parameter ( )tr,δη , taking into account (12), we 

obtain a dispersion equation that correlates the increment 
of damping with the wave vector: 
 

( )qk ~,λ=λ ,  

( ) ( )( )

.32

~1lnarctan~,
23

0

kDbc

qaqk

ss ⋅−η+η+

++=λ
 (15) 

For 
( )( )

D

bcqa
kk ss

c

2
022 32~1lnarctan η−η−+

=<  the 

increment of attenuation is ( ) ( ) 0~, 22 >⋅−=λ Dkkqk c , 
which indicates a divergence of mode with a wave vector 
k. A typical dependence of the increment of attenuation 
on the wave vector is shown in Fig. 6. 

In order to prove the existence of new solutions 
( ) ( )trtr s ,, δη+η=η  of the system of equations (9)–(11) 

at cqq ≥ , in addition to the linear analysis of the stability 
of solutions (13), it is necessary to analyze the complete 
nonlinear equations by using the condition of 
transversality. The condition of transversality in the case 
of simple eigenvalues of the characteristic equation (15) 
will be written in the form  
 

( )
0)~(~,~1ln1~1

1
)~(~ 02

0 ≠=λ
++

⋅
+

=λ
=

aq
qd

d

q

a

q
q

qd

d

cqq

. 

 

Because 0~ ≠
λ

qd

d
, then with q = qc the whole branch 

)~(qλ  as a function of q~  crosses the axis q~  and 
branching into a supercritical region (Fig. 2). This 
condition is a confirmation of the conclusion that the 
obtained solutions ( ) ( )trtr s ,, δη+η=η  branch out of the 
supercritical region are stable at cqq ≥  and they 
correspond to the heterogeneous distribution of atoms in 
soft configurations. In addition, the solutions ηs remain 
constant on the macroscopic scales under consideration, 
and the time dependence varies quite slowly on the scale 
of the development of instability [18].  

On the function λ, the condition of slowness of the 
change in the time of the species is imposed 

λ<<
∂

∂λ
λ

−

t
s

1 , which amounts to a slight change 1−λ s  on 

the macroscopic scale (adiabatic approximation [18]).  
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Fig. 6. Dependence of the attenuation increment λ from the 
reduced cooling speed q~  (● – D = 10–15 cm2/s, ■ – D =  

10–18 cm2/s). 
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Fig. 7. Dependence of the period of the dissipative structure on 
the reduced cooling speed (● – D = 10–15 cm2/s, ■ – D =  
10–18 cm2/s). 
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Fig. 8. Dependence of the lifetime of a self-organized structure 
for NCS on q~  (● – a0 = 0.1 s–1, ■ – a0 = 0.2 s–1).   
 

 
The period and time of life of the formed dissipative 

structure depend on the control parameter q~ . At cqq ~~ → : 
 

2
0 32))~1(arctan(

2
2

ssc

c
bcqLna

D

k
L

η−η−+
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π
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2
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1
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ssc
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bcqLnakq η−η−+
→

λ
=τ . 

 (16) 
 

It should be noted that kc is defined only by the 
system parameters. At q > qc above the point of 
instability of the thermodynamic state, kc determines the 
spatial scale of heterogeneity of the stationary solution 
ηs. Thus, in a system that with q < qc was homo-
geneously stable, with values of the external control 

parameter q > qc spontaneously generated its own scale 
of the ordering Lc (Fig. 7). Dependences of the hetero-
geneity period ( ))~(qLLn c  and lifetime ( ))~(qLn lifeτ  in 

the self-organized structure of non-crystalline solids are 
given in Figs. 7 and 8. Size of the ordering period is Lc ≈ 
10…102 Å and correlates with the nanosize of the middle 
order in the non-crystalline materials system As–S(Se) 
[14, 16]. In addition, lifetime is 1)~( >>τ qlife .  

 
5. Calculation results and empirical relations for the 

non-crystalline semiconductors 

We analyze the change of the Debye–Waller parameter 
in the loss of the dynamic stability of the crystalline state 
and the transition to a non-crystalline state. Investigation 
of the temperature dependence of the cross-section of the 
dissipation of thermal neutrons by the melting of crystals 
and the non-crystalline solids allows obtaining 
microscopic data on the nature of the interatomic 
interaction and the peculiarities of the near and middle 
orders of these materials [5, 9]. Two times differentiated 
neutron scattering cross section σDW, attributed to the 
corpuscular element dΩ and the energy interval dE, is 
given by an expression [14, 20] 
 

( ) ( ) ( ) ( ) ,expexp
1

,

DW
2

χ⋅−⋅−ωδ=
Ω

σ
∑

v
h ijji

N

ji

ji fWWaa
NdEd

d
  

 (17) 
 

where PP
vvv

h −=χ 0  and EE −=ω 0h  are change of 

momentum and neutron energy during scattering, ai is the 
scattering amplitude, ( )iW−exp  is the Debye–Waller 

factor, ( )( )jiij RRif
vvvv

−χ=χ exp)( , iR
v

 – atomic coordinate. 

Temperature dependence of σDW and ( )iW−exp  for the 

crystalline state has a sharp decrease at the temperature 
of loss of dynamic stability, which is caused by the 
growth of intensity of atomic oscillations and 
restructuring the structure (a significant increase in the 
atomic share in soft atomic configurations σ and mean-
square displacements yl, yt (relation (9), Figs. 2 to 4). 
Cooling the melt in conditions q < qc is accompanied by 
an increase in the scattering cross-section during the 
transition to a solid state, with the jump decreases with 
height q. At cqq ≥  dependence σDW and ( )iW−exp  on 

the temperature is monotonous. In the solid state, in the 
transition from crystal to non-crystalline solid at a given 
temperature, there is an increase in the amplitude of 
oscillations and static displacements, a decrease in the 
cross-section and intensity of scattering [21, 22]. 

The temperature behavior of the mean-square 
displacements of the atoms near the temperature of the 
loss of dynamic stability (Eq. (9), Figs. 2 and 3) is given 
by the expression [9, 14] 

 

( )
2/1

2/12 1
2

1
6









−−
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+= s

s TT
r
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The resulting dynamic instability can be associated 
with the process of softening. It should be noted that the 
temperature dependence of the frequency of atomic 
oscillations in the vicinity Ts (when ω abnormally 
decreasing with T → Ts [14, 15]) corresponds to the 
experimentally observed temperature dependence of low 
frequency oscillations near the softening temperature Tg 
[21]. In addition, the temperature dependence of the 
reduced mean-square displacements y(T) of non-
crystalline materials at T → Ts (Fig. 2) correlates with the 
ratio obtained for the mean-square displacement by the 
authors of work [21] in the framework of the theory of 
bound modes: 
 









−−= TT

a
ru s

r

2
12 ,      sTT ≤ , (19) 

 
and experimentally investigated for inelastic scattering of 
neutrons in glasses with van der Waals bond in the work 
[22]. This suggests a significant effect of the dynamic 
instability of the atoms in the process of softening NCS. 

The type of chemical bond affects the limiting 
cooling rate qc, at which the NCS material can be 
obtained as well as the degree of deviation from the state 
of equilibrium. So, for chalcogenide glass-like 
semiconductor system As–S(Se) the presence of directed 
covalent bonds, the polymeric structure determines the 
transition in the NCS with slight deviations from the 
equilibrium state and the values of the cooling velocity of 
the order 10–3…10–2 K/s, while for metallic glasses we 
have qc ≈ 103…105 K/s [2, 3]. The main emphasis in the 
proposed approach is on the common features of the 
transition to a non-crystalline state, namely, the study of 
the effect of non-equilibrium on formation of 
heterogeneous structures with cqq ≥ . For this purpose, 

considered was the given speed 
c

c
q

qq
q

)(~ −
= , which 

does not depend on the type of chemical bond. The 
processes of transition in the NCM for chalcogenide, 
oxide, metallic, and organic glass have the same features 
as the synergistic approach. Investigating the common 
nature, namely, the presence of processes of self-
organization and formation of self-organized structures 
during the transition to NCS for different non-crystalline 
systems, it is possible at a later stage to consider the 
manifestation of the features for each of the above 
systems. 

In the framework of this approach, correlation 
between the changes in force constants and fluctuations 
of the near, middle orders of non-crystalline materials is 
also determined. The most convenient model system for 
checking the processes of self-organization in the NCS is 
glass based As–S(Se). In the modern topological-cluster 
concept of the lattice structure, the connectivity of the 
matrix is inextricably related to its dynamic stability 
(quantitative measure of the dynamic stability of the 
glasses in the topological-cluster mechanistic model that 
includes elastic modules, which through the mean 
coordinate number reflect the dependence of the dynamic 
stability both on the structure and warehouse) [5]. For the 

limit case of Ioffe–Regel, the length of the free path of 
phonons l

 (k) with a wave vector λπ= 2k  satisfies the 

ratio 1IRIR =⋅ kl  [1, 23], and the value opposite to it 
 

42
2

,

,
2

8
1

kL
S

S

l
c

gf

gf
⋅

∆
= . (20) 

 

Here, 2
,gfS∆  is the mean-square fluctuations of the 

elastic modulus, Lc is the average spatial correlation area 
of fluctuations. For IRkk ≥ , where the ratio is executed 

1IRIR =⋅ kl , and taking into account that the frequency of 

the boson peak BPν  neutron scattering 

IR,2 kS gfBP ⋅=πν , for Lc get the ratio 

 

BP

gf

c

S
SL

ν
=

,
, (21) 

 

where ( ) 3/12
, gfSS ∆= . For the non-crystalline solids of 

As–S(Se) system νBP = 10…60 cm–1, S ≈ 0.7…0.8, get it 
 
Lc ≈ 10…50 Å. (22) 
 
As you can see, the value Lc coincides with the nanosize 
of the middle order of NCS and indicates correlation of 
elastic properties and structure on the nanospatial scales 
[15]. For the speed of acoustic waves in NCS, the 
following empirical relation is obtained 
 

989.110145.0 +⋅−=








ρ
a

f
M

S
Ln , (23) 

 
where Ma is the average atomic mass. For the NCS 
materials Ma ≈ 77…78 atomic mass units and according 
to relation (9) at room temperature [15], one can get  
f = 105 dyn/cm, Sf = 2.5·105 cm/s. 

We analyze empirical relations for the temperature 
of softening of non-crystalline materials in terms of the 
considered synergetic model. In the theory of free 
volume between the softening temperature Tg, fraction of 
free volume σg and the energy generated by the 
interaction Ek, the relationship is established [2, 24]: 
 

gkg ET σ= . (24) 

 
In particular, for inorganic glasses σg = 0.037 ± 0.002. 
According to Figs. 2 and 4, taking into account  
the relation of a free volume with a continuum 
disordering at the level of the near-order 

( )( )** 211exp ς++=σ Qg , for glasses As–S(Se) are  

Q
* = 0.15…0.2, ς* = 0.5…0.7 [25, 26]. We get the value 
σg = 0.035…0.04, which agrees with empirically 
obtained in the theory of free volume. 

The following example relates to an experimentally 
observed correlation between the softening temperature 
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and the melting point of a substance known as the rule of 
Kautsman [23, 26]: 
 

( ) mg TT ⋅±= 1.07.0 . (25) 
 

As can be seen from Fig. 2, the temperature of 
transition to the non-crystalline state is given, and the 
melting factor satisfies the ratio: ( ) mc τ⋅≈τ 32 , which is 

consistent with the rule of Kautsman. According to 
conducted research (Eqs. (9) to (11), Figs. 2 to 4), the 
glass transition temperature Tg with an increase in the 
cooling velocity shifts to a region of lower temperatures 
that correlates with the Ritland–Bartenev ratio [25, 27]:  
 

C
TR

H
qLn

g

+
⋅

∆
−=)( , (26) 

 

where ∆H is the change of enthalpy at transition, R – 
universal gas constant. The dependence of flow of 
negative entropy )~(qdSe  is ascertained in (8), (15) from 

the surrounding environment and the corresponding 
entropy changes inside the system, which correspond to 
the minimum energy dissipation, makes it possible to 
disclose also the content of the Adam–Gibbs relation to 
change the configuration entropy [2, 24]:  
 

41.0, =β

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β
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c
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6. Conclusions 

The model ideas on formation of self-organized struc-
tures in non-crystalline semiconducting solids as a 
method of the system self-organization, carried out  
in accordance with the technological conditions of 
obtaining, have been developed. It has been established 
that the value of external control parameter – the cooling 
velocity – is higher than the threshold in the non-
crystalline system spontaneously generated in its own 
scale of ordering Lc; the lifetime and period of 
heterogeneity of self-organized structures depend on the 
cooling velocity. In particular, for non-crystalline semi-
conductors of the system As–S(Se), the characteristic 
values of the magnitude ordering are Lc ≈ 10…102 Å and 
correlate with the nanosized of middle order. The three-
dimensional bifurcation diagram in the coordinates of the 
order parameter, temperature, and the external control 
parameter – the cooling velocity – has been constructed, 
which takes into account the thermodynamic and kinetic 
aspects of the transition to a non-crystalline state. The 
existence of a triple point is shown, in which the three 
states are coinciding at a critical temperature and the 
limiting cooling velocity: crystalline, liquid, and non-
crystalline. The nature of the bifurcation process of 
transition to a non-crystalline state has been defined.  
The comparison of the obtained theoretical conclusions 
with empirical correlations and experimental data for  
non-crystalline semiconductor materials of the system 
As–S(Se) is carried out. 

The materials of the article were presented on XVII 
International Freik Conference on Physics and Techno-
logy of Thin Films and Nanosystems (ICPTTFN-XVII), 
May 20-25, 2019 (Ivano-Frankivsk, Ukraine). 
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