M. Iu. Raievska

University of Warsaw, Warsaw, Poland; Institute of Mathematics of National Academy of Sciences of Ukraine, Kyiv, Ukraine, Visiting researcher; Senior researcher, Candidate of Sciences in Physics and Mathematics raemarina@imath.kiev.ua ORCID: https://orcid.org/0000-0002-6135-7818

ON SEMIDISTRIBUTIVE LOCAL NEARRINGS

In [1] it was proved that the additive group of every semidistributive nearring R with an identity is abelian. In this paper we consider finite semidistributive local nearrings. A nearring $R = (R, +, \cdot)$ with identity is said to be local if the set L of all non-invertible elements of R is a subgroup of R^+ . It is shown that the semigroup (L, \cdot) of all non-invertible elements of finite semidistributive local nearrings on 2-generated 2-group is commutative.

Keywords: additive group, local nearring, semidistributive local nearring, 2-generated 2-group, semigroup of all non-invertible elements.

1. Preliminaries.

We recall first some basic definitions of the theory of nearrings.

Definition 1. A set R with two binary operations "+" and " \cdot " is called a (left) nearring if the following statements hold:

(1) (R, +) is a (not necessarily abelian) group with neutral element 0;

(2) (R, \cdot) is a semigroup;

(3) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

If R is a nearring, then the group $R^+ = (R, +)$ is called the additive group of R. If in addition $0 \cdot x = 0$, then the nearring R is called zero-symmetric and if the semigroup (R, \cdot) is a monoid, i. e. it has an identity element *i*, then R is a nearring with identity *i*. In the latter case the group R^* of all invertible elements of the monoid (R, \cdot) is called the multiplicative group of R.

Definition 2 ([1]). A (left) nearring R is called semidistributive if so is the multiplication from the right in respect to its addition. In other words, for any elements r, s, $t \in R$ the equality (r + s + r)t = rt + st + rt holds.

It is obvious that every distributive nearring is semidistributive, but not conversely. For example, the nearring Map(G) of all functions on the group G of order 2 is semidistributive and not distributive.

Recall that an element t of a nearring R is called distributive in R if (r+s)t = rt + st for any elements r, s of R.

It is well-known that the additive group of any distributive nearring with identity is abelian. The following two assertions were proved in [1].

Lemma 1. The additive group of every semidistributive nearring R with an identity is abelian.

Наук. вісник Ужгород. ун-ту, 2023, том 43, № 2 — ISSN 2616-7700 (print), 2708-9568 (online)

Lemma 2. Let R be a semidistributive nearring with an identity. Then the elements of odd orders of the additive group of R are distributive in R. In particular, each semidistributive nearring of odd order is a ring.

2. Finite semidistributive local nearrings.

Maxson shown in [6] that every non-cyclic abelian *p*-group of order $p^n > 4$ is the additive group of a zero-symmetric local nearring which is not a ring.

Definition 3. A nearring R with identity is said to be local if the set $L = R \setminus R^*$ of all non-invertible elements of R is a subgroup of R^+ .

The following lemma characterizes the main properties of finite local nearrings (see [3]).

Lemma 3. Let R be a finite local nearring with identity i and L be the subgroup of R^+ of all non-invertible elements from R. Then R^+ is a p-group for a certain prime number p whose exponent is an additive order of the identity i.

The following result determines the structural feature of finite local nearrings.

Proposition 1. Each non-trivial subnearring with identity of a finite local nearring is a local nearring.

Proof. Let $R = (R, +, \cdot)$ be a finite local nearring and L be the subgroup of R^+ of all non-invertible elements from R. Let R_1 be a non-trivial subnearring with identity in R and $(L_1, +)$ be the semigroup of non-invertible elements of R_1 . Since $(L_1, +)$ is a subsemigroup of L it follows that $(L_1, +)$ is a subgroup of L, and hence a subgroup in R_1^+ . Hence R_1 is a local nearring by Definition 3. The statement is proved.

As a direct corollary of Lemmas 1, 2 and 3 we have the following statement.

Lemma 4. Let R be a finite semidistributive local nearring which is not a ring. Then R^+ is an abelian 2-group.

Let R be a finite semidistributive local nearring on 2-generated 2-group R^+ . Hence R^+ is an abelian group of type $(2^m, 2^n)$ with $m \ge n \ge 1$ as a corollary of Lemma 4. Let $|R : L| = 2^k$ with $1 \le k < m + n$. Then $R^+ = \langle a \rangle + \langle b \rangle$, where $a2^m = b2^n = 0$ with $m \ge n \ge 1$ and a + b = b + a. Hence R^+ is of exponent 2^m and, so a coincides with identity of R by Lemma 3. Moreover, each element $x \in R$ is uniquely written in the form $x = ax_1 + bx_2$ with coefficients $0 \le x_1 < 2^m$ and $0 \le x_2 < 2^n$. So that xa = ax = x for each $x \in R$. Furthermore, for each $x \in R$ there exist uniquely determined integers $\alpha(x) \in Z_{2^m}$ and $\beta(x) \in Z_{2^n}$ such that $xb = a\alpha(x) + b\beta(x)$ and so some mappings $\alpha : R \to Z_{2^m}$ and $\beta : R \to Z_{2^n}$ are determined. So $b \in L$, whence $L = \langle a2^k \rangle + \langle b \rangle$. Furthermore, $R^* = R \setminus L$ and so an element $x = ax_1 + bx_2$ belongs to R^* if and only if $x_1 \not\equiv 0$ (mod 2^k).

Lemma 5. Let $x = ax_1 + bx_2$ and $y = ay_1 + by_2$ be elements of R. Then

$$xy = a(x_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2).$$

Moreover, for the mappings $\alpha : R \to Z_{2^m}$ and $\beta : R \to Z_{2^n}$ the following statements hold:

(0) $\alpha(0) = \beta(0) = 0$ if and only if the nearring R is zero-symmetric;

Розділ 1: Математика і статистика

- (1) $\alpha(a) = 0 \text{ and } \beta(a) = 1;$
- (2) $\alpha(x) \equiv 0 \pmod{2^{m-n}};$
- (3) $\alpha(xy) = x_1 \alpha(y) + \alpha(x)\beta(y);$
- (4) $\beta(xy) = x_2 \alpha(y) + \beta(x)\beta(y).$

Proof. As $0 \cdot a = a \cdot 0 = 0$, the nearring R is zero-symmetric if and only if $0 = 0 \cdot b = a\alpha(0) + b\beta(0)$ whence $\alpha(0) = \beta(0) = 0$, proving statement (0). In addition, from the equality $b = ab = a\alpha(a) + b\beta(a)$ it implies $\alpha(a) = 0$ and $\beta(a) = 1$, and so statement (1) holds. Next, by the left distributive law, we have

$$xy = (xa)y_1 + (xb)y_2 = (ax_1 + bx_2)y_1 + (a\alpha(x) + b\beta(x))y_2 =$$
$$= ax_1y_1 + bx_1y_1 + a\alpha(x)y_2 + b\beta(x)y_2 =$$
$$= a(x_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2)$$

as desired.

(*)

Next, by formula (*) for $y = b2^n = 0$ we have $0 = x(b2^n) = a\alpha(x)2^n$. Thus $\alpha(x) \equiv 0 \pmod{2^{m-n}}$, as claimed in (2).

Finally, the associativity of multiplication in R implies that

$$x(yb) = (xy)b = a\alpha(xy) + b\beta(xy).$$

Furthermore, substituting $yb = a\alpha(y) + b\beta(y)$ instead of y in formula (*), we also have

$$xy = a((x_1\alpha(y) + \alpha(x)\beta(y)) + b(x_2\beta(y) + \beta(x)\beta(y)))$$

Comparing the coefficients under a and b in two expressions obtained for x(yb), we derive statements (3) and (4) of the lemma.

Theorem 1. Let R be a semidistributive local nearring whose additive group R^+ is isomorphic to an abelian group of type $(2^m, 2^n)$ with $m \ge n > 1$. Then the semigroup (L, \cdot) is commutative.

Proof. If $x = ax_1 + bx_2$ and $y = ay_1 + by_2 \in L$ then $x_1 \equiv 0 \pmod{2^k}$ and $y_1 \equiv 0 \pmod{2^k}$. Let $x_1 = 2s$ and $y_1 = 2t$, where $s, t \in N$. Then for each $x, y \in L$ using the left distributive and semidistributive laws we have:

$$\begin{aligned} xy &= (ax_1 + bx_2)y = (a2s + bx_2)y = (as + bx_2 + as)y = \\ &= (as)y + (bx_2)y + (as)y = as(y + y) + (bx_2)y = \\ &= (as)(y2) + (bx_2)y = as(a2y_1 + b2y_2) + bx_2(ay_1 + by_2) = \\ &= a2sy_1 + b2sy_2 + bx_2y_1 + a\alpha(b)x_2y_2 + b\beta(b)x_2y_2 = \\ &= ax_1y_1 + bx_1y_2 + bx_2y_1 + a\alpha(b)x_2y_2 + b\beta(b)x_2y_2 = \\ &= a(x_1y_1 + \alpha(b)x_2y_2) + b(x_1y_2 + x_2y_1 + \beta(b)x_2y_2). \end{aligned}$$

At the same time we get:

$$yx = (ay_1 + by_2)x = (a2t + by_2)x = (at + by_2 + at)x =$$
$$= (at)x + (by_2)x + (at)x = at(x + x) + (by_2)x =$$

Наук. вісник Ужгород. ун-ту, 2023, том 43, № 2 ISSN 2616-7700 (print), 2708-9568 (online)

$$= (at)(x2) + (by_2)x = at(a2x_1 + b2x_2) + by_2(ax_1 + bx_2) =$$

= $a2tx_1 + b2tx_2 + by_2x_1 + a\alpha(b)x_2y_2 + b\beta(b)x_2y_2 =$
= $ax_1y_1 + bx_2y_1 + bx_1y_2 + a\alpha(b)x_2y_2 + b\beta(b)x_2y_2 =$
= $a(x_1y_1 + \alpha(b)x_2y_2) + b(x_1y_2 + x_2y_1 + \beta(b)x_2y_2).$

Therefore xy = yx for each $x, y \in L$ and so (L, \cdot) is commutative, as desired.

As an example, there exist 1068 non-isomorphic local nearrings (LNR) on 2generated abelian 2-groups of order at most 32, among which 42 are semidistributive (SDLNR). The next table is obtained from the packages SONATA and LocalNR [9] of the computer algebra system GAP.

Additive Group	Number of LNR	Number of SDLNR
$C_2 \oplus C_2$	2	2
$C_4 \oplus C_2$	5	5
$C_4\oplus C_4$	29	9
$C_8 \oplus C_2$	23	5
$C_8 \oplus C_4$	880	16
$C_{16} \oplus C_2$	129	5

Acknowledgement. The author is grateful to IIE-SRF for the support of her fellowship at the University of Warsaw.

References

- Raievska, I., Raievska, M., & Sysak, Ya. (2023). Semidistributive nearrings with identity. Retrieved from https://arxiv.org/abs/2211.00456
- Aichinger, E., Binder, F., Ecker, Ju., Mayr, P., & Noebauer, C. (2018). SONATA system of near-rings and their applications. *GAP package, Version 2.9.1*. Retrieved from https://gap-packages.github.io/sonata/
- Amberg, B., Hubert, P., & Sysak, Ya. (2004). Local near-rings with dihedral multiplicative group. J. Algebra, 273, 700–717.
- The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.10.2; 2019. Retrieved from https://www.gap-system.org
- 5. Feigelstock, S. (2006). Additive Groups of Local Near-Rings. Comm. Algebra, 34, 743-747.
- Maxson, C. J. (1970). On the construction of finite local near-rings (I): on non-cyclic abelian p-groups. Quart. J. Math. Oxford (2), 21, 449-457.
- 7. Meldrum, J. D. P. (1985). Near-rings and their links with groups. London: Pitman Publishing Limited.
- 8. Pilz, G. (1977). Near-rings. The theory and its applications. North Holland: Amsterdam.
- Raievska, I., Raievska, M., & Sysak, Y. (2021). LocalNR, Package of local nearrings, Version 1.0.3 (GAP package). Retrieved from https://gap-packages.github.io/LocalNR/

Раєвська М. Ю. Про напівдистрибутивні локальні майже-кільця.

В [1] було доведено, що адитивна група кожного напівдистрибутивного майжекільця R з одиницею є абелевою. В цій статті розглядаються скінченні напівдистрибутивні локальні майже-кільця. Майже-кільце $R = (R, +, \cdot)$ з одиницею називається локальним, якщо множина L всіх необоротних елементів з R є підгрупою в R^+ . Показано, що напівгрупа (L, \cdot) всіх необоротних елементів скінченного напівдистрибутивного локального майже-кільця на 2-породженій 2-групі є комутативною.

Ключові слова: адитивна група, локальне майже-кільце, напівдистрибутивне локальне майже-кільце, 2-породжена 2-група, напівгрупа всіх необоротних елементів.

Список використаної літератури

- 1. Raievska I., Raievska M., Sysak Ya. Semidistributive nearrings with identity. 2023. URL: https://arxiv.org/abs/2211.00456 (date of access: 12.08.2023).
- 2. Aichinger E., Binder F., Ecker Ju., Mayr P., Noebauer C. SONATA system of near-rings and their applications. *GAP package, Version 2.9.1.* 2018. URL: https://gap-packages.github.io/sonata/ (date of access: 13.08.2023).
- Amberg B., Hubert P., Sysak Ya. Local near-rings with dihedral multiplicative group. J. Algebra. 2004. Vol. 273. P. 700–717.
- 4. The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.10.2; 2019. URL: https://www.gap-system.org (date of access: 12.08.2023).
- 5. Feigelstock S. Additive Groups of Local Near-Rings. Comm. Algebra. 2006. Vol. 34. P. 743–747.
- Maxson C. J. On the construction of finite local near-rings (I): on non-cyclic abelian p-groups. Quart. J. Math. Oxford (2). 1970. Vol. 21. P. 449–457.
- Meldrum J. D. P. Near-rings and their links with groups. London : Pitman Publishing Limited, 1985. 273 p.
- 8. Pilz G. Near-rings. The theory and its applications. North Holland : Amsterdam, 1977.
- Raievska I., Raievska M., Sysak Y. (2021). LocalNR, Package of local nearrings, Version 1.0.3 (GAP package). URL: https://gap-packages.github.io/LocalNR/ (date of access: 15.08.2023).

Одержано 15.10.2023