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Abstract
The asymptotic expansions (at small and large internuclear distances R) of
the eigenvalues (potential curves) E(R) of the two-Coulomb-centre problem
are obtained. The Dirac equation with an axially symmetrical potential,
not allowing complete separation of variables, is solved analytically by the
Wentzel–Kramers–Brillouin approach and boundary-layer method. In the
framework of this scheme, the relativistic two-Coulomb-centre wavefunction
is constructed. The first two terms of the asymptotic (at large internuclear
distance) behaviour of the exchange interaction potential for an ion with an
atom are calculated.

1. Introduction

At the present time a severe asymmetry exists in the developments of the theories of
nonrelativistic and relativistic quantum mechanical problems of two Coulomb centres (the so-
called Z1eZ2 problems). Numerous effective asymptotic and numerical methods of solving
the two-Coulomb-centre problem in Schrödinger equation theory (see, for instance, [1] and
references therein) can be compared against only few examples of the consideration of the
same problem in Dirac equation theory within various approximations [2–10] (the Galerkin
method, diagonalization, the variational method, perturbation theory, Furry–Sommerfeld–
Maue approximation). This situation is a surprising example of inertia in a theoretical field
in the face of the deficiency of experimental data for heavy and superheavy quasi-molecular
systems due to the difficulties in construction of sources of multiply charged ions and formation
of beams of rather slow particles.

Also, with the recent construction of powerful accelerators of highly charged ions in many
laboratories [11–13], the need for a consistent Dirac theory of the quantum mechanical Z1eZ2

problem has become more and more urgent in different fields of physics. Previously, this
problem was addressed, basically, in the theory of supercritical atoms for the description of
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effects of spontaneous and enforced creation of positrons in a supercritical field of a quasi-
atom formed at slow collisions of heavy ions with a total atomic number Z1 +Z2 > 173. This
problem was first considered by Gershtein and Zel’dovich [14] and was studied in [15–18]
(for later work see, for instance, [12,19,20] and references therein), though this (retrospective)
list may be incomplete. Note that the intensive experimental investigation of the processes
of positron generation at slow collisions of heavy ions carried out in recent years can highly
effectively complement our knowledge about the vacuum shell of the supercritical atom and also
verifies the status of quantum electrodynamics in the range of strong external fields [3–14,17],
provided that the theory of these processes is developed correspondingly. In view of the
expected applications of Z1eZ2 problem formalism, the main interest was focused on the
lower-potential curves of the Z1eZ2 system with total charge of the two nuclei, Z = Z1 +Z2,
exceeding the critical value, Zcr

∼= 173, at intercentre distances of the order of the critical
value Rcr [17] (the model of a united atom). Recently [21], this problem was used in a
model approximation in investigations of elementary processes of collisions (excitation, charge
exchange, ionization) of multiply charged ions. Thus the relativistic problem was considered
in an asymptotic limit, when the internuclear distance is larger than the Compton wavelength
of an electron. The prospects of application of the relativistic model in the theory of collisions
became especially significant in connection with the recent communications [11] appearing
from a group of physicists working at the ion accelerator at the Lawrence Laboratory (Berkeley,
USA), who had obtained and detected H-like and He-like uranium ions (U91+ and U90+) with
energies below 100 eV per unit charge. At such values of the electric charge, relativistic and
radiative effects are not small corrections, and fundamentally determine the orders of spectral
characteristics. Here the approach based on the Breit–Pauli Hamiltonian clearly becomes
inapplicable, and employing modern methods of relativistic quantum mechanics and quantum
electrodynamics becomes necessary. This problem can be solved only by comparison of the
results of energy structure calculations with experimental data.

Another application of the relativistic problem approach in the theory of collisions is
more traditional, and is reduced to using the model functions of a continuous spectrum for the
analysis of the scattering of relativistic electrons on heavy diatomic molecules [9, 10, 21, 22].

The difficulty in considering the problem consists in the fact that the Dirac equation
with the potential of two Coulomb centres does not permit complete separation of variables
in any orthogonal system of coordinates and, thus, one has to deal with first-order partial
differential equations. This greatly complicates the whole problem of finding the electron
wavefunction and potential curves. Unfortunately, solving this system of differential equations
numerically is a rather complicated and onerous task [6, 8, 23], requiring rather complicated
calculations for each specificZ1eZ2 system. This renders it necessary to create and investigate
approximative methods of solving this problem, which are based on clear physical ideas and
well-elaborated mathematical devices, and have a clear area of application. It is expedient to
begin the development of such methods from the limiting cases of small and large internuclear
distances R.

In the present paper we determine the energy and the wavefunctions of an electron for
two asymptotic cases: when the distance R between the Coulomb centres is rather small or
rather large. To determine asymptotic solutions of the Z1eZ2 problem in these cases, one
can use different types of expansion and various methods for their calculation (WKB method,
perturbation theory, etc).

The main aim of this article is the elaboration of a new approach to mathematical
problems that arise in solving the relativistic Z1eZ2 problem at large internuclear distances.
The asymptotic expansions for the energy of the Z1eZ2 system at R � 1 are divided
into two classes. The first class is that of the clear power series determined by the region
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of electron localization near the atom eZ1 or eZ2. This part of the interaction can be
calculated using perturbation theory (see section 2). We concentrate our attention on the
second class that represents the exchange part of the interaction, which is determined by
the region of large distances of the electron from its own atom. As a suitable method for
calculating the wavefunctions and exchange interaction, we propose to employ a quasi-classical
approach. This approach is the relativistic generalization of the well-known Fock–Leontovich
method [24], elaborated for diffraction problems, and allows us to calculate the exchange
splitting of potential curves in a double potential well, when binding energies have the same
order as mec

2. The main ideas and principles of this method can be found in [24, 25].
The paper is organized as follows. In section 2, the method of constructing the asymptotic

expansions of the energy of the Z1eZ2 system at small and large internuclear distances R
is proposed. For this we use the scheme of perturbation theory, which does not require the
separation of variables. As a result of the calculations performed, the asymptotic expressions
for the energy levels of the Z1eZ2 system are obtained at R → 0 (R → ∞) to within
terms O(R3) (O(R−3)). In section 3 we analytically solve the Dirac equation with an axially
symmetrical potential by the WKB method in the below-barrier range in the vicinity of the
potential symmetry axis. In section 4, we employ the approach elaborated to the two-Coulomb-
centre problem when the internuclear distances R are large, and obtain the two-Coulomb-
centre wavefunction. Using this function, in section 5 we calculate the first two terms of the
asymptotic behaviour of the exchange interaction potential of an ion with an atom for the
general nonresonance case. In the last section of the paper, we discuss and compare the results
obtained with the data from similar nonrelativistic approximations.

2. Asymptotic behaviour of potential curves of the relativistic two-Coulomb-centre
problem in the united- and separated-atom limits

When the total charge of the Coulomb centres Z = Z1 + Z2 is positive and the internuclear
distance R tends to zero, it is possible to consider the relativistic Z1eZ2 problem within
perturbation theory, which does not require the separation of variables. The Dirac Hamiltonian
of the Z1eZ2 problem is of the form (me = e = h̄ = 1)

Ĥ = c�α · �̂p + c2β + V V = −Z1

r1
− Z2

r2
(2.1)

where r1,2 is the distance between the electron and the corresponding nucleus, �̂p = −i �∇ is the
momentum operator, and c is the velocity of light. In the standard representation [27],

�α =
(

0 �σ
�σ 0

)
β =

(
I 0
0 −I

)
. (2.2)

Here �σ are Pauli matrices, and 0 and I are, respectively, 2 × 2 zero and identity matrices.
Let us represent the complete Hamiltonian of the two-Coulomb-centre problem, Ĥ , by the
Hamiltonian of the zero approximation ĤUA and a perturbation Ŵ :

Ĥ = ĤUA + Ŵ . (2.3)

The Dirac Hamiltonian of the united relativistic atom is taken as ĤUA:

ĤUA = c�α · �̂p + c2β − Z

r0
(2.4)

where the atom is placed on the z-axis, directed from the centre of Z1 to the centre Z2, at the
point z = z0:

z0 =
(

−1

2
+
Z2

Z

)
R =

(
1

2
− Z1

Z

)
R. (2.5)
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The point z0 is at the centre of the electric charges, because it divides the internuclear distance
into two segments:

R1 = Z2

Z
R R2 = Z1

Z
R. (2.6)

We consider a spherical system of coordinates r0, θ0, ϕ0: the origin is at the point (0, 0, z0)
and the angle θ0 is measured from the z-axis.

Now we construct the unperturbed wavefunction of a united atom. The eigenvalues of
the operator ĤUA are characterized by spherical quantum numbers n, j , l, m, where n is
the principal quantum number, j and l are the total electron and orbital angular moments,
respectively, m is the projection of j onto the internuclear axis z. For the given j and l there
are two types of solution, distinguished by a parity P = (−1)l—instead of which we shall use
the orbital moment l = j ± 1/2. For continuous approach of nuclei (R → 0), the solutions
of the Dirac equation with the potential of two Coulomb centres should tend to the respective
solution of the spherically symmetric Coulomb problem. Therefore in the Z1eZ2 problem it
is also necessary to distinguish two types of potential curve and two types of solution of the
Dirac equation, which for continuous approach of nuclei Z1 and Z2 transform into the states
with l = j + 1/2 and j − 1/2 for the united atom with the nuclear charge Z = Z1 + Z2. The
eigenfunctions of the operator ĤUA for both types are represented in the form [27]

 UAnjlm(�r0) =
(

f (r0)"jlm(θ0, ϕ0)

(−1)
1+l−l′

2 g(r0)"jl′m(θ0, ϕ0)

)
l = j ± 1

2 l′ = 2j − l. (2.7)

The radial functions f and g, respectively, are the large and small components of the Dirac
bispinor wavefunctions [27]:

f

g

}
= ±

√
$(2γ + n′ + 1)

$(2γ + 1)
√
n′!

√
1 ± ε

4N(N − χ)
(

2Z

N

)3/2

e− Zr0
N

(
2Zr0
N

)γ−1

×
[
(N − ℵ)F

(
−n′, 2γ + 1,

2Zr0
N

)
∓ n′F

(
−n′ + 1, 2γ + 1,

2Zr0
N

)]
(2.8)

where

n′ = n− j − 1
2 ℵ = (−1)k−lk k = j + 1

2 (2.9a)

N =
√
n2 − 2n′(k − γ ) γ =

√
k2 − (α0Z)2 ε =

[
1 +

(
α0Z

n′ + γ

)2
]−1/2

. (2.9b)

Here α0 = 1/c ≈ 1/137 is the fine-structure constant. The eigenvalues of the operator ĤUA

are determined by the well-known Bohr–Sommerfeld formula [27]:

EUAnj = εc2 = c2√
1 +

(
α0Z

n′+γ

)2
. (2.10)

Since the spectrum of the operator ĤUA is degenerated for l and m, for application
of perturbation theory first of all it is necessary to construct exact functions of the zero
approximation, for which the matrix of the perturbation operator Ŵ is diagonal. We can
show that the matrix

∥∥Wnjl′m′
njlm

∥∥ of the perturbation operator will be diagonal for the functions
of united atom (2.7)–(2.9), if z0 is determined by the relation (2.5). Now we determine the
matrix elements of the perturbation operator of the system:

Ŵ = Z

r0
− Z1∣∣�r0 + �R1

∣∣ − Z2∣∣�r0 − �R2

∣∣ . (2.11)
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For this purpose we use the expansion of Ŵ in Legendre polynomials:

Ŵ = Z

r0
−



Z1

∞∑
l=0

(−1)lRl1r
−l−1
0 Pl(cos θ0), r0 >

∣∣ �R1

∣∣
Z1

∞∑
l=0

(−1)lR−l−1
1 rl0Pl(cos θ0), r0 <

∣∣ �R1

∣∣




−



Z2

∞∑
l=0

Rl2r
−l−1
0 Pl(cos θ0), r0 >

∣∣ �R2

∣∣
Z2

∞∑
l=0

R−l−1
2 rl0Pl(cos θ0), r0 <

∣∣ �R2

∣∣


 . (2.12)

The coefficient of r−2
0 P1 for r0 > max

{∣∣ �R1

∣∣, ∣∣ �R2

∣∣} is equal to Z2R2 − Z1R1 and, according
to equation (2.6), this is equal to zero. The estimates of all radial and angular integrals made
with functions (2.7)–(2.9) show that at R → 0 the matrix ‖Wnjl′m′

njlm ‖ is diagonal with respect
to each group of mutually degenerate states, i.e.

W
njl′m′
njlm =

∫ (
 UAnjlm(�r0)

)+
Ŵ UAnjl′m′(�r0) d�r0 = δll′δmm′

[
W
njl′m′
njlm

]
2
+O(R3).(2.13)

The leading term [Wnjl′m′
njlm ]

2
of the expansion of the diagonal matrix element of Ŵ is

determined by the expansion (2.12) for r0〉 max
{∣∣ �R1

∣∣, ∣∣ �R2

∣∣}, in which the integration over r0
is carried out from the zero point:[

W
njl′m′
njlm

]
2

= −(Z1R
2
1 + Z2R

2
2

) ∫ ∣∣ UAnjlm(�r0)∣∣r−3
0 P2(cos θ0) d�r0

= Z1Z2

2N3

[3m2 − j (j + 1)]

j (j + 1)

[3εℵ(εℵ − 1)− γ 2 + 1](ZR)2

γ (γ 2 − 1)(4γ 2 − 1)
. (2.14)

The formulae (2.10), (2.14) determine the two first terms of the expansion in small R of
a total energy (which includes the rest energy of an electron) of the Z1eZ2 system:

Enjlm(Z1, Z2, R) = εc2 +
[
W
njlm

njlm

]
2

l = j ± 1/2. (2.15)

Proceeding in (2.14) to the nonrelativistic limit (α0 → 0) we arrive at the result, which
can be achieved on the basis of the Breit–Pauli equation. The formulae obtained have the
compact form

[
W̄
njlm

njlm

] = lim
α0→0

[
W
njlm

njlm

]
2

= Z1Z2
[3m2 − j (j + 1)](2ℵ − 1)(ℵ − 1)(ZR)2

n3j 2(j + 1)2(2j − 1)(2j + 1)(2j + 3)
. (2.16)

For j = 1/2 one should takem = j in (2.16), then reduce by (2j − 1) and take j = 1/2. The
calculated result is given by[

W̄
n 1

2 0 1
2

n 1
2 0 1

2

]
= 2

3n3
Z1Z2(ZR)

2. (2.17)

Equation (2.17) coincides with the expression obtained in the nonrelativistic case [1] for the
states with l = 0.

We have compared (see figure 1) the binding energies of some bound states of the Pb–
Pb system calculated using the asymptotic formula (2.15) with results of the paper [8]. The
difference ∼5% is connected with the finite extent of the Pb nuclei in [8].

To estimate the contribution of the relativistic effects in potential curves in the united-
atom limit, we consider the relationQ1(Z1, R) = Ebin/E

(n)

bin (figure 2) between the relativistic
(Ebin = (E2

njlm − c4)/(2c2) (see (2.15))) and nonrelativistic (E(n)bin ) [1] expressions for the
binding energy, when Z1 = Z2.
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Figure 1. The binding energies of some bound states of
the Pb–Pb system obtained in this paper (full curves) and
in [8] (dashed curves).

Figure 2. The relative contribution Q1(Z1, R) of the relativistic effects to the binding energy in
the resonance case for the 2P3/2σ state.

Now we shall determine the energyE(R) and the wavefunctions (�r;R) of an electron in
the asymptotic region when the distanceR between the Coulomb centres is large. This distance
should be so large that the quantum penetrability of the potential barrier separating the atomic
particles is much smaller than unity. When atoms 1 and 2 are different, the eigenvalues
(potential curves) E(R) of the two-Coulomb-centre problem, dependent on the internuclear
distance R as a parameter, are divided into two classes in the asymptotic limit R → ∞:
EI and EII—potential curves that, for R → ∞, transform into the energy levels of isolated
atoms 1 and 2, respectively. The criterion of applicability of the expansion given below is
the requirement that the wavefunction of the  1-state, for instance, of atom 1, should not be
strongly perturbed by the other particle. The distortion of the dependence of this function on
the coordinates should be small. This is related to the energy shift of the state induced by the
interaction with perturbing particle 2. The external (Coulomb) field of the latter has to be weak
compared to the typical intra-atomic fields in order for perturbation theory to be applicable.
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Having placed the origin at the position of the hydrogen-like ion eZ1 with nuclear charge
Z1 and run the polar axis along the R-axis, we represent a complete Hamiltonian of the
two-Coulomb-centre problem (2.1) by a Hamiltonian of the zero-approximation Ĥ SA and
perturbation V̂ :

Ĥ = Ĥ SA + V̂ . (2.18)

The Hamiltonian of the relativistic hydrogen-like atom with charge Z1 is taken as Ĥ SA:

Ĥ SA = c�α · �̂p + c2β − Z1

r1
. (2.19)

At large internuclear distances the operator of the interaction between the electron and the Z2-
nucleus V̂ = −Z2/| �R − �r| can be considered as a small perturbation of the Hamiltonian Ĥ SA.
In a spherical coordinate system, the wavefunctions SAn1j1l1m1

(�r1) of the eZ1 atom, belonging to
a discrete energy spectrum, are represented by formulae which are obtained from (2.7)–(2.9) by
making the substitutions Z → Z1, �r0 → �r1 = (r1, θ1, ϕ1), ε,ℵ, N, γ → ε1,ℵ1, N1, γ1, and
(the set of quantum numbers) n, j, l,m → n1, j1, l1,m1. By means of the same substitutions,
the eigenvalues E1 of Ĥ SA are obtained from (2.10).

We can write the following expression for the operator V̂ :

V̂ = −



Z2

∞∑
s=0

Rsr−s−1
1 Ps(cos θ1) r1 >

∣∣ �R∣∣
Z2

∞∑
s=0

R−s−1rs1Ps(cos θ1) r1 <
∣∣ �R∣∣. (2.20)

For the wavefunctions of the zero-order approximation we can write

 0 =
∑
l′1m

′
1

C
l1m1

l′1m
′
1
(R) SAn1j1l

′
1m

′
1
(�r1). (2.21)

By substituting expansion (2.21) into the Dirac equation with Hamiltonian Ĥ , multiplying
by  SA

+

n1j1l1m1
(�r1), and integrating over the electron coordinates, we find expansion coefficients

given by ∑
l′1m

′
1

[(
EI − ESAn1j1

)
δl1l′1δm1m

′
1
− V n1j1l

′
1m

′
1

n1j1l1m1

]
C
l1m1

l′1m
′
1
(R) = 0. (2.22)

Here V
n1j1l

′
1m

′
1

n1j1l1m1
are the matrix elements of the perturbation operator (2.20):

V
n1j1l

′
1m

′
1

n1j1l1m1
=
∫
 SA

+

n1j1l1m1
(�r1)V̂  SAn1j1l

′
1m

′
1
(�r1) dr1 (2.23)

where the integral over r1 is taken from zero, using the expansion (2.20) for r1 < | �R|. In the
basis of the spherical functions  SAn1j1l1m1

(�r1), the first term of the perturbation operator (2.20)
is diagonal with respect to each group of mutually degenerate states and the second term has
nonzero off-diagonal matrix elements

V
n1j1j1+1/2m1
n1j1j1+1/2m1

= V
n1j1j1−1/2m1
n1j1j1−1/2m1

= −Z2

R
(2.24)

V
n1j1j1−1/2m1
n1j1j1+1/2m1

= −V n1j1j1+1/2m1
n1j1j1−1/2m1

= 3i

4

√
N2

1 − ℵ2
1

(n′
1 + γ1)m1

j1(j1 + 1)

Z2

Z1R2
. (2.25)

By using matrix elements (2.24), (2.25) and solving the equation obtained from the condition
that the determinant in (2.22) should be equal to zero, we obtain the expression for the energy
terms in first-order perturbation theory:

EI (R) = ε1c
2 − Z2

R
+
Z2ξ1

R2
+ O(R−3) (2.26)
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where

ξ1 = ±3

4

√
N2

1 − ℵ2
1

(n′
1 + γ1)m1

j1(j1 + 1)Z1
. (2.27)

‘±’ corresponds to the state with l1 = j1 ± 1/2. Formula (2.26) gives the expansion in the
multipoles of the energy of the electrostatic interaction of the atom eZ1 with the distant point
charge Z2. The last term in (2.26) coincides with the Stark shift of level in the weak electric
field with the intensity −Z2/R

2 [28].
The asymptotic expansion of the potential curve EII is obtained from EI by making the

substitutions ε1 → ε2, Z1,2 → Z2,1, n1,ℵ1, j1,m1 → n2,ℵ2, j2,m2.

3. Quasi-classical approximation for the Dirac equation with an axially symmetrical
potential

Consider an axially symmetrical problem, where two classically allowed regions are separated
by a potential barrier. Then the direction of the most probable tunnelling is the potential
symmetry axis z, the axis ρ is perpendicular to z, ϕ is a azimuth angle.

For the bispinor  the stationary Dirac equation is of the form (me = e = h̄ = 1)

c�σ �pξ = (E − V + c2)η

c�σ �pη = (E − V − c2)ξ
 =

(
ξ

η

)
(3.1)

where �p = −i �∇ is the momentum operator, c is the velocity of light, �σ are the Pauli matrices,
E is the electron energy including c2, V = V (z, ρ) is the effective potential energy of the
interaction of the electron with the external field not allowing complete separation of variables
in the Dirac equation.

By inserting the first equation of (3.1) into the second one and using the substitution

ξ = (W +)1/24 W± = E − V ± c2 (3.2)

we arrive at the matrix equation

54 + k24 = 0 k2 = 1

h̄2c2

[
(E − V )2 − c4

]− 5V

2W +
− 3

4

( �∇V
W +

)
+

i

W +
�σ [ �∇V, �∇].

(3.3)

Here we have restored in an obvious way the reduced Planck constant h̄. Since the potential
V is axially symmetrical, the Hamiltonian commutes with the operator of projection of total
angular momentum of the electron onto a potential symmetry axis z, and equation (3.3) permits
separation of a variable ϕ. For this purpose we represent the solution of (3.3) in the form

4 =
(
F1(z, ρ) exp [i(m− 1/2)ϕ]
F2(z, ρ) exp [i(m + 1/2)ϕ]

)
(3.4)

where F1,2 are new unknown functions, m is the projection of the total angular momentum of
the electron onto a potential symmetry axis z. By substituting (3.4) into (3.3), we obtain the
matrix differential equation

(5 + ∂)F = (h̄−2q2 + γ )F F =
(
F1

F2

)
q = 1

c

[
c4 − (E − V )2]1/2

(3.5)

∂ = 1

W +

(
∂V

∂ρ

∂

∂z
− ∂V

∂z

∂

∂ρ

)(
0 −1
1 0

)
γ =

(
am−1/2 bm+1/2

bm−1/2 a−m−1/2

)
(3.6)

aµ(z, ρ) = µ2

ρ2
+

1

W +

[
µ

ρ

∂V

∂ρ
+
5V

2
+

3

4

( �∇V )2

W +

]
bµ(z, ρ) = − µ

ρW +

∂V

∂z
. (3.7)
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We seek a solution of equation (3.5) in the form of a WKB expansion:

F = ϕ exp(h̄−1S) ϕ =
∞∑
n=0

h̄nϕ(n). (3.8)

Here ϕ(n) is a bispinor (the upper component corresponds to the function F1, the lower to F2).
Having substituted F , determined by (3.8), into (3.5) and equated to zero the coefficients of
each power of h̄, we arrive at the hierarchy of equations( �∇S)2 − q2 = 0 (3.9)

2 �∇S · �∇ϕ(0) +5Sϕ(0) + ∂̂Sϕ(0) = 0 (3.10)

2 �∇ · S �∇ϕ(n+1) +5Sϕ(n+1) + ∂̂Sϕ(n+1) +5ϕ(n) + ∂̂ϕ(n) − γ ϕ(n) = 0 (3.11)

where n = 0, 1, 2, . . . . Unfortunately, equations (3.9)–(3.11), similarly to the initial
equation (3.1), do not permit exact separation of variables. In order to solve this problem,
we use the idea of the boundary-layer method.

We seek the solutions of equations (3.9)–(3.11) in the below-barrier range, where, unlike
for the classically allowed range, the wavefunction is often localized in the vicinity of the most
probable tunnelling direction, which substantially simplifies the whole problem: it is natural
to expand all the quantities in equations (3.9)–(3.11), including the solutions, in the vicinity
of the z-axis.

Consider equation (3.9) and assume that

q2 (z, ρ) = q2
0 (z) +

∞∑
k=1

Qk(z)ρ
2k q2

0 (z) = q2 (z, 0) Qk = 1

(2k)!

∂2kq2(z, 0)

∂ρ2k
.

(3.12)

According to the above speculation, the solution of equation (3.9) can also be represented in
the form of an expansion in powers of coordinate the ρ:

S (z, ρ) =
∞∑
n=0

Sn(z)ρ
2n. (3.13)

By inserting (3.13) into (3.9) and equating to zero the coefficients of each power of ρ, we
obtain the recurrent system of first-order differential equations

(S ′
0)

2 − q2
0 = 0 (3.14)

2S ′
0S

′
1 + 4S2

1 −Q1 = 0 (3.15)

2S ′
0S

′
2 + 16S1S2 + (S ′

1)
2 −Q2 = 0 (3.16)

and so on, from which the values Sn (n = 0, 1, 2, . . .) are successively determined. Here the
prime means the derivative with respect to z. Note that if in the expansion (3.13) the coefficients
of negative and odd powers of ρ are taken into account, after substitution of (3.13) into (3.9)
they will be equal to zero. A similar situation will arise later for the functions ϕ(n). We shall
consider the first three equations of the given system. It is easy to show that the solution of
equation (3.14) is

S0 = ±
∫
q0 dz + C0 C0 = constant. (3.17)

Since in the below-barrier range the wavefunction should decrease exponentially with
increasing z, in (3.17) we select the negative sign.
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Equation (3.15) is the nonlinear Riccati differential equation and are not solvable
analytically in the general case. However, by making the substitution

S1 = q0 (z)

2

(
1

2

q ′
0 (z)

q0 (z)
− σ ′ (z)
σ (z)

)
(3.18)

one can proceed from (3.15) to the linear second-order equation

σ ′′ +

[
1

4

(
q ′

0

q0

)2

− 1

2

q ′′
0

q0
− Q1

q2
0

]
σ = 0. (3.19)

Note that in the nonrelativistic limit c → ∞ equation (3.19) is transformed into a similar
equation, obtained by Sumetsky [29] by solving the Schrödinger equation with an axially
symmetrical potential by the parabolic equation method.

Taking into account (3.17) and (3.18), we obtain the solution of the ordinary first-order
differential equation (3.16):

S2 = q2
0

2σ 4

{∫
σ 4

q3
0

[
(S ′

1)
2 −Q2

]
dz + C1

}
C1 = constant. (3.20)

The solutions of the equations (3.10), (3.11) are sought in the form

ϕ(n) (z, ρ) =
(
ρ|m−1/2|∑∞

k=0 ϕ
(n)
1k (z) ρ

2k

ρ|m+1/2|∑∞
k=0 ϕ

(n)
2k (z) ρ

2k

)
. (3.21)

By substituting (3.21) into the corresponding equations and equating to zero the coefficients of
each power of ρ in the each of the two components, we obtain a system of ordinary first-order
differential equations, which is solvable. For m > 0 the solutions are expressed as integrals:

ϕ
(0)
10 = C+

2

σ

(√
q0

σ

)p−2

ϕ
(0)
20 = C

(+)
2

σ

(√
q0

σ

)p−1 [∫
σA1(z)

q0
√
q0

dz + C+
3

]
(3.22)

ϕ
(0)
11 = − 1

σ

(√
q0

σ

)p {∫ 1√
q0

(
σ√
q0

)p+1

×
[
S ′

1ϕ
(0)′
10 + 1

2S
′′
1ϕ

(0)
10 + 4pS2ϕ

(0)
10 + A1(z)ϕ

(0)
20

]
dz + C+

4

}
(3.23)

ϕ
(0)
21 = − 1

σ

(√
q0

σ

)p+1 {∫ 1√
q0

(
σ√
q0

)p+2[
S ′

1ϕ
(0)′
20 +

1

2
S ′′

1ϕ
(0)
20 + 4(p + 1)S2ϕ

(0)
20

−A1(z)

(
ϕ
(0)
11 +

V1

W +
0

ϕ
(0)
10

)
+ A2(z)ϕ

(0)
10

]
dz + C+

5

}
(3.24)

ϕ
(1)
10 = 1

σ

(√
q0

σ

)p−2 {∫ 1

2
√
q0

(
σ√
q0

)p−1

×
[
ϕ
(0)

′′

10 − B1(z)ϕ
(0)
10 + 2(p − 1)

(
2ϕ(0)11 +

V ′
0ϕ
(0)
20

W +
0

)]
dz + C+

6

}
(3.25)

ϕ
(1)
20 = 1

σ

(√
q0

σ

)p−1{∫ 1

2
√
q0

(
σ√
q0

)p[
ϕ
(0)

′′

20 − B2(z)ϕ
(0)
20 + 4pϕ(0)

′
21

+
2V1

W +
0

ϕ
(0)′
10 − 2V ′

0

W +
0

ϕ
(0)
11 + 2A1(z)ϕ

(1)
10

]
dz + C+

7

}
(3.26)

where

A1(z) = (
S1V

′
0 − q0V1

)
/W +

0 A2(z) = (
S ′

1V1 − S1V
′

1 + 2q0V2 − 2S2V
′

0

)
/W +

0 (3.27)
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B±(z) = 1

W +
0

[
(1 ± 2|m|) V1 +

1

2
V ′′

0 +
3

4

(
V ′

0

)2

W +
0

]
p = |m| + 3/2 (3.28)

V0 (z) = V (z, 0) Vk(z) = 1

(2k)!

∂2kV (z, 0)

∂ρ2k
W±

0 = W±(z, 0). (3.29)

For m < 0 these solutions are obtained from (3.22)–(3.26) by making the replacements
ϕ
(j)

1i → ϕ
(j)

2i , ϕ(j)2i → −ϕ(j)1i , C+
k → C−

k (i, j = 0, 1, k = 2, 3, . . . , 7).
Note that if it is necessary to find the first l terms of the expansion (3.13), then in each

function ϕ(n) of (3.21) one has to take into account the first l − n − 1 (n = 0, 1, . . . , l − 2)
terms of the expansion in ρ. Here, we take into account the first three terms of (3.13), two
terms of ϕ(0), and the leading term of ϕ(1).

The lower component η of  is obtained from the upper one ξ by the operation

ξ −→
W +→W−

η. (3.30)

Thus we have obtained the solution  of equation (3.1) within constants C0, C1, C±
k

(k = 2, 3, . . . , 7). To determine these, one should take a certain potential and normalize
the wavefunction. In the next section, we shall consider the potential of two Coulomb centres.

4. The relativistic two-Coulomb-centre wavefunction in the below-barrier region

We now find the wavefunction of the Dirac electron placed in a field of two fixed nuclei
with charges Z1 and Z2, separated by the large distance R. The energy EI(R) in the first
approximation of perturbation theory is found in section 2 (see (2.26)).

We search for a solution of the Dirac equation with potential (2.1) under the boundary
condition

 I −→
z�R

 1 (4.1)

 1 =
(

f1(r1)"j1l1m1(�n1)

(−1)
1+l1−l′1

2 g1(r1)"j1l
′
1m1(�n1)

)
l1 = j1 ± 1/2,
l′1 = 2j1 − l1 �n1 = �r1

r1
(4.2)

which means that when the electron approaches atom 1, the two-Coulomb-centre function  I

tends to the unperturbed atomic wavefunction 1 (see section 2). For the radial wavefunctions
f1 and g1, equation (2.8), of the discrete spectrum of the Dirac electron, it is worthwhile to
take the asymptotic expansions
f1

g1

}
= ±

√
1 ± ε2

1A1r
ε1Z1/λ1−1
1 e−λ1r1

[
1 + B(±)1 r−1

1 + · · ·] r1λ
2
1 � Z1 (4.3)

A1 = λ1(2λ1)
ε1Z1/λ1

(
Z1/λ1 − ℵ1

2Z1$(ε1Z1/λ1 − γ1 + 1)$(ε1Z1/λ1 + γ1 + 1)

)1/2

(4.4)

B
(±)
1 = 1

2λ1

(
ℵ1 +

Z1

λ1

)(
ℵ1 ± 1 − Z1

λ1

)
λ1 = c

√
1 − ε2

1 (4.5)

where ‘+’ corresponds to f1, ‘−’ corresponds to g1. To determine all constants in  I we
expand  1 in powers of ρ and match  I and  1 at Z1/λ

2
1 � z � R.

Let us find the wavefunctions  I in the internuclear region (z ∼ R) within O(R−2).
For this we apply the general scheme elaborated in section 2 to the Dirac equation with the
potential (2.1). Using (2.1), (3.5), (3.12), (4.1), calculating the integral (3.17), and neglecting
quantities of the order of R−2, we obtain

S0 = −λIz− Z2
1

2λ3
I z

+
Z2

2z

2λ3
IR(R − z) +

ε1Z1

λ1
ln z− ε1Z2

λ1

(
1 +

Z1 − Z2

ε1λ
2
1R

)
ln
(

1 − z

R

)
(4.6)

where λI = c

√
1 − ε2

I , εI = EI/c
2.
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Equation (3.19) with the potential (2.1) is solved by iteration. The solutionσ is represented
in the form

σ = σ0(1 + σ1 + σ2 + · · ·). (4.7)

Here σ0 = z
√
q0 is the solution of the equation (3.19) with the model spherically symmetrical

potential V = −Z1/r1 − Z2/(R − r1):

σ ′′
0 +

[
1

4

(
q ′

0

q0

)2

− 1

2

q ′′
0

q0
− 1

z

q ′
0

q0

]
σ0 = 0. (4.8)

Corrections σ1, σ2, . . . are quantities of the order of R−1, R−2, . . . which take into account
the weak dependence of the potential (2.1) in the vicinity of the internuclear axis �R on the
spherical angle θ1. By substituting (4.7) into (3.19) and equating to zero the terms of each
order of R−1, we obtain the hierarchy of equations

σ ′′
1 + 2

σ ′
0

σ0
σ ′

1 +H(z) = 0 (4.9a)

σ ′′
n+1 + 2

σ ′
0

σ0
σ ′
n+1 +H(z)σn = 0 n = 1, 2, . . . (4.9b)

H(z) = EI − V0(z)

c2q2
0

Z2R

z(R − z)3 . (4.10)

In order to determine σ(z) within O(R−2), one needs to find σ1. By solving equation (4.9a)
with the boundary condition (4.1), we arrive at the expression

σ = z
√
q0

[
1 +

εIZ2

2λ2
I

z

R(R − z) + O(R−2)

]
. (4.11)

By inserting (4.11) into (3.19), we obtain the formula

S1 = −q0

2z

[
1 +

εIZ2

2λ2
I

z

(R − z)2
]
. (4.12)

Having substituted (4.12) into (3.20) and calculated the integral, taking account of the
boundary condition (4.1), we find the leading term of the asymptotic behaviour of S2:

S2 = λI

8z3
. (4.13)

Taking into account the above-determined quantities and restricting ourselves to the first
two terms of the asymptotic expansion of ϕ(0) (in the small parameter R−1) and the leading
term of the asymptotic expansion of ϕ(1) (a similar procedure was followed for the bispinor
η), we obtain the expressions

ϕ± =
√
λ1A1

cσ

(
K±( ρ√q0

σ

)|m1−1/2|[
1 + L±( ρ

z

)2
+ δ−m1|m1|U

±(z) + ω±(z)
]

M±( ρ√q0

σ

)|m1+1/2|[
1 +N±( ρ

z

)2
+ δm1|m1|U

±(z) + ω±(z)
] ) (4.14)

K± = (−P±)
1−sgnm1

2 Q± M± = (
P±) 1+sgnm1

2 Q± P± = |m1| ± ℵ1 + 1/2

2|m1| + 1
(4.15)

Q± = [
(−1)m1+1/2sgn ℵ1

] 1+sgnm1
2 (±1)

1−sgnm1
2

ij1± sgn ℵ1
2

2|m1|−1/2 (|m1| − 1/2)!

√
(j1 + |m1|)!

4π (j1 − |m1|)! (4.16)

L± = −1

2

[
|m1| + 1 − sgnm1

2
+

(ℵ1 ± 1
2

)2 − (|m1| + 1−sgnm1

2

)2

2|m1| + 2 − sgnm1

]
(4.17)

L± −→
sgnm1→−sgnm1

N± U±(z) = − Z2

4W±
0 P

±
z(2R − z)
R(R − z)2 ω±(z) = ℵ1(ℵ1 ± 1)

2λIz

(4.18)
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where ‘+’ corresponds to the bispinor ξ , ‘−’ corresponds to the bispinor η. Thus, we obtain
the asymptotic solutions of the Dirac equation with the potential of two Coulomb centres in
the internuclear region within O(R−2). The term ω±(z) corresponds to centrifugal energy.
The approximation given does not take into account terms related to the spin–orbit and spin–
spin interactions which are of the order of R−2, though the general scheme elaborated in
section 3 allows us to find the higher approximations. The wavefunction  II, corresponding
to the potential curve EII-term is obtained from  I by making the substitutions εI,1 → εII,2,
Z1,2 → Z2,1, z → R − z, n1,ℵ1, j1,m1 → n2,ℵ2, j2,m2.

5. The asymptotic method of calculating the exchange interaction potential for an ion
with an atom

In a collision of slow bare nuclei of different elements with hydrogen-like atoms, the transition
of an electron from one nucleus to the other occurs at large distances between the colliding
particles. The value of the energy splitting between the terms of the system, in the range of
their pseudocrossing, determines the nonadiabatic transition probability. Now we demonstrate
the asymptotic method for calculating the exchange splitting of potential curves of the
Z1eZ2 problem.

Consider the interaction of atom 1 with atom 2, whose energy level for binding with
the electron is close to that of atom 1. In other words, the Dirac energy levels E1 and E2

for potentials −Z1/r1 and −Z2/r2 happen to be close to each other. The energy difference
|E1 − E2| is assumed to be small compared to the energy differences between these and all
other levels of the fine structure of any of the interacting atoms.

Making use of the general solutions of the Dirac equation in the case under consideration, it
is seen that in order to construct stationary functions, one should utilize the linear combinations

 ± = C1 I + C2 II (5.1)

where the functions  I,II were constructed in section 4. The coefficients C1,2 of the
wavefunction can be determined with the help of auxiliary conditions, which are the conditions
for obtaining stationary wavefunctions. For this purpose, in this case of two levels E1,2 that
are close in energy, the two-level approximation can be applied. Since the ‘atomic’ functions
 I,II constructed in section 4 are orthogonal to each other, C1,2 can be determined by solutions
of the two-level secular equation [28]:

C1,± =
{
H12

2|H12|

(
1 ± χ̃(|χ̃ |2 + |5|2)1/2

)}1/2

C2,± = ±
{
H21

2|H21|

(
1 ∓ χ̃(|χ̃ |2 + |5|2)1/2

)}1/2

χ̃ = H11 −H22 = 〈 I|Ĥ | I〉 − 〈 II|Ĥ | II〉 5 = 2〈 I|Ĥ | II〉

(5.2)

where Hik = 〈 i |Ĥ | k〉 are matrix elements of the Dirac Hamiltonian (2.1) connecting the
functions  I,II. The perturbed energy levels and the difference between them are

E± =
(
H11 +H22 ±

√
|χ̃ |2 + |5|2

)/
2 E+ − E− =

√
|χ̃ |2 + |5|2 (5.3)

respectively. The formulae for the two-level approximation (5.2), (5.3) uniquely describe both
the resonance and nonresonance cases. At asymptotically large internuclear distances R, the
diagonal matrix elements H11 and H22 of the Hamiltonian (2.1) are close to the nonperturbed
eigenenergies: H11

∼= E1, H22
∼= E2. The nonresonance case considered in the previous
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section implies that the condition |H11 −H22| ∼= |E1 − E2| � |H12| is valid. As a result,
formulae (5.2) are simplified:

C1,+
∼= 1 − |H12|2/

(
2|H11 −H22|2

)
+ · · · C2,+

∼= |H12/(H11 −H22)| + · · · � 1. (5.4)

Hence, it can be seen that the function  + determined by formula (5.1) is close to  I,
whereas the admixture of state  II to it is exponentially small (C2,+ � 1). For  −, we have a
similar result on taking the lower indices in (5.2).

For calculating the exchange splitting of the potential curves 5E(R) in the relativistic
two-Coulomb-centre problem, we use the representation for 5E(R) as the integral over the
surface S conditionally separating the domains where the electron is in I- and II-states [30]:

5E = 5 = 2ic
∫
S

d �S · ( +
II �α I). (5.5)

Here the surface element d �S is directed from atom 1 to atom 2. This formula is valid only in
the vicinity of the point Rp of the pseudocrossing of the potential curves EI and EII, when
the electron transits from level E1 of atom 1 to the closely spaced level E2 of the other atom.
From the condition EI

∼= EII we find that

Rp = Z2 − Z1 +
√
(Z2 − Z1)

2 − 4 (E1 − E2) (Z2ξ1 − Z1ξ2)

2 (E1 − E2)
. (5.6)

Note that representation (5.5) is a relativistic analogue of the well-known Firsov
formula [31] for 5E(R) in the nonrelativistic case. The mid-plane between the two nuclei is
taken as the surfaceS. Having calculated the integral (5.5) by the stationary-phase method [32],
we arrive at the following expression for the first two terms of the asymptotic expansion of
5E(R):

5E = 2A1A2

(|m| − 1/2)!(λ1 + λ2)
|m|−1/2

Dj1j2mR
ε1Z1
λ1

+ ε2Z2
λ2

−|m|−1/2

× exp

{
−R (λ1 + λ2)

2
− 1

2

(
ε1Z2

λ1
+
ε2Z1

λ2

)}[
1 +

I

R

]
(5.7)

Dj1j2m =
√
(j1 + |m|)! (j2 + |m|)!
(j1 − |m|)! (j2 − |m|)! m = m1 = m2 (5.8)

I = 1

λ1 + λ2

[
ℵ2

1 + ℵ2
2 − (|m| + 1/2)2 − ℵ1ℵ2

|m| + 1/2

]

+
|m| + 1/2

2

(
ε1Z2

λ2
1

+
ε2Z1

λ2
2

)
+
ε1Z2ξ1

2λ1
+
ε2Z1ξ2

2λ2
− Z2

1

4λ3
1

− Z2
2

4λ3
2

. (5.9)

In the resonance case, when the parameters of the two atoms coincide (Z1 = Z2, ε1 = ε2,
λ1 = λ2, n1 = n2, j1 = j2, ℵ1 = ℵ2), expression (5.7) determines the exchange splitting
between the gerade and ungerade potential curves of the system (Z, e, Z).

For applicability of WKB method the internuclear distances should be greater than R0,
where the potential barrier disappears:

R0 = Z1 + 2
√
Z1Z2 +

√
(Z1 + 2

√
Z1Z2)2 + 4(c2 − E1)Z2ξ1

2(c2 − E1)
. (5.10)

We stress, however, that analytic expressions derived for the asymptotic expansion of
various splittings and shifts of the potential curves can sometimes be used in the region of
internuclear distances that are smaller than those given by the formal criteria of applicability
of the asymptotic expansions. Qualitatively, this can be explained by the fact that asymptotic
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(a) (b)

Figure 3. Absolute values of the contributions of the monopole (1), dipole (2), and exchange (3)
terms in the resonance case Z1 = Z2 = 92 corresponding to (a) the 1S1/2σ and (b) the 2P1/2σ

states.

solutions of the two-Coulomb-centre problem (even the first term of the wavefunction
expansion in powers of R−1, up to sufficiently small R) retain the basic analytic properties of
the exact solution [1] rather well, thus reproducing the results of variational calculations [33].
These properties are also conserved for other quantities computed with these functions.

Therefore, at R � 1 the energy shift is defined by the formula

δE = E− − E1 = −Z2

R
+
Z2ξ1

R2
− 5E

2
. (5.11)

The dependence of the absolute values of various terms on the rhs of (5.11) on R is shown in
figure 3 in the resonance case for uranium.

6. Conclusions

Here we briefly summarize the results obtained in this paper. In this work we have obtained
analytical quasi-classical solutions of the Dirac equation with an axially symmetrical potential,
which does not permit complete separation of variables. Our method allows the spin–orbit
and spin–spin interactions to be taken into account. We have obtained the relativistic two-
Coulomb-centre wavefunction of an electron and calculated the exchange splitting of potential
curves which are expressed through the known characteristics of the separated atoms: charges
of atomic cores Z1 and Z2, asymptotic coefficients A1 and A2, binding energies λ2

1,2/2, and
quantum numbers of the electron in the states of atoms considered (ions). The expression
obtained for 5E, equation (5.7), and a similar nonrelativistic expression for 5E(n) [1] for
the exchange splitting between symmetrical (g) and unsymmetrical (u) potential curves of the
(Z, e, Z) system can be conveniently written as a ratioQ2(Z,R) = 5E/5E(n). The function
Q2(Z,R) shows (figure 4) that the role of relativistic effects increases with increasing charge
Z and internuclear distance R, and the relative contribution of the relativistic effects amounts
to about 50%, even at Z = 45. By means of perturbation theory we have calculated the
asymptotic expansion of the eigenvalues (potential curves) E(R) of the two-Coulomb-centre
problem in the limits of united (R → 0) and separated (R → ∞) atoms with the precision
O(R3) and O(R−3), respectively.
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Figure 4. The relative contributionQ2(Z,R) of the relativistic effects in the exchange splitting of
potential curves in the resonance case for the 1S1/2σ state.

Note that asymptotic expressions obtained here for the potential curves are applicable
under the condition that the quantities γ , γ1,2 are purely real, which corresponds to the range
of applicability of the Dirac equation solutions for the point charge.
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