UDC 512.552.7
M. A. M. Salim (UAE University, Al-Ain, UAE)

TORSION UNITS IN INTEGRAL GROUP RING OF SYMMETRIC GROUP OF DEGREE SEVEN

Using the Luthar-Passi method and results of Hertweck, we consider the famoust Zassenhaus conjecture for the normalized unit group of the integral group ring of the symmetric group of degree seven. As a consequence, we achieve the solution of the Kimmerle's conjecture about prime graphs for the group of units.

Використовуючи метод Лутера-Пассі і результати Гертвека, розглядається відому гіпотезу Цассенхауза для групи нормованих одиниць цілочислового групового кільця симетричної групи степеня сім. Як результат, отримано розв'язок гіпотези Кіммерле про головні графи для групи одиниць.

Let $V(\mathbb{Z} G)$ denotes the group of normalized units of the integral group ring $\mathbb{Z} G$ of a finite group G. One of the most interesting conjectures in the theory of integral group rings is the conjecture of H. Zassenhaus:

Conjecture $1(\mathrm{ZC})$. Every torsion unit u in $V(\mathbb{Z} G)$ is conjugate to an element in G within the rational group algebra $\mathbb{Q} G$; i.e. there exist a group element g in G and a unit w in $\mathbb{Q} G$ such that $w^{-1} u w=g$.

In parallel to the (ZC) and as a usefull technique that we have used is the cojecture of W. Kimmerle, which involves the concept of prime graph (see [21]): For a finite group G, let $\operatorname{pr}(G)$ denotes the set of all prime divisors of the order of G. The Gruenberg-Kegel graph (or the prime graph) of G is a $\pi(G)$ with vertices labelled by primes from $\operatorname{pr}(G)$, such that vertices p and q are adjacent if and only if there is an element of order $p q$ in the group G.

Conjecture $2(\mathrm{KC})$. If G is a finite group, then $\pi(G)=\pi(V(\mathbb{Z} G))$, where $\pi(G)$ is the prime graph of the group G.

Obviously, the Zassenhaus conjecture (ZC) implies the Kimmerle conjecture (KC). In [21], it was shown that the (KC) holds for finite Frobenius and solvable groups. Note that with respect to the so-called p-version of the Zassenhaus conjecture the investigation of Frobenius groups was completed by V. Bovdi and M. Hertweck (see [2]). In the papers [3]- [13] and [15], the (KC) was studied for certain Mathieu, Conway, Janko, Held, O'Nan, Rudvalis, Suzuki, Higman-Sims and McLaughlin simple sporadic groups. In [25], we had a partial answer for the alternating group A_{6} of degree six, then M. Hertweck complete the remaining case for A_{6} in [19] (note that for larger alternating groups the problem is still open). In the present paper we confirm the (KC) for the symmetric group S_{7} of degree 7 .

In order to state the result, for a group G, let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n t}, \ldots\right\}$ be the collection of all conjugacy classes of G, where the first index denotes the order of the elements of this conjugacy class and $C_{1}=\{1\}$. For any unit $u=\sum \alpha_{g} g \in V(\mathbb{Z} G)$ of order k, let $\nu_{n t}$ denote the partial augmentation $\nu_{n t}(u)=\varepsilon_{C_{n t}}(u)=\sum_{g \in C_{n t}} \alpha_{g}$ of u with respect to $C_{n t}$. From Berman's Theorem (see [1]), we know that $\nu_{1}=\alpha_{1}=0$ and $\nu_{c}=0$ for any central element $c \in G$, and that

$$
\begin{equation*}
\sum_{C_{n t} \in \mathcal{C}} \nu_{n t}=1 \tag{1}
\end{equation*}
$$

Hence, for any character χ of G, we have $\chi(u)=\sum \nu_{n t} \chi\left(h_{n t}\right)$, where $h_{n t}$ is a representative of a conjugacy class $C_{n t}$.

Our main results are the following:
Theorem 1. Let G denote the symmetric group S_{7} of degree seven. If u is a torsion unit in $V(\mathbb{Z} G)$ of order $|u|$, and $\mathfrak{P A}(u)$ denotes the tuple

$$
\left(\nu_{2 a}, \nu_{2 b}, \nu_{2 c}, \nu_{3 a}, \nu_{3 b}, \nu_{4 a}, \nu_{4 b}, \nu_{5 a}, \nu_{6 a}, \nu_{6 b}, \nu_{6 c}, \nu_{7 a}, \nu_{10 a}, \nu_{12 a}\right) \text { in } \mathbb{Z}^{14}
$$

of partial augmentations of u in $V(\mathbb{Z} G)$. Then the following statements hold:
(i) If $|u| \neq 20$, then $|u|$ coincides with the order of some $g \in G$.
(ii) If $|u| \in\{3,5,7,10\}$, then u is rationally conjugate to some $g \in G$.
(iii) If $|u|=2$, the tuple of the partial augmentations $\left(\nu_{2 a}, \nu_{2 b}, \nu_{2 c}\right)$ of u belongs to the set $\{(1,0,0),(0,1,0),(0,0,1),(0,-1,2),(1,-1,1),(1,1,-1)\}$ and $\nu_{k x}=0$ whenever $k x \notin\{2 a, 2 b, 2 c\}$.

And hence as a direct consequence, we accomplish the (KC) as follows.
Corollary 1. If $G \cong S_{7}$, then $\pi(G)=\pi(V(\mathbb{Z} G))$.
For a torsion u in $V(\mathbb{Z} G)$, the (ZC) provides that $\chi(u)=\chi\left(x_{i}\right)$ for some $x_{i} \in G$; and hence an equivalent statement for it was given in the following statement:

Fact 1. (see [22]) If $u \in V(\mathbb{Z} G)$ is a torsion unit of order k. Then u is conjugate to an element g in G if and only if for each positive divisor d of k there is precisely one conjugacy class C with non-zero partial augmentation $\varepsilon_{C}\left(u^{d}\right) \neq 0$.

In fact to establish our investigation, we consider the calculation, by GAP, of the indicated numbers $\mu_{m}(u, \chi)$ in what follow for each possible order k of a torsion unit u in $V(\mathbb{Z} G)$, taking in account the relation between $|u|$ and the partial augmentations $\nu_{i}=\varepsilon_{C_{i}}(u)$ given in the next three Facts.

Fact 2. (see [18], Proposition 3 and [20], Lemma 5.6]) Let G be a finite group and let u be a torsion unit in $V(\mathbb{Z} G)$. If $x \in G$ whose p-part, for some prime p, has order strictly greater than the order of the p-part of u, then $\varepsilon_{x}(u)=0$.

Fact 3. (see [20], [22]) Let either p be a prime divisor of $|G|$ or $p=0$. Suppose that $u \in V(\mathbb{Z} G)$ has finite order k such that k and p are coprime if $p \neq 0$. If ζ is a primitive k-th root of unity and χ is either a classical character or a p-Brauer character of G then, for every integer m, the number

$$
\mu_{l}(u, \chi, p)=\frac{1}{k} \sum_{d \mid k} \operatorname{Tr}_{\left(\zeta^{d}\right) /}\left\{\chi\left(u^{d}\right) \zeta^{-d m}\right\}
$$

is a non-negative integer.
Note that if $p=0$, we will use the notation $\mu_{l}(u, \chi, *)$ instead of $\mu_{l}(u, \chi, 0)$.
Fact 4. (see [16]) The order of a torsion unit $u \in V(\mathbb{Z} G)$ is a divisor of $\exp (G)$.
Proof. In this section, the symmetric group of degree seven is denoted by S_{7}. It is known, by [17], that

$$
\left|S_{7}\right|=7!=5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \quad \text { and } \quad \exp \left(S_{7}\right)=420=2^{2} \cdot 3 \cdot 5 \cdot 7
$$

Obviously, the group S_{7} has 15 conjugacy classes $1 a, 2 a, 2 b, 2 c, 3 a, 3 b, 4 a, 4 b, 5 a$, $6 a, 6 b, 6 c, 7 a, 10 a$ and $12 a$, where j is the order of elements in conjugacy classes $j a, j b$ and $j c, j \in\{1,2,3,4,5,6,7,10\}$. Since conjugate group elements have same character, then for any normalized unit $u=\sum \alpha_{i} g_{i} \in V\left(\mathbb{Z} S_{7}\right)$, its character is $\chi(u)=\sum_{i=1}^{15} \nu_{i} \chi\left(x_{i}\right)$, where $\nu_{i}^{\prime} s(\in \mathbb{Z})$ are partial augmentations $\varepsilon_{C_{i}}(u)$ of u, and $x_{i}^{\prime} s$ are representatives of distinct conjugacy classes C_{i} in S_{7}.

If u is torsion in $V\left(\mathbb{Z} S_{7}\right)$ and $|u|=n$, then the $(\mathbf{Z C})$ provides that $\chi(u)=\chi\left(x_{i}\right)$ for some $x_{i} \in G$; and hence an equivalent statement for the (ZC) was given in $[22,23]$. The character table of S_{7}, as well as the Brauer character tables (denoted by $\mathfrak{B C T}(p)$, where $p \in\{2,3,5,7\}$), can be found by the computational algebra system GAP in [17]. Throughout the paper we use the notation of GAP [17] for the indexation of the characters and conjugacy classes of S_{7}.
¿From the structure of the group S_{7}, its known that it possesses elements of orders $2,3,4,5,6,7,10$ and 12 . We begin our investigation with units of orders 2 , $3,5,7$ and 10 . But, by Fact 4, the order of each torsion unit divides the exponent 420 of S_{7}, then it remains to consider only units of orders $14,15,20,21$ and 35 . We prove that all units of these orders (except for 20) do not appear in $V\left(\mathbb{Z} S_{7}\right)$.

Now, we study each case according to Fact 2, to find the appropriate partial augmentations of those involved in (1). Then we apply Fact 3 to the apropriate character to get a system of inequalities. In all our computation we use the package LAGUNA [14] for the computational algebra system GAP [17].

- Let $|u| \in\{5,7\}$. Then, by Fact 2, there is only one conjugacy class in S_{7} consisting of elements of each order $|u|$. Thus for each order $|u|$ there is precisely one conjugacy class with non-zero partial augmentation. Then, by Fact 1, any unit u, where $|u| \in\{5,7\}$, is rationally conjugate to some g in G.
- If $|u|=2$, then by (1) and Fact 2, we have that $\nu_{2 a}+\nu_{2 b}+\nu_{2 c}=1$. Applying Fact 3 to the character χ_{2}, χ_{3} and $1 \chi_{4}$, we get the following system of inequalities

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{2}, *\right)=\frac{1}{2}\left(\nu_{2 a}-\nu_{2 b}-\nu_{2 c}+1\right) \geq 0 \\
& \mu_{1}\left(u, \chi_{2}, *\right)=\frac{1}{2}\left(-\left(\nu_{2 a}-\nu_{2 b}-\nu_{2 c}\right)+1\right) \geq 0 ; \\
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{2}\left(2 \nu_{2 a}+4 \nu_{2 b}+6\right) \geq 0 \\
& \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{2}\left(-\left(2 \nu_{2 a}+4 \nu_{2 b}\right)+6\right) \geq 0 \\
& \mu_{1}\left(u, \chi_{4}, *\right)=\frac{1}{2}\left(-2 \nu_{2 a}+4 \nu_{2 b}+6\right) \geq 0 .
\end{aligned}
$$

¿From the requirement, in Fact 3, that all $\mu_{i}\left(u, \chi_{j}, p\right)$ must be non-negative integers, the system has only the solutions

$$
\left(\nu_{2 a}, \nu_{2 b}, \nu_{2 c}\right) \in\{(1,0,0),(0,1,0),(0,0,1),(0,-1,2),(1,-1,1),(1,1,-1)\}
$$

- Let $|u|=3$. By (1) and Fact 2, we have that $\nu_{3 a}+\nu_{3 b}=1$. Applying Fact 3 to the characters χ_{2} and χ_{3} and from Brauer character tables for $p=2$ and 7 , we get

$$
\begin{gathered}
\mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{3}\left(6 \nu_{3 a}+6\right) \geq 0 ; \quad \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{3}\left(-3 \nu_{3 a}+6\right) \geq 0 \\
\mu_{0}\left(u, \chi_{2}, 2\right)=\frac{1}{3}\left(-2\left(4 \nu_{3 a}-2 \nu_{3 b}\right)+8\right) \geq 0 \\
\mu_{1}\left(u, \chi_{3}, 7\right)=\frac{1}{3}\left(4 \nu_{3 a}-2 \nu_{3 b}+5\right) \geq 0
\end{gathered}
$$

that has only the two trivial integeral solutions $(1,0)$ and $(0,1)$ for $\left(\nu_{3 a}, \nu_{3 b}\right)$. Then, by Fact 1 , each unit u of order 3 is rationally conjugate to some g in G.

- Let u be a unit of order 10. By (1) and Fact 2, we have that

$$
\nu_{2 a}+\nu_{5 a}+\nu_{2 b}+\nu_{2 c}+\nu_{10 a}=1
$$

Since $\left|u^{5}\right|=2$, for any character χ of S_{7} we need only to consider six cases for $\left(\nu_{2 a}, \nu_{2 b}, \nu_{2 c}\right)$ been found for involution units above. We consider each case separately and in the same order:

Case 1. Let $\chi\left(u^{5}\right)=\chi(2 a)$. Using Fact 3, we get the system

$$
\begin{aligned}
& \mu_{1}\left(u, \chi_{2}, *\right)=\frac{1}{10}\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}-1\right) \geq 0 ; \\
& \mu_{2}\left(u, \chi_{2}, *\right)=\frac{1}{10}\left(-\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)+1\right) \geq 0 ; \\
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+12\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}+3\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+8\right) \geq 0 ; \\
& \mu_{0}\left(u, \chi_{4}, *\right)=\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+12\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{4}, *\right)=\frac{1}{10}\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}+3\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{4}, *\right)=\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+8\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{5}, *\right)=\frac{1}{10}\left(16 \nu_{2 a}+24\right) \geq 0 ; \\
& \mu_{0}\left(u, \chi_{10}, *\right)=\frac{1}{10}\left(-4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+14\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{10}, *\right)=\frac{1}{10}\left(-\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+16\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{10}, *\right)=\frac{1}{10}\left(4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+16\right) \geq 0 ;
\end{aligned}
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{5 a}, \nu_{2 b}, \nu_{2 c}, \nu_{10 a}\right)$.
Case 2. Let $\chi\left(u^{5}\right)=\chi(2 c)$. Using Fact 3, we get the system

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+10\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+10\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(2\left(\nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+5\right) \geq 0,
\end{aligned}
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{5 a}, \nu_{2 b}, \nu_{2 c}, \nu_{10 a}\right)$.
Case 3. Let $\chi\left(u^{5}\right)=\chi(2 b)$. Using Fact 3, we get the system

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{2}, *\right)=\frac{1}{10}\left(4\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)+4\right) \geq 0 ; \\
& \mu_{2}\left(u, \chi_{2}, *\right)=\frac{1}{10}\left(-\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)-1\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}+1\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{3}, *\right)=\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+6\right) \geq 0 ; \\
& \mu_{0}\left(u, \chi_{4}, *\right)=\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+6\right) \geq 0 ; \\
& \mu_{2}\left(u, \chi_{4}, *\right)=\frac{1}{10}\left(-\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+1\right) \geq 0 ; \\
& \mu_{0}\left(u, \chi_{10}, *\right)=\frac{1}{10}\left(-4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+20\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{10}, *\right)=\frac{1}{10}\left(-\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+10\right) \geq 0 ; \\
& \mu_{5}\left(u, \chi_{10}, *\right)=\frac{1}{10}\left(4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+10\right) \geq 0 ;
\end{aligned}
$$

that has only the following trivial solution: $(0,0,0,0,1)$.
Case 4. Let $\chi\left(u^{5}\right)=-\chi(2 b)+2 \chi(2 c)$. Using Fact 3, we obtain

$$
\begin{aligned}
\mu_{0}\left(u, \chi_{2}, *\right) & =\frac{1}{10}\left(4\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)+4\right) \geq 0 \\
\mu_{2}\left(u, \chi_{2}, *\right) & =\frac{1}{10}\left(-\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)-1\right) \geq 0 \\
\mu_{0}\left(u, \chi_{3}, *\right) & =\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+6\right) \geq 0 \\
\mu_{2}\left(u, \chi_{3}, *\right) & =\frac{1}{10}\left(-\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+1\right) \geq 0 \\
\mu_{1}\left(u, \chi_{4}, *\right) & =\frac{1}{10}\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}+1\right) \geq 0 \\
\mu_{5}\left(u, \chi_{4}, *\right) & =\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+6\right) \geq 0 \\
\mu_{0}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(-4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+4\right) \geq 0 \\
\mu_{2}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}+4\right) \geq 0
\end{aligned}
$$

which has no integrral solution for $\left(\nu_{2 a}, \nu_{5 a}, \nu_{2 b}, \nu_{2 c}, \nu_{10 a}\right)$.
Case 5. Let $\chi\left(u^{5}\right)=\chi(2 a)-\chi(2 b)+\chi(2 c)$. Using Fact 3, we get that

$$
\begin{aligned}
\mu_{1}\left(u, \chi_{2}, *\right) & =\frac{1}{10}\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}-1\right) \geq 0 \\
\mu_{2}\left(u, \chi_{2}, *\right) & =\frac{1}{10}\left(-\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)+1\right) \geq 0 \\
\mu_{0}\left(u, \chi_{3}, *\right) & =\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+8\right) \geq 0 \\
\mu_{2}\left(u, \chi_{3}, *\right) & =\frac{1}{10}\left(-\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+3\right) \geq 0 \\
\mu_{1}\left(u, \chi_{4}, *\right) & =\frac{1}{10}\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}-1\right) \geq 0 \\
\mu_{5}\left(u, \chi_{4}, *\right) & =\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+4\right) \geq 0 \\
\mu_{0}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(-4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+6\right) \geq 0 \\
\mu_{2}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}+6\right) \geq 0
\end{aligned}
$$

which has no integral solutions for $\left(\nu_{2 a}, \nu_{5 a}, \nu_{2 b}, \nu_{2 c}, \nu_{10 a}\right)$.
Case 6. Let $\chi\left(u^{5}\right)=\chi(2 a)+\chi(2 b)-\chi(2 c)$. Using Fact 3, we get that

$$
\begin{aligned}
\mu_{1}\left(u, \chi_{2}, *\right) & =\frac{1}{10}\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}-1\right) \geq 0 \\
\mu_{2}\left(u, \chi_{2}, *\right) & =\frac{1}{10}\left(-\left(\nu_{2 a}+\nu_{5 a}-\nu_{2 b}-\nu_{2 c}-\nu_{10 a}\right)+1\right) \geq 0 \\
\mu_{1}\left(u, \chi_{3}, *\right) & =\frac{1}{10}\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}-1\right) \geq 0 \\
\mu_{5}\left(u, \chi_{3}, *\right) & =\frac{1}{10}\left(-4\left(2 \nu_{2 a}+\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}\right)+4\right) \geq 0 \\
\mu_{0}\left(u, \chi_{4}, *\right) & =\frac{1}{10}\left(4\left(2 \nu_{2 a}+\nu_{5 a}-4 \nu_{2 b}+\nu_{10 a}\right)+8\right) \geq 0 \\
\mu_{2}\left(u, \chi_{4}, *\right) & =\frac{1}{10}\left(-2 \nu_{2 a}-\nu_{5 a}+4 \nu_{2 b}-\nu_{10 a}+3\right) \geq 0 \\
\mu_{0}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(-4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+22\right) \geq 0 \\
\mu_{1}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(-\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+8\right) \geq 0 \\
\mu_{5}\left(u, \chi_{10}, *\right) & =\frac{1}{10}\left(4\left(\nu_{2 a}-5 \nu_{2 b}+3 \nu_{2 c}\right)+8\right) \geq 0 \\
\mu_{0}\left(u, \chi_{11}, *\right) & =\frac{1}{10}\left(-4\left(\nu_{2 a}+5 \nu_{2 b}-3 \nu_{2 c}\right)+6\right) \geq 0
\end{aligned}
$$

which has no solution for $\left(\nu_{2 a}, \nu_{5 a}, \nu_{2 b}, \nu_{2 c}, \nu_{10 a}\right)$. Thus, for units of orders 10 , there is precisely one conjugacy class with non-zero partial augmentation. Then, by Fact 1 , each unit of order 10 is rationally conjugate to some $g \in G$, so part (ii) of the Theorem is complete.

- Let $|u|=14$. By (1) and Fact 2, we have $\nu_{2 a}+\nu_{2 b}+\nu_{2 c}+\nu_{7 a}=1$. Since $\left|u^{7}\right|=2$ for any character χ of S_{7} we need to consider six cases for $\left(\nu_{2 a}, \nu_{2 b}, \nu_{2 c}\right)$ been found for involution units above. We consider each case separately and in the same order:

Case 1. Let $\chi\left(u^{7}\right)=\chi(2 a)$. Applying Fact 3 to the character χ_{3}, we get

$$
\mu_{0}\left(u, \chi_{3}, *\right)=-\mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(3\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right)+1\right)=0,
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{7 a}, \nu_{2 b}\right)$.
Case 2. Let $\chi\left(u^{7}\right)=\chi(2 b)$. Then, by Fact 3, we get the system

$$
\mu_{0}\left(u, \chi_{3}, *\right)=-\mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(3\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right)+2\right)=0
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{7 a}, \nu_{2 b}\right)$.
Case 3. Let $\chi\left(u^{7}\right)=-\chi(2 b)+2 \chi(2 c)$. Then, by Fact 3, we obtain

$$
\mu_{0}\left(u, \chi_{3}, *\right)=-\mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(3\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right)-2\right)=0,
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{7 a}, \nu_{2 b}\right)$.
Case 4. Let $\chi\left(u^{7}\right)=\chi(2 a)-\chi(2 b)+\chi(2 c)$. Then, by Fact 3 , we get

$$
\mu_{0}\left(u, \chi_{3}, *\right)=-\mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(3\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right)-1\right)=0,
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{7 a}, \nu_{2 b}\right)$.
Case 5. Let $\chi\left(u^{7}\right)=\chi(2 a)+\chi(2 b)-\chi(2 c)$. Then, by Fact 3 , we get

$$
\mu_{0}\left(u, \chi_{4}, *\right)=-\mu_{7}\left(u, \chi_{4}, *\right)=\frac{1}{14}\left(3\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right)-1\right)=0
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{7 a}, \nu_{2 b}\right)$.
Case 6. Let $\chi\left(u^{7}\right)=\chi(2 c)$. Applying Fact 3 to the characters χ_{2} and χ_{3}, we obtain the following system of inequalities

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{2}, *\right)=\frac{1}{14}\left(6\left(\nu_{2 a}+6 \nu_{7 a}-6 \nu_{2 b}-6 \nu_{2 c}\right)+6\right) \geq 0 ; \\
& \mu_{2}\left(u, \chi_{2}, *\right)=\frac{1}{14}\left(-\left(\nu_{2 a}+\nu_{7 a}-\nu_{2 b}-\nu_{2 c}\right)-1\right) \geq 0 \\
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(6\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right) \geq 0 ;\right. \\
& \mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(-6\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}\right)\right) \geq 0 ; \\
& \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{14}\left(2 \nu_{2 a}-\nu_{7 a}+4 \nu_{2 b}+7\right) \geq 0,
\end{aligned}
$$

which has no integral solution for $\left(\nu_{2 a}, \nu_{7 a}, \nu_{2 b}\right)$.
Hence there is no unit in $V\left(\mathbb{Z} S_{7}\right)$ of order 14.

- Let $|u|=15$. By (1) and Fact 2, we have $\nu_{3 a}+\nu_{3 b}+\nu_{5 a}=1$. Since $\left|u^{5}\right|=3$, for any character χ of G, we need only to consider the two trivial integeral solutions for $\left(\nu_{3 a}, \nu_{3 b}\right)$ apper for units of order 3.

Case 1. Let $\chi\left(u^{5}\right)=\chi(3 a)$. Applying Fact 3 for the character χ_{5} of G, we get

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{5}, *\right)=\frac{1}{15}\left(16\left(\nu_{3 a}+\nu_{3 b}\right)+24\right) \geq 0 \\
& \mu_{5}\left(u, \chi_{5}, *\right)=\frac{1}{15}\left(-8\left(\nu_{3 a}+\nu_{3 b}\right)+18\right) \geq 0,
\end{aligned}
$$

and this system has no integral solutions $\left(\nu_{3 a}, \nu_{3 b}\right)$.
Case 2. Let $\chi\left(u^{5}\right)=\chi(3 b)$. Applying Fact 3 for the character χ_{3} of G, we get

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{15}\left(8\left(3 \nu_{3 a}+\nu_{5 a}\right)+10\right) \geq 0 \\
& \mu_{3}\left(u, \chi_{3}, *\right)=\frac{1}{15}\left(-2\left(3 \nu_{3 a}+\nu_{5 a}+5\right) \geq 0,\right.
\end{aligned}
$$

and this system has no integral solutions $\left(\nu_{3 a}, \nu_{5 a}\right)$. Hence there is no unit in $V\left(\mathbb{Z} S_{7}\right)$ of order 15 .

- Let $|u|=21$. By (1) and Fact 2, we have $\nu_{3 a}+\nu_{3 b}+\nu_{7 a}=1$. Since $\left|u^{7}\right|=3$, for any character χ of G, we need only to consider the two trivial integeral solutions for $\left(\nu_{3 a}, \nu_{3 b}\right)$ appear for units of order 3.

Case 1. Let $\chi\left(u^{7}\right)=\chi(3 a)$. Applying Fact 3 for the character χ_{3} of G, we get

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{21}\left(12\left(3 \nu_{3 a}-\nu_{7 a}\right)+6\right) \geq 0 \\
& \mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{21}\left(-6\left(3 \nu_{3 a}-\nu_{7 a}\right)-3\right) \geq 0
\end{aligned}
$$

and this system has no integral solution for $\left(\nu_{3 a}, \nu_{7 a}\right)$.
Case 2. Let $\chi\left(u^{7}\right)=\chi(3 b)$. Applying Fact 3 for the character χ_{3} of G, we get

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{21}\left(12\left(3 \nu_{3 a}-\nu_{7 a}\right)\right) \geq 0 \\
& \mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{21}\left(-6\left(3 \nu_{3 a}-\nu_{7 a}\right)\right) \geq 0 \\
& \mu_{1}\left(u, \chi_{3}, *\right)=\frac{1}{21}\left(\left(3 \nu_{3 a}-\nu_{7 a}\right)+7\right) \geq 0
\end{aligned}
$$

and this system has no integral solution for $\left(\nu_{3 a}, \nu_{7 a}\right)$. Hence there is no unit in $V\left(\mathbb{Z} S_{7}\right)$ of order 21.

- Let $|u|=35$. By (1) and Fact 2, we have $\nu_{5 a}+\nu_{7 a}=1$. Applying Fact 3 for the character χ_{3} of G, we obtain the following system of inequalities

$$
\begin{aligned}
& \mu_{0}\left(u, \chi_{3}, *\right)=\frac{1}{35}\left(24\left(\nu_{5 a}-\nu_{7 a}\right)+4\right) \geq 0 \\
& \mu_{7}\left(u, \chi_{3}, *\right)=\frac{1}{35}\left(-6\left(\nu_{5 a}-\nu_{7 a}\right)-1\right) \geq 0
\end{aligned}
$$

that leads to a contradiction, and hence there is no unit in $V\left(\mathbb{Z} S_{7}\right)$ of order 35 .
Therefore the proof is complete.

1. Artamonov V. A., Bovdi A. A. Integral group rings: groups of invertible elements and classical K-theory // Algebra. Topology. Geometry, Vol. 27 (Russian), Itogi Nauki i Tekhniki, - 1989. - 232, - P. 3-43.
2. Bovdi V., Hertweck M. Zassenhaus Conjecture for Central Extensions of $S_{5} / / \mathrm{J}$. Group Theory, - 2008. - 11. - P. 63-74.
3. Bovdi V., Höfert C., Kimmerle W. On the first Zassenhaus conjecture for integral group rings. Publ. Math. Debrecen, - 2004. - 65, N: 3-4. - P. 291-303.
4. Bovdi V., Grishkov A., Konovalov A. Kimmerle conjecture for the Held and O'Nan sporadic simple groups // Sci. Math. Jpn., - 2009. - 69, N 3. - P. 233-241.
5. Bovdi V., Jespers E., Konovalov A. Torsion units in integral group rings of Janko simple groups // Preprint, - 2007. - submitted, P. 1-30. (E-print arXiv:math/0608441v3).
6. Bovdi V., Konovalov A. Integral group ring of the first Mathieu simple group // Groups St. Andrews 2005. Vol. 1, volume 339 of London Math. Soc. Lecture Note Ser., pages 237-245. Cambridge Univ. Press, Cambridge, 2007.
7. Bovdi V., Konovalov A. Integral group ring of the McLaughlin simple group // Algebra Discrete Math. - 2007. - 2. - P. 43-53.
8. Bovdi V., Konovalov A. Integral group ring of the Mathieu simple group $M_{23} / / \mathrm{Comm}$. Algebra. - 2008. - 36, N7. - P. 2670-2680.
9. Bovdi V., Konovalov A. Integral group ring of Rudvalis simple group // Ukraïn. Mat. Zh. 2009. - 61, N1. - P. 3-13.
10. Bovdi V., Konovalov A. Torsion units in integral group ring of the Higman-Sims simple group // Studia Scient. Hungarica. - 2009. - to appear - P. 1-11.
11. Bovdi V., Konovalov A., Linton S. Torsion units in integral group ring of the Mathieu simple group $M_{22} / /$ LMS J. Comput. Math. - 2008. - 11. - P. 28-39.
