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TORSION UNITS IN INTEGRAL GROUP RING OF SYMMETRIC
GROUP OF DEGREE SEVEN

Using the Luthar-Passi method and results of Hertweck, we consider the famoust Zassenhaus
conjecture for the normalized unit group of the integral group ring of the symmetric group of
degree seven. As a consequence, we achieve the solution of the Kimmerle’s conjecture about prime
graphs for the group of units.

Bukopucrosytoun meros Jlyrepa-Ilacci i pesynbrarun I'eprBeka, po3risgaeThbcst BiloMy rirmoTesy
ITaccenxaysa 15t rpyII HOPMOBAHUX OJUHUILB I[IJIOYUCIIOBOIO IPYIIOBOIO KiJIbIl CAMETPUYHOI IPy-
nu crerneHs ciM. 9K pe3y/bTaT, OTPUMAHO PO3B’si30K rimoresu Kimmepiie mpo roJioBHI rpadu s
TPy OUHUIID.

Let V(ZG) denotes the group of normalized units of the integral group ring ZG of
a finite group G. One of the most interesting conjectures in the theory of integral
group rings is the conjecture of H. Zassenhaus:

Conjecture 1 (ZC). Every torsion unit u in V(ZG) is conjugate to an element
in G within the rational group algebra QG| i.e. there exist a group element g in G
and a unit w in QG such that w™uw = g.

In parallel to the (ZC) and as a usefull technique that we have used is the
cojecture of W. Kimmerle, which involves the concept of prime graph (see [21]):
For a finite group G, let pr(G) denotes the set of all prime divisors of the order of
G. The Gruenberg-Kegel graph (or the prime graph) of G is a 7(G) with vertices
labelled by primes from pr(G), such that vertices p and ¢ are adjacent if and only
if there is an element of order pq in the group G.

Conjecture 2 (KC). If G is a finite group, then n(G) = m(V(ZG)), where m(Q)
is the prime graph of the group G.

Obviously, the Zassenhaus conjecture (ZC) implies the Kimmerle conjecture
(KC). In [21], it was shown that the (KC) holds for finite Frobenius and solv-
able groups. Note that with respect to the so-called p-version of the Zassenhaus
conjecture the investigation of Frobenius groups was completed by V. Bouvdi and
M. Hertweck (see [2]). In the papers [3]— [13] and [15], the (KC) was studied for
certain Mathieu, Conway, Janko, Held, O’Nan, Rudvalis, Suzuki, Higman-Sims and
McLaughlin simple sporadic groups. In [25], we had a partial answer for the alter-
nating group Ag of degree six, then M. Hertweck complete the remaining case for
Ag in [19] (note that for larger alternating groups the problem is still open). In the
present paper we confirm the (KC) for the symmetric group S7 of degree 7.

In order to state the result, for a group G, let € = {C,...,Cy, ...} be the
collection of all conjugacy classes of GG, where the first index denotes the order of
the elements of this conjugacy class and C; = {1}. For any unitu = ) a9 € V(ZG)
of order k, let v,; denote the partial augmentation v, (u) = e¢,, (u) = > 9eCny g of
u with respect to Cy;. From Berman’s Theorem (see [1]), we know that v; = a; =0
and v, = 0 for any central element ¢ € G, and that

Z Vpt = 1. (1)

Cntee
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Hence, for any character x of G, we have x(u) = > vyux(hnt), where hy, is a
representative of a conjugacy class C,;.
Our main results are the following:

Theorem 1. Let G denote the symmetric group S; of degree seven. If u is a
torsion unit in V(ZG) of order |u|, and PA(u) denotes the tuple

(V2as Vabs Vac, V3as V3b, Vias Vabs Vsas Veas Vebs Ve, Vias Vioa, Vi2a) i VA
of partial augmentations of w in V(ZG). Then the following statements hold:
(i) If |u| # 20, then |u| coincides with the order of some g € G.
(i1) If |u| € {3,5,7,10}, then u is rationally conjugate to some g € G.

(111) If |u| = 2, the tuple of the partial augmentations (Vaq, Vap, Vae) of u belongs to
the set {(1,0,0), (0,1,0), (0,0, 1), (0,—1,2), (1,—1,1), (1,1,—1)} and v, =0
whenever kx ¢ {2a,2b,2c}.

And hence as a direct consequence, we accomplish the (KC) as follows.
Corollary 1. If G = S;, then n(G) = n(V(ZQ)).
For a torsion u in V(ZG), the (ZC) provides that x(u) = x(x;) for some z; € G}

and hence an equivalent statement for it was given in the following statement:

Fact 1. (see [22]) If u € V(ZQ) is a torsion unit of order k. Then u is conjugate
to an element g in G if and only if for each positive divisor d of k there is precisely
one conjugacy class C' with non-zero partial augmentation gc(ud) # 0.

In fact to establish our investigation, we consider the calculation, by GAP, of the
indicated numbers p,,(u, x) in what follow for each possible order k of a torsion unit
win V(ZG), taking in account the relation between |u| and the partial augmentations
v; = ¢, (u) given in the next three Facts.

Fact 2. (see [18], Proposition 3 and [20], Lemma 5.6]) Let G be a finite group
and let u be a torsion unit in V(ZG). If x € G whose p-part, for some prime p, has
order strictly greater than the order of the p-part of u, then e,(u) = 0.

Fact 3. (see [20], [22]) Let either p be a prime divisor of |G| or p = 0. Suppose
that w € V(ZG) has finite order k such that k and p are coprime if p # 0. If ¢
s a primitive k-th root of unity and x is either a classical character or a p-Brauer
character of G then, for every integer m, the number

!(u, X, p) ZTv“gd/{x )¢y
d|k
18 @ non-negative integer.
Note that if p = 0, we will use the notation py(u, x, *) instead of y,(u, x,0).
Fact 4. (see [16]) The order of a torsion unit u € V(ZG) is a divisor of exp(G).

Proof. In this section, the symmetric group of degree seven is denoted by S7.
It is known, by [17], that

1S7| =71 =5040 =2*-3%-5-7 and  exp(S;) =420=2>-3.5-7.
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Obviously, the group S7 has 15 conjugacy classes la, 2a, 2b, 2¢, 3a, 3b, 4a, 4b, ba,
6a, 6b, 6¢, Ta, 10a and 12a, where j is the order of elements in conjugacy classes
ja,jb and je,j € {1, 2, 3, 4, 5, 6, 7, 10}. Since conjugate group elements have
same character, then for any normalized unit u =Y a;g; € V(ZS7), its character is
x(u) = 321% vix(w:), where v/s(€ Z) are partial augmentations e, (u) of u, and /s
are representatives of distinct conjugacy classes C; in Sy.

If u is torsion in V(ZS7) and |u| = n, then the (ZC) provides that x(u) = x(z;)
for some x; € G; and hence an equivalent statement for the (ZC) was given in
[22,23]. The character table of S7, as well as the Brauer character tables (denoted
by BEX(p), where p € {2, 3, 5, 7}), can be found by the computational algebra
system GAP in [17]. Throughout the paper we use the notation of GAP [17] for
the indexation of the characters and conjugacy classes of S;.

JFrom the structure of the group S7, its known that it possesses elements of
orders 2, 3, 4, 5, 6, 7, 10 and 12. We begin our investigation with units of orders 2,
3, 5, 7 and 10. But, by Fact 4, the order of each torsion unit divides the exponent
420 of S7, then it remains to consider only units of orders 14, 15, 20, 21 and 35. We
prove that all units of these orders (except for 20) do not appear in V(ZS7).

Now, we study each case according to Fact 2, to find the appropriate partial
augmentations of those involved in (1). Then we apply Fact 3 to the apropriate
character to get a system of inequalities. In all our computation we use the package
LAGUNA [14] for the computational algebra system GAP [17].

e Let |u| € {5,7}. Then, by Fact 2, there is only one conjugacy class in S7 consisting
of elements of each order |u|. Thus for each order |u| there is precisely one conjugacy
class with non-zero partial augmentation. Then, by Fact 1, any unit u, where
|u| € {5, 7}, is rationally conjugate to some g in G.

o If |u| = 2, then by (1) and Fact 2, we have that vy, + vo, + 5. = 1. Applying Fact
3 to the character x9, x3 and 1y, we get the following system of inequalities

fo(t, X2, %) = 3 (vaq — vay — 1oe + 1) > 0;
p1(t, X2, %) = 3(—(voq — vop — ve) + 1) > 0;
po(u, X3, %) = 5(202q + 4vgp + 6) > 0;

p1(u, x3, %) = 3(— (200 + 4va) + 6) > 0;
p1(, X4, %) = 3 (=219 + 41y + 6) > 0.

i From the requirement, in Fact 3, that all p;(u, x;, p) must be non-negative integers,
the system has only the solutions

(V2a, v, vae) € {(1,0,0),(0,1,0),(0,0,1),(0,-1,2), (1,—1,1),(1,1,-1)}.

e Let |u| = 3. By (1) and Fact 2, we have that vs, + v3, = 1. Applying Fact 3 to
the characters y, and y3 and from Brauer character tables for p = 2 and 7, we get
fio(u, x3,%) = 5(6v3a +6) > 0; pua(u, X3, %) = 3(—3v3, + 6) > 0;
fio(u, X2, 2) = 3(—2(4vs, — 2u) + 8) > 0;

Ml(u7X3> 7) = %(4V3a - 2V3b + 5) > Oa

that has only the two trivial integeral solutions (1,0) and (0,1) for (34, v3). Then,
by Fact 1, each unit u of order 3 is rationally conjugate to some g in G.
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e Let u be a unit of order 10. By (1) and Fact 2, we have that
Vg + Vsa + Vab + Vac + Viga = L.

Since|u®| = 2, for any character y of S; we need only to consider six cases for
(24, Vap, Vae) been found for involution units above. We consider each case separately
and in the same order:

Case 1. Let x(u®) = x(2a). Using Fact 3, we get the system

p1(t, X2, %) = 15(Vaq + Vsa — Vo — Vae — Vigg — 1) > 0;
pia(u, X2, %) = 15(—(V2a + Vsa — Vop — Vac — V1ga) + 1) = 0;
pio(u, X3, %) = 15(4(202q + Vsq + 402y — V100) + 12) > 0;
pi1(u, X3, %) = 15 (2024 + Vsq + 4V — V104 + 3) = 0;
pi5 (U, X3, %) = 15(—4(202q + Vsq + 4025 — V10a) + 8) > 0;
pro(t, X4, %) = 75(4(202q + Vsq — 41y + V10a) +12) > 0;
pi1 (U, Xa, %) = 165(202q + Vsa — 4va + V10a + 3) > 0;
pi5 (U, Xa, %) = 15(—4(2020 + Vsq — 4V + v100) + 8) > 0;
s (u, x5, %) = 1—10<16V2a +24) > 0;

pio(t, X10, %) = 15(—4(v2q — Bray + 3vac) + 14) > 0;

pi1 (t, X10, %) = 15(—(v2a — By + 3vac) + 16) > 0;

15 (t, X10, %) = 15 (4(vaq — By + 3vac) + 16) > 0,

which has no integral solution for (a4, Vsa, Vop, Vac, V10a)-
Case 2. Let x(u®) = x(2c). Using Fact 3, we get the system

fio(u, X3, %) = 15(4(202q + Vsq + 4125 — 110a) + 10) > 0;
fi5 (1, X3, %) = 15(—4(202q + Vsq + 4v2p — V100) + 10) > 0;
p1(u, X3, %) = 15(2(Vaq + Vsa + 4V — v104) +5) > 0,

which has no integral solution for (24, Vsa, Vop, Vac, V10a)-
Case 3. Let x(u®) = x(2b). Using Fact 3, we get the system

fio(t, X2, %) = 15(4(Vaq + Vsa — Vap — Voo — V10a) +4) = 0;
pia(u, X2, %) = 15(—(V2a + Vsa — Vop — Vo — V10a) — 1) 2> 0;
pi1(, X3, %) = 15 (2024 + Vs + 4V — vigq + 1) > 0;
fi5(t, X3, %) = 15(—4(202q + Vsq + 402 — V10a) + 6) > 0;
fio(t, X4, %) = 15(4(202q + Vsq — 4V + 1100) + 6) > 0;
pio(t, X4, %) = 15(— (2020 + Vsa — 42 + V10a) + 1) > 0;
to(u, X10, %) = 1—10( 4(vaq — Doy + 31o.) 4+ 20) > 0;

pi1(u, X105 %) = 15(—(V2a — 5v2p + 31ac) + 10) > 0;

fi5(t, X10, %) = 16 (4(V2q — Sap + 31ac) + 10) > 0,

that has only the following trivial solution: (0,0,0,0,1).
Case 4. Let x(u®) = —x(2b) + 2x(2¢). Using Fact 3, we obtain
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pio(u, X2, %) = 15(4(V2q + Vsa — Vay — Vac — V10a) +4) = 0
fi2 (1, X2, %) = 15(—(V2a + Vsa — V2p — Vae — V10a) — 1) > 0
fo(u, X3, %) = 15 (4(2v2q + Vsq + 4125 — 1104) +6) > 0
fia(u, X3, %) = 15(— (2020 + Vsa + 4oy — v104) +1) > 0
fi1(t, X, %) = 15(202q + Vsa — 42y + V102 + 1) > 0
115 (t, X, %) = 16(—4(202q + Vsq — 4V + V100) +6) > 0
po(u, X10, %) = %( 4(voq — Doy + 319e) +4) >0
pi2 (U, X105 %) = 15(V2a — HVap + 312 +4) > 0

which has no integrral solution for (vaq, Vsa, Vap, Vac, V10a)-
Case 5. Let x(u®) = x(2a) — x(2b) + x(2¢). Using Fact 3, we get that

(Vag + Vsa — Vap — Vae — Viga — 1) > 0;
(—(v2q + Vsa — Va2b — Vae — Viga) + 1) > 0;
(4(2v24 + Vsq + 4oy — V104) + 8) > 0;
(—(2v2q + V5q + 4125 — V10a) +3) > 0;
(2u94 + Vsq — 4oy + 110a — 1) > 0;
(—4(2v9q + Vsq — 41y + 110a) +4) > 0;
(—4(v2a — Svap + 312c) +6) > 0;

(V2q — Brp + v + 6) > 0,

EIH SIH SIH sl= SIH sl= SlH sl

which has no integral solutions for (vaq, Vsa, Vap, Vac, V10a)-
Case 6. Let x(u®) = x(2a) + x(2b) — x(2¢). Using Fact 3, we get that

pi1 (U, X2, %) = 15(Vaa + Vsa — Vop — Vae — V1ga — 1) > 0;
pia(u, X2, %) = 15(—(V2a + Vsa — Vap — Vac — V10a) + 1) = 0;
pi1(u, X3, %) = 15 (2024 + Vsq + 4V, — V10 — 1) > 0;
pis (U, X3, %) = 15(—4(202q + Vsq + 402 — V10a) +4) > 0;
fio(u, Xa, %) = 15(4(202q + Vsq — 4V, + V10a) + 8) > 0;
pro(t, X4, %) = 15(—200q — Vsq + 4V2, — V104 + 3) = 0;
pio(t, X10, %) = 15(—4(v2q — Bray + 3vae) + 22) > 0;
p (, X10, %) = 15(— (V2 — 5oy + 3vac) + 8) > 0;
15 (t, X10, %) = 15(4(v2q — Bvay + 1) + 8) > 0;
pio(t, X11, %) = 15(—4(v2q + Bray — 3vac) +6) > 0,

which has no solution for (vaq, Vsa, Vap, Vae, V10a)- Thus, for units of orders 10, there
is precisely one conjugacy class with non-zero partial augmentation. Then, by Fact
1, each unit of order 10 is rationally conjugate to some g € G, so part (ii) of the
Theorem is complete.

e Let |u| = 14. By (1) and Fact 2, we have vo, + vop, + v, + 7, = 1. Since |u”| = 2
for any character y of S7 we need to consider six cases for (v, Vap, V2.) been found
for involution units above. We consider each case separately and in the same order:
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Case 1. Let x(u”) = x(2a). Applying Fact 3 to the character ys, we get

po(u, x3,%) = —pr(u, X3, %) = 15 (3(2020 — V7 + ) + 1) = 0,

which has no integral solution for (va,, V74, Vop).
Case 2. Let x(u”) = x(2b). Then, by Fact 3, we get the system

po(u, x3,%) = —pr(u, X3, %) = 15 (3(2090 — V7o + 4va) +2) = 0,

which has no integral solution for (vaq, V74, Vap).
Case 3. Let x(u") = —x(2b) + 2x(2¢). Then,by Fact 3, we obtain

M0<U7X37 ) - —,LL7<'LL X3, ) - (3(2V2a Vra + 4V2b> - 2) - 07

which has no integral solution for (vaq, V74, Vap).
Case 4. Let x(u") = x(2a) — x(2b) + x(2¢). Then,by Fact 3, we get

M0<U7X37 ) - —ILL7<U X3, ) - (3(2V2a Vra + 4V2b> - 1) - 07

which has no integral solution for (vaq, V74, Vap).
Case 5. Let x(u”) = x(2a) + x(2b) — x(2¢). Then,by Fact 3, we get

pio(t, Xa, %) = =iz (u, Xa, %) = 15 (3(2020 — V74 + dv) — 1) = 0,

which has no integral solution for (vaq, V74, Vap).
Case 6. Let x(u”) = x(2c). Applying Fact 3 to the characters y, and xs3, we
obtain the following system of inequalities

to(u, X2, %) = ﬁ(f}(uga + 67y — 6o — 615.) +6) > 0;
po(t, X2, %) = 15(—(Voq + V7g — vap — vac) — 1) > 0;
to(u, xs, %) = ﬁ(6(21/2a — Vg + 4vgp) > 0;

pr(t, X3, %) = 15(—6(200q — V74 + 4vap)) > 0;

pa (, X3, %) = 15 (2090 — V7q + 4vay +7) > 0,

which has no integral solution for (vaq, V74, Vap).

Hence there is no unit in V(ZS7) of order 14.
e Let |u] = 15. By (1) and Fact 2, we have v3, + v3, + v5, = 1. Since |u’| = 3, for
any character y of GG, we need only to consider the two trivial integeral solutions for
(V34, V3p) apper for units of order 3.

Case 1. Let x(u°) = x(3a). Applying Fact 3 for the character x5 of G, we get

MO(ua X5; *) = %(16(V3a + V3b) + 24) > 07
“5(”) X5, *) = %5<_8(U3a + VSb) + 18) Z 07

and this system has no integral solutions (vs,, V).
Case 2. Let x(u®) = x(3b). Applying Fact 3 for the character y3 of G, we get

MO(U7 X35 *) = 1_15(8(31/3(1 + V5a) + 10) Z 0
:U’3(U)X37 *) - %(_2(31/3(1 + Vsq + 5) Z 07
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and this system has no integral solutions (v3,, 5,). Hence there is no unit in V(ZS7)
of order 15.

e Let |u| = 21. By (1) and Fact 2, we have vs, + 3, + v7, = 1. Since |u| = 3, for
any character x of GG, we need only to consider the two trivial integeral solutions for
(34, V3p) appear for units of order 3.

Case 1. Let x(u”) = x(3a). Applying Fact 3 for the character 3 of G, we get

MO<U7X37 *) = %(12(3”&1 - 1/7(1) + 6) 2 Oa
pi7(u, x3,%) = 57(—6(3v34 — v7a) — 3) > 0,

and this system has no integral solution for (v3,, 7).

Case 2. Let x(u”) = x(3b). Applying Fact 3 for the character y3 of G, we get

M0<U7X37 *) = %(12(?)”3(1 - V7a)) Z 07
M'?(u?X?n *) = (_6(31/3(1 - V?a)) > 07
:ul(u7X37 *) - 1((3V3a - V?a) + 7) Z 07

V)
[ =

N

and this system has no integral solution for (vs,,v7,). Hence there is no unit in
V(ZS7) of order 21.

e Let |u| = 35. By (1) and Fact 2, we have vs, + 17, = 1. Applying Fact 3 for the
character y3 of G, we obtain the following system of inequalities

fio(u, X3, %) = 35 (24(Vsq — v70) +4) > 0;
M7<u7 X35 *) - %(_6(V5a - V?a) - 1) > 07

that leads to a contradiction, and hence there is no unit in V(ZS7) of order 35.

10.

11.

Therefore the proof is complete.
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