-22-

УДК 548.736.4

Стецьків А.О., к.х.н., доц.

СИНТЕЗ ТА ДОСЛІДЖЕННЯ КРИСТАЛІЧНОЇ СТРУКТУРИ СПОЛУКИ Еu₅Na₄Ge₄

Івано-Франківський національний медичний університет, вул. Галицька, 2, м. Івано-Франківськ, 76018, Україна; e-mail: andrij_stetskiv69@mail.ru

Інтерметалічні сполуки, які мають у своєму складі рідкісноземельні елементи, літій та р-елементи IV групи, викликають великий інтерес у дослідників через цілий ряд їх корисних властивостей (накопичувачі водню, металогідридні джерела струму, різноманітні магнітні матеріали). Потрійні системи складу R-Li-X (де R – рідкісноземельний метал, Х – силіцій, германій, станум) почали досліджувати останнім часом доволі інтенсивно. Для деяких з них побудовано ізотермічні перерізи діаграм стану, у багатьох виявлено існування інтерметалічних сполук різноманітної стехіометрії та кристалохімічної будови [1-3], які характеризуються цілим комплексом цікавих фізико-хімічних властивостей.

В той же час системи R-Na-X практично не вивчались через високу хімічну активність досліджуваних зразків. Перші дослідження взаємодії компонентів у них відбулись нещодавно і описані авторами [4, 5]. У цих роботах повідомили про існування сполук складу EuNa₈Sn₆, EuNa₁₀Sn₁₂ та YbNa₁₀Sn₁₂. Для першої фази встановлено, що вона характеризується монокліною симетрією та належить до структурного типу BaNa₈Pb₆. Сполуки EuNa₁₀Sn₁₂ і YbNa₁₀Sn₁₂ ізоструктурні та їх структура є близько-спорідненою до Zn₄B₆O₁₃ [6].

В роботі [7] методом монокристалу досліджено кристалічну структуру тернарної сполуки Nd₄NaSn₄, яка кристалізується в структурному типі Tm₄LiGe₄. Періоди елементарних комірок ізоструктурних сполук були уточнені для La, Ce, Pr, Sm, Gd, Tb, Dy.

Структурний тип $Nb_5Cu_4Si_4$ (просторова група *I4/m*, символ Пірсона *tI26*) [8] є досить поширеним серед структур тернарних силіцидів, германідів, станідів рідкісно-

земельних металів і літію, а також інших елементів [9-11].

Саме тому метою роботи було систематичне дослідження взаємодії компонентів у системі Eu-Na-Ge, а також дослідження кристалічної структури нових одержаних сполук, в тому числі таких, що кристалізуються в структурному типі Nb₅Cu₄Si₄.

Сплави виготовляли у два етапи, використовуючи для синтезу метали наступної чистоти: натрій – 0,9997, Eu > 0,999, германій – 0,9999 масових часток основного компоненту. Під час першого етапу шихту із наважок чистих компонентів нагрівали в індукційній печі у танталовому тиглі до температури 400°С та витримували протягом 4 годин.

Під час другого етапу нагрівали сплави до температури 800°C та витримували протягом 1 години. Контроль маси сплавів шляхом порівняння маси шихти з масою сплаву не проводили, оскільки тигель був герметично запаяний, що унеможливлює будь-які втрати. Гомогенізуючий відпал проводили при температурі 200°С протягом трьох тижнів. Сплави поміщали в танталові контейнери і запаювали у кварцові ампули з попередньою евакуацією повітря. Відпал проводили у муфельній печі типу МП-60 з автоматичним регулюванням температури з точністю ±5°С. Відпалені сплави гартували у вазеліновому маслі кімнатної температури, не розбиваючи ампули.

Контроль гомогенності і рівноважності зразків здійснювали рентгенографічно. Сплави зберігали під шаром індиферентного масла, попередньо очищеного та зневодненого. Фазовий аналіз проводили, використовуючи дифрактограми зразків, -23-

отримані на порошкових дифрактометрах URD-6 (СиК_α-випромінювання).

Монокристал сірого кольору у вигляді пластини відібрали зі зразку складу Eu₃₈Na₃₁Ge₃₁. Дослідження методами Лауе та Вейссенберга підтвердили належність їх структур до тетрагональної сингонії. Умови експерименту та результати уточнення структури сполуки наведено у табл. 1.

	A			•						
арина		Петапі	експеримент	V1	neg	VILTATI	VTOUHEHH	метолом	монокри	стапу
гаолици	±•,	цотал	exempliment	y i	pes	yndiain	y to momin	методом	Monokph	crusty

Емпірична формула	Eu ₅ Na ₄ Ge ₄
Структурний тип	Nh-Cu-Si
	1142 22
Симетрія	Тетрагональна
Просторова група	
Символ Пірсона	14/m tI26
Розміри кристацу (mm^3)	$0.07 \times 0.05 \times 0.01$
Температура К	293(2)
Параметри комірки:	275(2)
a Å	11 740 (1) Å
_ 0	11.749 (1) A
<i>b</i> , A	11.749 (1) Å
<i>c</i> , Å	4.6591 (2) Å
<i>V</i> , Å ³	643.1 (1)
Ζ	2
Тип сканування	ω
Випромінювання, довжина хвилі, Å	$MoK_{\alpha}, \lambda = 0.71073 \text{ Å}$
Межі в при зйомці кристалу (°)	$2.50 \div 25.0$
Memi h k l	$-9 \le h \le 9, -14 \le k \le 14,$
	$-5 \le l \le 5$
Загальна кількість рефлексів	1228
Незалежні рефлекси	$307 (R_{\text{int}} = 0.130)$
Рефлекси з $I > 2\sigma(I)$	$288 (R_{sigma} = 0.031)$
Фактор добротності, S	1.57
$R(F) [\bar{F}^2 > 2\sigma(F^2)]$	0.057
$wR(F^2)$	0.110
Найбільша/найменша залишкова	2.32 та -2.02 е/Å ³
електронна густина	

Масив рентгенівських дифракційних даних отримали за кімнатної температури на автоматичному монокристальному дифрактометрі XCALIBUR (МоК_{α}-випромінювання, графітовий монохроматор, ω -метод сканування). Структуру визначили прямими методами в просторовій групі *I4/m*, з використанням комплексу програм SHELX – 97 [12].

Результати обчислення та уточнення кристалічної структури сполуки $Eu_5Na_4Ge_4$ засвідчили, що вона є ізоструктурною до структурного типу $Nb_5Cu_4Si_4$ [8, 10-11], який є надструктурою до Sm_9Ga_4 [9], де атоми Eu1 та Eu2 займають положення 8 (h), а атоми Na – 2(a). Координати та параметри теплового

коливання атомів представлені в табл. 2. Елементарна комірка структури та кординаційні многогранники атомів приведені на Число сусідніх рис. 1. атомів добре корелюється з розмірами центральних атомів. Найбільші за розмірами атоми Еи укладені в 17- та 14-вершинники. Для атомів Ge характерним координаційним многогранником є тригональна призма з трьома додатковими атомами; для Na - координаційні многогранники з координаційним числом 12, які можна розглядати як деформовані кубооктаедри. Міжатомні віддалі приймають допустимі для інтерметалідів значення та приведені у табл. 3.

Атоми	ПСТ	x	У	z	$U_{ m iso}$
Eu1	8h	0.3799 (1)	0.3049 (1)	0.0000	0.0107 (1)
Eu2	8h	0.0000	0.0000	0.0000	0.0097 (1)
Ge	8h	0.2421 (2)	0.0829 (1)	0.0000	0.0138 (2)
Na	2a	0.0991 (3)	0.4111 (3)	0.0000	0.0098 (2)

Таблиця 2. Атомні координати та параметри теплового коливання атомів (Å²)

Рис. 1. Елементарна комірка структури та координаційні многогранники атомів.

Атоми	δ (Å)	Атоми	δ (Å)
Na—Ge ⁱ	2.985 (3)	Eu1—Eu2 ⁱⁱⁱ	3.5598 (9)
Na—Na ⁱⁱ	3.213 (3)	Eu1—Eu2 ⁱ	3.5598 (9)
Na—Ge ⁱⁱⁱ	2.985 (3)	Eu1—Eu2 ⁱⁱ	3.5598 (9)
Ge—Eu1 ⁱ	3.0362 (13)	Ge—Eu1 ⁱⁱⁱ	3.0362 (13)
Ge—Eu2 ^{iv}	3.007 (2)	Na—Eu1 ⁱⁱⁱ	3.454 (3)
Ge—Eu2 ^v	3.007 (2)	Na—Na ^{vi}	3.213 (3)
Eu1—Eu1 ⁱⁱⁱ	4.0507 (14)	Na—Na ^{vii}	9.821 (5)
Na—Eu1 ⁱ	3.454 (3)	Na-Ge ^{viii}	4.079 (4)

T-6 2 14 En No C

-25-

Рис. 2. Укладка тетраедрів [Na₄] та октаедрів [Eu₆] у структурі сполуки Eu₅Na₄Ge₄.

У структурі сполуки $Eu_5Na_4Ge_4$ атоми натрію утворюють пусті тетраедри [Na₄], а атоми європію утворюють пусті октаедри [Eu₆], які ізольовані атомами германію в площині *ху*, але з'єднані вершинами вздовж осі *z* (рис. 2).

Розрахунок електронної структури виконано за допомогою програмного пакету TB-LMTO-ASA [13] для з'ясування причин утворення хімічного зв'язку. Упорядкована модель потрійної фази Eu₅Na₄Ge₄ (рис. 3) зі структурою типу $Nb_5Cu_4Si_4$ була проаналізована. За результатами розрахунків, атоми європію та натрію віддають свої електрони атомам германію, навколо яких функція електронної локалізації є більшою за 0,8. Натомість, біля атомів Еu та Na ця функція наближається до 0. Густина станів в області рівня Фермі свідчить про металічний тип зв'язку у дослідженій тернарній фазі, хоча не виключається слабка ковалентна взаємодія між атомами германію (рис. 4).

Рис. 3. Локалізація електронної густини у моделі тернарної фази Eu₅Na₄Ge₄.

-26-

Рис. 4. Густина станів у моделі тернарної фази Eu₅Na₄Ge₄.

Таким чином, методом монокристалу досліджено кристалічну структуру нової тернарної сполуки $Eu_5Na_4Ge_4$ (структурний тип Nb₅Cu₄Si₄, просторова група *I4/m*, символ Пірсона *tI26*, а= 11,749 (1), с= 4,6591 (2) Å). Виявлено, що атоми Еи укладені в 17та 14-вершинники. Атоми Ge вкладені в тригональну призму з трьома додатковими атомами, атоми Na знаходяться в оточенні 12 атомів сусідів у формі спотвореного кубооктаедру. Густина станів в області рівня Фермі свідчить про металічний тип зв'язку у дослідженій тернарній фазі.

Список використаних джерел

1. Павлюк В.В., Бодак О.И., Печарский В.К. Новые тернарные станниды редкоземельных металлов и лития. *Изв. АН СССР. Неорганические материалы.* 1989, 25(7), 1145-1148.

2. Pavlyuk V., Stetskiv A., Rożdżyńska-Kiełbik B. The isothermal section of the phase diagram of Li– La–Ge ternary system at 400°C. *Intermetallics* 2013, 43, 29-37.

3. Makongo J.P.A., Nian-Tzu Suen, Shengping Guo. The RELi_xSn₂ (RE=La–Nd, Sm, and Gd; $0 \le x < 1$)

series revisited. Synthesis, crystal chemistry, and magnetic susceptibilities. *Journal of Solid State Chemistry*. 2014, 211, 95-105.

4. Todorov I., Sevov S.C. Heavy-metal aromatic rings: cyclopentadienyl anion analogues Sn5(6-) and Pb5(6-) in the Zintl phases Na₈BaPb₆, Na₈BaSn₆, and Na₈EuSn₆. *Inorganic Chemistry*. 2004, 43(20), 6490-6494.

5. Todorov I., Sevov S.C. In search of benzene-like Sn6(6-): synthesis of Na_4CaSn_6 with interconnected cyclohexane-like Sn6(6-). *Inorganic Chemistry*. 2006, 45(11), 4478-4483.

6. Smith P., Garcia Blanco S., Rivoir L. The crystal structure of anhydrous zinc metaborate $Zn_4O(BO_2)_6$. Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 1964, 119, 375-383.

7. Стецьків А.О., Павлюк В.В. Кристалічна структура R_4 NaSn₄ (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy). *Науковий вісник Ужгородського ун-ту. Серія Хімія.* 2014, 2(32), 23-27.

8. Ganglberger E. Die Kristallstruktur von Nb₅Cu₄Si₄. *Monatshefte für Chemie*. 1968, 99(2), 549-556.

9. Yatsenko S.P., Hryn' Yu.N., Sitschevitsch O.M., Tschuntonow K.A. Die Struktur von Sm₉Ga₄. *J. Less Common Metals*. 1985, 106(1), 35-40.

10. Павлюк В.В., Печарский В.К., Бодак О.И., Соболев А.Н. Кристаллическая структура соединения Yb₅Li₄Ge₄. *Металлы*. 1989, 5, 221-222.

-27-

 Wang M., McDonald R., Mar A. Ternary earlytransition-metal palladium pnictides Zr₃Pd₄P₃, Hf₃Pd₄P₃, HfPdSb, and Nb₅Pd₄P₄. *Inorganic Chemistry*. 2000, 39(21), 4936-4941.
 Sheldrick G.M. SHELXL-97. Program for crystal

structure refinement. University of Göttingen. Germany, 1997.

13. Krier G., Jepsen O., Burkhardt A., Andersen O.K. The TBLMTO-ASA program, version 4.7. *Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany*, 2000.

Стаття надійшла до редакції: 10.02.2015.

SYNTHESIS AND INVESTIGATION OF CRYSTAL STRUCTURE OF THE COMPOUND Eu₅Na₄Ge₄

Stetskiv A.

The crystal structure of the ternary phase Eu₅Na₄Ge₄ (a= 11.749 (1), c= 4.6591 (2) Å), which belongs to the Nb₅Cu₄Si₄ structure type (space group *I*4/*m*, Pearson symbol *tI26*) was investigated by single crystal method using single crystal diffractometer XCALIBUR (MoK_{α}-radiation). Atomic and thermal displacement parameters are refined by SHELX-97.

The coordination polyhedra europium atoms in this structure -14- and 17- polyhedron. Ge atoms are invested in trigonal prism with three additional atoms, Na atoms are surrounded by 12 neighbor atoms in a distorted cuboctahedron form.

The density of states in the Fermi level indicates a metallic connection type found in the ternary phase.