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Abstract
The consistent scheme for obtaining quasiclassical (WKB) expansions

for solutions of the quasiangular equation in the quantum mechanical two-
Coulomb-centre problem is developed. In the framework of this scheme,
the quasiclassical angular Coulomb spheroidal wave functions for large dis-
tances between the fixed positive charges (nuclei) are constructed for the
under-barrier motion of the negative particle (electron). The quasiclassical
expression for the exchange interaction ∆E of potential curves at the points
of their quasicrossing is found.

1 Introduction

The bound state problem for the negative charged particle (electron or muon)
moving in a field of two positive charges Z1 and Z2 (the so-called Z1eZ2 problem)
is the crucial quantum mechanical problem having a rich history [1, 2]. This
problem plays the same fundamental role in solving various problems of molecular
physics as the hydrogen atom problem in atomic physics. In the atomic collision
theory, the solutions of the two-Coulomb-centre problem are used as a basis for
the three-body problem in the adiabatic representation [3]. Nowadays, a lot of
data obtained by solving these equations by means of numerical and asymptotic
methods for different limiting cases are available. Interesting results were obtained
for both the problem of the molecular hydrogen ion H+

2 (see, for instance, [2, 4] and
references therein) and the problem of two centres with strongly differing charges
[5, 6, 7, 8, 9]. This problem was also considered for the Dirac equation within the
asymptotic methods in [10, 11]. At the same time, in a series of papers the Z1eZ2

problem was studied at small R in the spaces of both reduced [12] and arbitrary
dimensions [13, 14].
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62 M. Hnatič et al.

In this article, we provide the combined approach to solve the quantum two-
Coulomb-centre Z1eZ2 problem. An important peculiarity of our approach is
the application of various methods for constructing the asymptotic expansions of
the radial and angular Coulomb sphreoidal wave function (CSWF) in different
areas of the electron motion. The perturbation theory can be used to determine
the local behaviour of the solutions of the Z1eZ2 problem near a certain nucleus.
However, the application of the standard perturbation theory leads to infinite sums
of complicated form (this is the well-known perturbation theory feature and for
the two-Coulomb-centre problem it was discussed in [15, 16]). Therefore, in order
to remove the mentioned deficiencies, it is worthwhile to use the slightly modified
perturbation theory [17] here.

We propose to employ the quasiclassical approach (Wentzel–Kramers–Brillouin
method) to construct the asymptotic expansions of the angular CSWF in the
internuclear region. This approach allows us to obtain analytic solutions, but for
this problem it is limited to asymptotically large internuclear distances R. These
distances should be so large that the quantum penetrability of the potential barrier
separating atomic particles should be much smaller than unity. A great number
of problems can be pointed out [18, 19, 20], whose solutions depend on this region
of internuclear distances.

The paper is organized as follows. In Sec. 2, we give the basic equations of the
Z1eZ2 problem in the spheroidal system of coordinates and present the CSWF for
the near a certain nucleus region of the electron motion in terms of the modified
perturbation theory [17]. In Sec. 3, the consistent scheme for obtaining WKB
expansions for solutions of the quasiangular equation in the Z1eZ2 problem is
elaborated. Using the Firsov surface integral method [21], in Sec. 4 we calculate the
first three terms of the asymptotic behaviour of the exchange interaction potential
of an ion with an atom for the general nonresonance case. In Sec. 5, the final
results are discussed.

2 Basic equations and the perturbation theory
results

The motion of the electron in the field of two fixed nuclei with charges Z1

and Z2 is described by the following Schrödinger equation:
(
−1

2
∆− Z1

r1
− Z2

r2

)
Ψ(�r,R) = E (R)Ψ (�r,R) , (1)

where r1 and r2 are the distances from the electron to nuclei 1 and 2, E(R) is
the electron energy and R is the distance between the nuclei. The Schrödinger
equation (1) is separable in the prolate spheroidal coordinates:

ξ = (r1 + r2)/R, η = (r1 − r2)/R, φ = arctan(y/x), (2)

ξ ∈ [1;∞) , η ∈ [−1; 1] , φ ∈ [0; 2π) ,
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where x, y, z are the Cartesian coordinates of electron (z-axis aligned with the
internuclear axis). If we replace the wave function Φ (�r,R) by the product function

Ψ(�r,R) =
U (ξ, R)√
ξ2 − 1

V (η,R)√
1− η2

e±imφ

√
2π

=
ψ (ξ, η, R)√

(ξ2 − 1)(1− η2)

e±imφ

√
2π

(3)

and use new variables

µ =
R

2
(ξ − 1) , µ ∈ [0,∞) , ν =

R

2
(1 + η) , ν ∈ [0, R] , (4)

we obtain the quasiradial and quasiangular equations for functions U(ξ, R) and
V (η,R)

U ′′(µ)−
[
γ2 − Z1 + Z2 + λξ/R

µ
− Z1 + Z2 − λξ/R

R+ µ
+

R2(m2 − 1)

4µ2(R+ µ)2

]
U(µ) = 0, (5)

V ′′(ν)−
[
γ2 − Z1 − Z2 − λη/R

ν
+

Z1 − Z2 + λη/R

R− ν
+

R2(m2 − 1)

4ν2(R− ν)2

]
V (ν) = 0, (6)

where γ = (−2E)
1/2.

These new functions satisfy the following boundary conditions:

U(1) = 0, U(ξ) −−−→
ξ→∞

0, V (±1) = 0.

Here λξ and λη are the separation constants depending on R, and m is the
modulus of the magnetic quantum number. The two one-dimensional equations (5)
and (6) are equivalent to the original Schrödinger equation provided the separation
constants are equal:

λξ = λη. (7)

When R is much larger than the size of electron shells centred on the left-hand
nucleus, the ratios µ/R and ν/R are small quantities in intra-atomic space. This
fact allow us to use the perturbation theory to equations (5) and (6) in intra-atomic
space to find the separation constants λξ, λη.

In order to find simple expansions in powers of 1/R of the wave function of a
hydrogen-like atom in the field of point charge, one can employ the modified scheme
of perturbation theory [17]. Hereby, within terms of order R−3 the function ψ of
formula (3) can be expressed in the form

ψpert(µ, ν) = CUpert(µ)V pert(ν), (8)

where

Upert = f (0)
n1

(µ) +

3∑
p=1

p∑
k=−p

c
(p)
n1+kf

(0)
n1+k(µ),

V pert = f (0)
n2

(ν) +
3∑

p=1

p∑
k=−p

c
(p)
n2+kf

(0)
n2+k(ν),



64 M. Hnatič et al.

f (0)
ni

(x) =

(
(ni +m)!

ni!(m!)2(2ni +m+ 1)

)1/2

(2γx)(m+1)/2e−γxF (−ni, m+ 1, 2γx),

and for p = 1, 2, 3 all the c
(p)
ni+k coefficients have been derived in terms of the

modified scheme of perturbation theory [17].
For the normalization constant C from the condition

∫
|Ψ|2dV = 1 one can

obtain

C(R) =
4γ1/2

R

{
2∑

i=1

[
〈ni|ρ−1

i |ni〉
(
1 + 2c(1)ni

+ 2c(2)ni
+ 2c(3)ni

)

+
1∑

k=−1

(
|c(1)ni+k|2 + 2c

(1)
ni+kc

(2)
ni+k

)
〈ni + k|ρ−1

i |ni + k〉
]

+
1

4γ2R2

2∑
i=1

〈ni|ρ1i |ni〉
(
1− 2c(1)ni

)
− 〈n1|ρ21|n1〉 − 〈n2|ρ22|n2〉

8γ3R3

}−1/2

. (9)

3 WKB solutions of the quasiangular equation
in inter-centre region

Solutions of equations (5), (6) at large R can be represented in a quite simple
and compact form using the WKB method. Let us find the quasiclassical asymp-
totic behaviour of the angular wave function VI(ν) centred on atom (e, Z1) in the
classically fobidden region. For this purpose, we rewrite the quasiangular equation
(6) in the form of the one-dimensional Schrödinger equation:

V ′′
I − q2I

�2
VI = 0 (10)

where qI =
√
2(Ueff − E) and the function Ueff plays a role of the effective

potential energy in the quasiangular equation:

Ueff (ν) = − Z̃1

ν
− Z̃2

R− ν
+

�2
(
m2 − 1

)
8ν2(1− ν/R)2

Z̃i = [±(Z1 − Z2)− λ/R] /2.

Here the Planck constant � is restored explicitly and the following notation
is introduced: νi (i = 1, 4) are the turning points, νm is the point where the
effective potential reaches a maximum. In the under-barrier region, the quantity
qI is real and coincides with the quasiangular momentum of a classical particle
within imaginary unit i, q2I (ν) > 0 at ν2 < ν < ν3.

Representing the solution of (10) in the form of the expansion in powers of �:

V quas
I = eS/�, S =

∞∑
k=−1

�kSk, (11)
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substituting (11) into (10) and equating to zero the coefficients of each power of �,
we arrive at the system of differential equations of the 1st order for the unknown
functions Sk(ν)

(
S′
−1

)2
= q2I ; (12)

2S′
−1S

′
0 + S′′

−1 = 0; (13)

2S′
−1S

′
k + S′′

k−1 +
k−1∑
j=0

S′
jS

′
k−j−1 = 0, k = 1, 2, . . . . (14)

As a solution of (12) we choose the function S−1 (ν) = −
∫ ν

ν2
qI(ν

′)dν′ cor-
responding to exponential damping of V quas in the under-barrier region. The
equation for S0 is solved in the closed species S0 = ln(C0/

√
q), and the solutions

of all the next equations of the recurrent system (14) are expressed by means of
quadratures

Sk =

∫
1

2q


S′′

k−1 +
k−1∑
j=0

S′
jS

′
k−j−1


 dν + Ck, Ck = const, k = 1, 2, . . . . (15)

For further consideration it is convenient to introduce two ranges of ν varia-
tion: 0 � ν � νm and ν2 � ν � ν3. In the first range the formulae given in Sec. 2
are valid, and we employed the quasiclassical approach to find the quasiangular
function V (ν) determining the behaviour of an electron in the under-barrier re-
gion ν2 < ν < ν3. It should be noted that where these ranges overlap, the results
obtained by the perturbation theory and by the quasiclassical approximation co-
incide. This allows us to find the integration constants Ck by means of matching
the quasiclassical solution V quas with asymptotic expansion of V pert (9) in powers
of 1/ν:

V quas
I (ν) −−−−−−−→

ν2�ν�νm

V pert
I (ν) (16)

For satisfaction of (16), it is necessary that the internuclear distance be much larger
than that at which the potential barrier in the quasiangular equation disappears,
i.e.

R � R0 =

[
2(Z̃1 + Z̃2) +

√
4Z̃2

1 + γ2(1−m2) +

√
4Z̃2

2 + γ2(1−m2)

]
/2γ2.

(17)
Therefore, the solution of the quasiangular equation (10) in the quasiclassical

approximation, which satisfies the boundary condition (16), is of the form (here-
inafter � = 1)

V quas
I =

C0√
qI

exp

[
−
∫ ν

ν2

qIdν
′ + S1 + S2

]
(18)

where the quasiclassical corrections S1 and S2 are determined by the formulae

S1 =− Z̃1

4γ3ν2

(
1 +

17Z̃1

6γ2ν

)
+

Z̃2

4γ3(R− ν)2

(
1 +

17Z̃2

6γ2(R− ν)

)
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+
m2 − 1

16γ3

(
1

ν3
+

1

ν2R
− 1

R(R− ν)2
− 1

(R− ν)3

)
+

Z̃1Z̃2

2γ5R3
ln

ν

R− ν

+
Z̃1Z̃2

4γ5R

(
3

(R− ν)2
− 3

ν2
+

1

R

[
1

R− ν
− 1

ν

])
+ C1, (19)

S2 =
Z̃1

4γ4ν3
+

Z̃2

4γ4(R− ν)3
+ C2, (20)

and expressions for the integration constants C0, C1, and C2 are too cumbersome
and not given here.

Thus, the obtained formula (18) determines the quasiclassical asymptotic be-
haviour of solutions of the quasiangular equation (10) when � → 0 and is valid in
the under-barrier region ν2 < ν < ν3.

The final expression for the wave function ΨI(�r,R) centred on the atom of
(e, Z1) has the form (3) where

ψI(µ, ν) = CI(R)Upert(µ)V quas
I (ν), (21)

and the normalization constant CI(R) is still given by formula (9).

4 Splitting of the potential curves
at the pseudocrossing points

In order to calculate the probabilities of charge transfer processes between a
hydrogen or hydrogen-like atom and bare nucleus, it is necessary to know the
exchange matrix element ∆(R) = ∆E(R)/2 between the states of the transferring
electron of atom and ion. In the case when the binding energies of an electron
in the atom (e, Z1) and ion (e, Z2) differ slightly, the calculation of the exchange
splitting ∆E(R) of the potential curves at the quasicrossing points can be carried
out using the Firsov surface integral [21]

∆E =

∮

S

(
Ψ∗

I
�∇ΨII −Ψ∗

II
�∇ΨI

)
· d�S. (22)

Here ΨI and ΨII are the electron wave functions of the quasimolecule (Z1, e, Z2),
which turns in the separated nuclei limit (R → ∞) into the wave function of the
hydrogen-like atom (e, Z1) and the wave function of the ion (e, Z2), respectively;
d�S = �ndS; S is the surface enclosing the half-space containing nuclei Z1; �n is the
surface normal to S.

As an integration surface in (22) we choose the paraboloid of revolution η =
const. Let us find the values of exchange splitting ∆E of the eZ1 and eZ2 potential
curves in close vicinity to the quasicrossing points, when the quasimomenta qI and
qII of the electron centred on the atom (e, Z1) and ion (e, Z2), respectively, are
approximately equal: qI ≈ qII . Then, substituting the wave function ΨI in the
form (3), (21) and a similar expression for ΨII into (22), we obtain the following
expression for the exchange splitting of the potential curves:
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∆E =
2γ2 (−1)

n2+n′
2 (2γR)

n2+n′
2+m+1

e−γR

[nn′ n2! (n2 +m)!n′
2! (n

′
2 +m)!]

1/2

{
1− A2 +A′

2

2γR
− A1

2γ2R

(
Z1

n
+

Z2

n′

)

− 1

2γR

[
A2

2 +A′2
2

4
+A2A

′
2 +

1−m2

2

]
+ c(1)n1

(
A2

2n
+

A′
2

2n′ − 2

)[
c(1)n1

+

+
1 + 2n1(n1 +m)/A1

4γR
− c

(1)
n2

A2n
(4T2 +m2 + 3) +

c
′(1)
n′
2

A′
2n

′ (4T
′
2 +m2 + 3)

]

+A1

[
|c(1)n2 |2
2n

+
|c′(1)n′

2
|2

2n′ − 〈n1|ρ1|n1〉
4γ2R2

(
A2

n
+

A′
2

n′

)]
+

(A2 +A′
2)

2

4γ2R2

+
A3

2 +A′3
2 − 24(T2 + T ′

2)− (m2 + 1)(A2 +A′
2)− 16(m2 + 2)

16γ2R2

− A1

4γ2R2

(
3T2 +m2 + 2

n
+

3T ′
2 +m2 + 2

n′

)
+

3T1 +m2 − 1

4γ2R2

+

(
Z1 − Z2

2γ2R

)2 (
A2 +A′

2 + 2 +
m2 − 1

2

[
A2

T2
+

A′
2

T ′
2

])

+
Z1 − Z2

4γ3R2
(4(T ′

2 − T2) + 〈n2|ρ2|n2〉 − 〈n′
2|ρ2′ |n′

2〉)
}
. (23)

Here Ai = 2ni+m+1, A′
i = 2n′

i+m+1, Ti = 2ni(ni+m+1)+m, T ′
i = 2n′

i(n
′
i+m+

1)+m, and expression for the c
′(1)
n′
2

can be obtained from the expansion coefficient

c
(1)
n2 , derived by means of the perturbation theory, putting Z1 ↔ Z2, n2 → n′

2. In
the resonance case ZeZ, formula (23) gives the difference between the energies of
gerade and ungerade states and coincides with the results of [22, 15, 26, 23, 24].
It should be noted also that the formulae for H+

2 in [1, 15] contain a mistake in
the terms of the order of R−2.

Addressing to the result for the splitting of the potential curves obtained pre-
viously in [15, 27] within the comparison equation method and given then in [1], it
should be noted that the pre-exponential factor in [15, 27] was derived incorrectly
because the distance between the potential curves was calculated at not the same
value of R but at the same value of parameter β = (Z2−Z1)/(−2E)1/2 = n′

2−n2.
The formulae obtained in these papers give the correct result only in the case of
equal charges when β is equal to zero. When using different parts of the asymp-
totic series, the same difference between the potential curves at the quasicrossing
points can be represented by various formulae of the form

∆E = Tδ(n2, n
′
2,m, p), (24)

where δ is determined by formula (4.36) from [1]. Komarov and Slavyanov [23]
proposed to determine T by differentiating the expression E = −(Z2−Z1)

2/(2β2)
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with respect to indices, which gives

TKS = 2
(Z2 − Z1)

2

(n′
2 − n2)3

. (25)

Power [15] criticized this expression and noted that it does not give a correct
result for the splitting in the limiting case Z1 = Z2. Thus, Power proposed to
differentiate the half-sum of the eZ1- and eZ2-energies with respect to indices:

TP =
∂E1

∂n2
+

∂E2

∂n′
2

. (26)

This result is presented in [1].
Ponomarev [25] noticed that the dependence of the β(E) on the energy should

be considered when differentiating the eZ1- and eZ2-energies. Following his ideas,
the following result was obtained in [6, 7]:

TPKS =
∂E1

∂n2√
1 + ∂β

∂E1

∂E1

∂n2

+

∂E2

∂n′
2√

1− ∂β
∂E2

∂E2

∂n′
2

. (27)

The numerical values of pre-exponential factor, given by these formulae, differ
from each other. The most consistent appears formula (27). One can easily show
that the expressions for the splitting of potential curves (24), (26) and (24), (27)
are different due to the terms of the order of O(R−2).

It is of interest to estimate the limits of applicability and practical accuracy of
the asymptotic formula (23) for ∆E by its comparison with the results of numerical
integration of a Z1eZ2 problem. In Table 1 we compare the exact numerical
values of ∆Enum [28] in the Z1eZ2 system (Z1 = 1, 4 ≤ Z2 ≤ 7) with the values
given by the Bogush ∆EB [16] (obtained within the comparison equation method
in terms of formula 25 and using specific, based on the substraction of energies
determination of ∆E), Komarov and Slavyanov ∆EKS [1] (obtained within the
comparison equation method in terms of formula 26) and our (23) formulae (Nlm
are spherical quantum numbers in the limit of the united atom (R = 0)). The value
of γ was calculated using the expressions obtained by means of the perturbation
theory, including the terms of the second order. As it is seen from the table, the
values of ∆E are quite close to the exact ones. The proximity of these results
convincingly demonstrates the usefulness of the WKB method developed here.

Table 1: Adiabatic energy splittings ∆E at quasicrossing points Rc in the system
(p, e, Z2)

Z2 (Nlm) – (N ′l′m′) Rc ∆E ∆EKS ∆Enum ∆EB

4 (4, 3, 0) – (3, 2, 0) 7.76 6.66(−2) 6.56(−2) 6.94(−2) −
5 (5, 4, 0) – (4, 3, 0) 12.92 4.07(−3) 6.09(−3) 4.25(−3) 4.16(−3)
6 (6, 5, 0) – (5, 4, 0) 21.4 2.40(−5) 3.37(−5) − 2.41(−5)
7 (7, 6, 0) – (6, 5, 0) 31.9 2.06(−8) 2.44(−8) − 2.14(−8)
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Note that the range of applicability and accuracy of asymptotic expansion
(23) for ∆E decrease when we substitute the expansion for γ to (23) and make
additional expansion in powers of 1/R. This can be explained by the expansion
of exponent e−γR into converging series which should be subsequently terminated
because the final expansion as a whole is asymptotic. Therefore, much better
results can be obtained by directly using formula (23) and substituting into it the
value of γ calculated by means of the perturbation theory.

5 Conclusions

The new approach to construction of the two-Coulomb-centre wave function
in the internuclear region at large distances between the centres is proposed. The
asymptotic expressions for the quasiradial and quasiangular functions obtained
here is used to calculate the matrix element of the one-electron exchange interac-
tion potential determining the process of one-electron charge transfer between a
hydrogen-like atom (ion) and bare nucleus. The comparison of ∆E (23) with the
results of exact numerical calculations [28] shows that the domain of applicability
of our asymptotic formula (formally valid under the condition (17)) is prolonged
up to values R > R0 even for small quantum numbers, n = 1, 2.

There are two ranges of distances between the two Coulomb centres where the
matrix element ∆(R) = ∆E/2 of the exchange interaction demonstrates different
behaviour depending on the variation of the internuclear distance R. Thus, in
the range R � 2n2/Z1 and Z1 = Z2 formula (23) for the exchange splitting ∆E
becomes the limiting expression [23] obtained in the framework of the comparison
equation method. In the range R0 < R < 2n2/Z1 (and also Z2 > Z1) the asymp-
totic theory [23] is inapplicable because the exchange splitting of energetic terms
(23) differs from the asymptotic result [23] by the value of the order of Z2/R. The
asymptotic theory [23] suggests the smallness of the Z2/R in comparison with
the electron binding energy; this requirement is not fulfilled in our case because
these values are of the same order. Meanwhile, the calculations show that the
proposed quasiclassical method describes the exchange splitting of the potential
curves ∆E(R) both for intermediate internuclear distances R0 < R < 2n2/Z1 and
in the asymptotic limit R � 2n2/Z1.

Acknowledgement. This work was supported by the VEGA Grant 1/0345/17
of the Ministry of Education, Science, Research and Sport of the Slovak Republic.
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