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WKB METHOD FOR THE DIRAC EQUATION WITH A

SCALAR–VECTOR COUPLING

V. Yu. Lazur,∗ O. K. Reity,∗ and V. V. Rubish∗

We outline a recursive method for obtaining WKB expansions of solutions of the Dirac equation in an

external centrally symmetric field with a scalar–vector Lorentz structure of the interaction potentials. We

obtain semiclassical formulas for radial functions in the classically allowed and forbidden regions and find

conditions for matching them in passing through the turning points. We generalize the Bohr–Sommerfeld

quantization rule to the relativistic case where a spin-1/2 particle interacts simultaneously with a scalar

and an electrostatic external field. We obtain a general expression in the semiclassical approximation for

the width of quasistationary levels, which was earlier known only for barrier-type electrostatic potentials

(the Gamow formula). We show that the obtained quantization rule exactly produces the energy spectrum

for Coulomb- and oscillatory-type potentials. We use an example of the funnel potential to demonstrate

that the proposed version of the WKB method not only extends the possibilities for studying the spectrum

of energies and wave functions analytically but also ensures an appropriate accuracy of calculations even

for states with nr � 1.

Keywords: Dirac equation, Lorentz structure of interaction potential, WKB method, effective potential,
quantization condition, level width, potential models

1. Introduction

The relativistic hydrogen-like (HL) atoms and heavy–light quark–antiquark (Qq̄) systems, which are
their QCD analogues, are ideal objects for investigations and permit verifying quantum theory results very
precisely experimentally. The Dirac equation plays a distinctive role in the development of the relativistic
theory of bound states. It follows from this equation that electrons (positrons) and quarks (antiquarks)
have spin and spin angular momentum. This equation also permits taking the spin–orbit and spin–spin
interactions in HL atoms and Qq̄ systems into account and thus predicting the fine and hyperfine structure
of energy equations. The Dirac equation with radial corrections [1], [2] proposed by Schwinger permits
taking the multiple interactions between a particle and its own and external fields into account.

The effective Dirac equation method plays an important role in the modern relativistic theory of bound
states. In this method, it is possible to pass consistently from the two-particle theory to the external field
approximation [3]. As follows from the results in [3], [4], this possibility is realized and has practical advan-
tages in the case of HL atoms and Qq̄ systems. But in the majority of problems, where the external field
concept [4] is physically justified, attempts to find exact solutions of the Dirac equation with more or less
realistic interaction potentials still encounter insurmountable difficulties. Either numerical or asymptotic
methods are most often used to calculate the solutions. Precisely the possibility of obtaining an asymptotic
solution in many theoretical and applied problems permits analyzing the problem most completely. There-
fore, it hardly needs saying how important it is to create and develop asymptotic methods for solving the
Dirac equation.
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The semiclassical Wentzel–Kramers–Brillouin (WKB) approximation is one of the basic and most
universal asymptotic methods for solving problems in quantum mechanics and mathematical physics for
which the exact solutions are unknown or too cumbersome (see, e.g., [5]–[9]). In contrast to perturbation
theory, the interaction need not be very small in this approximation, and its applicability domain is hence
wider, which permits analyzing qualitative laws for the behavior and properties of quantum mechanical
systems. In particular, the ordinary WKB method [5]–[9] (for the Schrödinger equation) was successfully
used in the case of the hydrogen atom in constant external electric and magnetic fields (see, e.g., [5], [10] and
the references therein), the case of several model potentials [11], the quantum mechanical problem of two
Coulomb centers [12], etc. Discussions of the modern state of this method, including its different versions
and applications in the nonrelativistic theory of atoms and molecules, quantum chemistry, problems in
collision theory, etc., can be found in [13], [14].

The WKB approximations were successfully used in different problems in nonrelativistic physics, which
also stimulated generalizations of this method to relativistic systems described by the Dirac equation.
Historically, the procedure for passing from the Dirac equation in an external field to the limit of the
Hamiltonian–Jacobi equation for a classical relativistic particle was first considered by Pauli [15] and was
then studied in more detail by several authors [16]. Maslov solved the problem of constructing semiclassical
solutions of the Dirac equation in the general multidimensional case in the framework of the canonical
operator method [17].

The first systematic studies of the theory of the semiclassical approximation for the Dirac equation
in a strong external field (E0 > 2mec

2, where E0 is the electron binding energy) were closely related
to the problem of deep levels [18]–[21], which plays a fundamental role in quantum electrodynamics (the
critical nuclear charge Zc and the spontaneous creation of positrons in a vacuum for Z > Zc; see [22]–[25]).
In early papers [18]–[21], applying the WKB method to the relativistic Coulomb problem with a charge
Z > 137 was based on squaring the Dirac equation (the effective potential (EP) method [22], [23]). This
approach is very close to the usual scheme for obtaining the WKB expansions [5]–[9] and works well in the
subcritical region Z ≤ Zc, E0 ≥ −mec

2 (i.e., in the region where the spontaneous creation of positrons is
still impossible). But the substitution χ(r) = (mc2 + E − V )−1/2F (r) used in this method for states with
energies E < −mec

2 becomes singular at the point r = rg such that V (rg) = mc2 + E (the attraction
potential V (r) < 0, 0 < r < ∞, is considered). The usual semiclassical formulas [5]–[9] thus become
meaningless near the point r = rg because the phase integrals diverge. Different authors [18]–[21] overcame
this difficulty differently, sometimes using rather witty approaches [19], [21], but the final complete solution
was given only in [26], [27]. It turned out that this difficulty has a purely formal character because the
original Dirac equation is not singular at the point r = rg. Moreover, no singularity appears at all at
r = rg if the WKB approximation is applied not to the second-order equation for χ(r) but directly to the
original Dirac system for the radial wave functions F and G. The semiclassical formulas thus obtained for
the solutions of the Dirac equation in a strong external field find numerous applications in the theory of
heavy and superheavy atoms [28].

But in recent years, the behavior of quantum systems of fermions present simultaneously in an elec-
tromagnetic (vector) and a scalar external field attracted considerable interest. Such systems have several
unusual features, which differ significantly from those exhibited by fermions in the presence of only an
electromagnetic field. For example, in contrast to the electromagnetic field, the action of a scalar field is
the same on particles as on antiparticles. The picture of energy levels of fermions interacting simultaneously
with a scalar and a vector (for example, Coulomb) field can hence significantly differ from the usual picture
of the spectrum in the relativistic Coulomb problem.

Additional stimuli for studying similar problems currently appear in elementary particle physics. We
mean the construction models of composite mesons (QCD analogues of HL atoms) consisting, for example,
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of a single light antiquark q̄ and a single heavy quark Q (Qq̄-mesons; see [29], [30]). If the Dirac equation is
considered in the infinitely heavy quark Q limit as an equation for a single light antiquark q̄, then several
important aspects of the theory of Qq̄ systems (like in the picture of HL atoms) such as the relativistic
dynamics of a light antiquark q̄ in the external field of a heavy quark Q, the Lorentz structure of the
long-range (confining) part of the Qq̄ interaction, the fine structure of the spectrum of composite mesons,
the influence of a spontaneous violation of the chiral symmetry on the spectrum, etc., can be studied. As is
known in QCD [29], [30], the asymptotic freedom at small distances implies that the main contribution to
the Qq̄ interaction is given by the usual Coulomb potential of the single-gluon exchange, V (r) = −4αV /3r,
where αV is the strong interaction constant. As the distance increases, the main contribution is given by
the scalar confining interaction (confinement) whose “exact” form has not yet been found. The lattice
calculations [31] based on the first QCD principles distinguish the linear (scalar) confinement at large
distances, S(r) = σr, where σ is the string tension. Of course, all other interactions are also important if
a finer description of the meson properties is required, but they are small interactions compared with the
scalar potential ensuring the confinement of quarks inside mesons (see [31] for details).

Finally, we note that the Dirac equation with a mixed (scalar–vector) Lorentz structure of interac-
tion potentials is also interesting from the standpoint of its possible applications in the theory of hadron
atoms [32]. It is not improbable in principle that the same equation can also be used to describe effects in
solid state physics (for example, in two-band semiconductors [33]).

Taking into account that interest in such studies will undoubtedly increase in the future, it seems useful
to generalize the techniques proposed by Maslov [17] and developed in [26], [27] for constructing the WKB
solutions of the Dirac equation in an external electromagnetic field to the case of the spinor equation with
a mixed scalar–vector coupling. It can be expected that this approach will also be fruitful in describing the
behavior of quantum systems of fermions in external fields with a mixed Lorentz structure of the interaction
potentials, for which the exact solutions of the Dirac equation either do not exist or are too cumbersome.

This paper is organized as follows. In Sec. 2, we use the well-known techniques of left and right
eigenvectors of the corresponding homogeneous system to construct a recursive scheme for obtaining the
WKB expansions of the solutions of the Dirac equation in an external centrally symmetric field with a
mixed scalar–vector Lorentz structure of the interaction potentials. In Sec. 3, we use this scheme to obtain
semiclassical formulas for the radial functions F and G in the classically allowed and forbidden regions;
we also find conditions for matching them in passing through the turning points. In the same section, we
generalize the Bohr–Sommerfeld quantization rule to the relativistic case where a spin-1/2 particle interacts
with scalar and electrostatic external fields simultaneously. We obtain a general expression for the width
of quasistationary levels in the semiclassical approximation, which was earlier known only for barrier-type
electrostatic potentials. In Sec. 4, we show that the obtained quantization rule exactly reproduces the
energy spectrum for some model (Coulomb-type and oscillatory) potentials with a scalar–vector structure.
We use an example of the funnel potential to show that this version of the WKB method not only extends
the capabilities of analytic investigations of the spectrum of energies and wave functions but also ensures a
fully reasonable accuracy of calculations even for states with the radial quantum number nr � 1.

2. Recursive scheme for constructing the WKB expansions

The problem of describing the motion of a relativistic spin-1/2 particle in an effective field consisting of
a static scalar and an external electric field can be reduced in our statement to solving the Dirac equation
with a mixed scalar–vector coupling (c = � = 1)[

αp̂+ β
(
m+ S(r)

)
+ V (r)

]
Ψ = EΨ, (1)

where α = (α1, α2, α3) and β are the standard Dirac matrices, p̂ = −i∇r is the momentum operator, E
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and m are the total energy and the rest mass of a particle, S(r) is the scalar Lorentz potential, and the
potential V (r) is the zero (time) component of the four-vector Aµ: A = 0, V (r) = −eA0(r), e > 0.

We obtain semiclassical approximation formulas for Dirac equation (1) only in the class of potentials
with a central symmetry: S(r) = S(r), V (r) = V (r). We therefore seek the wave function Ψ of stationary
states (in the standard representation) as

Ψ = r−1

(
F (r)ΩjlM (n)

iG(r)Ωjl′M (n)

)
, (2)

where ΩjlM is the spherical spinor [2], j andM are the respective total angular momentum and its projection
(j = l ± 1/2), and l is the orbital angular momentum (l + l′ = 2j), n = r/r. Separating the angular
components of the vector n in Eq. (1), we obtain a system of first-order ordinary differential equations for
the radial wave functions F and G:

dF

dr
+
k̃

r
F − 1

�

[(
E − V (r)

)
+
(
m+ S(r)

)]
G = 0,

dG

dr
− k̃

r
G+

1
�

[(
E − V (r)

) − (m+ S(r))]F = 0. (3)

Here, we explicitly reconstruct the dependence on the Planck constant � and use the new notation

k̃ = �k, k =

{ −(l+ 1) for j = l + 1/2 (l = 0, 1, . . . ),

l for j = l − 1/2 (l = 1, 2, . . . ) (4)

such that |k| = j + 1/2 = 1, 2, . . . . The symbol k, along with �j, �M , and the energy E, is an integral of
motion for a Dirac particle in an arbitrary central field.

Eliminating one of the unknown radial functions, we can reduce system (3) to a second-order equation,
but it is more convenient to deal with the system itself in the construction of formal asymptotic solutions.
We write it in the matrix form (the prime denotes the derivative with respect to r)

χ′ =
1
�
Dχ, χ =

(
F

G

)
, D =

( −k̃/r m+ S(r) + E − V (r)

m+ S(r) − E + V (r) k̃/r

)
. (5)

This system contains a natural small parameter �, and the problem is to integrate this system asymptotically
as � → 0.

We present an algorithm for constructing formal asymptotic solutions. Following the standard scheme
in the asymptotic theory of systems of linear differential equations [34], we seek the solution of system (5)
as an asymptotic series in powers of �:

χ(r) = exp
{∫ r

y(r′) dr′
} ∞∑

n=0

�
nϕ(n)(r), (6)

y(r) = �
−1y−1(r) + y0(r) + �y1(r) + . . . , ϕ(n)(r) =

(
ϕ

(n)
F (r)

ϕ
(n)
G (r)

)
, (7)

where the upper and lower components ϕ(n)
F and ϕ(n)

G of the vector ϕ(n) correspond to the radial functions
F and G. Substituting expansion (6) in (5) and equating the coefficients of equal powers of � to zero, we
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obtain an infinite system of recursive equations for the unknown scalar yn(r) and vector ϕ(n)(r) functions:

(D − y−1I)ϕ(0) = 0, (8)

(D − y−1I)ϕ(n+1) = ϕ(n)′ +
n∑

k=0

yn−kϕ
(k), n = 0, 1, 2, . . . , (9)

where 0 and I are the zero and unit 2×2 matrices. It follows from Eq. (8) that y−1(r) must be an eigenvalue
and ϕ(0) ≡ ϕi must be one of the (right) eigenvectors of the matrix D(r). The eigenvalues y−1 ≡ λi are the
roots of the characteristic equation det(D − y−1I) = 0:

y−1 ≡ λi = ±q, q =

√(
m+ S(r)

)2 − (E − V (r)
)2 + (k

r

)2

. (10)

Then the corresponding right eigenvectors ϕi written in component form are equal to

ϕi = A1

(
m+ S + E − V

λi + kr−1

)
= A2

(
λi − kr−1

m+ S − E + V

)
. (11)

Hereafter, � = c = 1, the subscript i takes one of the two values ± corresponding to the two values of the
function λi(r) = ±q(r), and A1(r) and A2(r) are the normalization factors, which we fix by agreement.

Because D(r) is not a symmetric matrix, in addition to the right eigenvectors, we must also introduce
the left eigenvectors ϕ̌i, which are determined by the conditions

ϕ̌i(D − λiI) = 0, (12)

ϕ̌i = B1(m+ S − E + V, λi + kr−1) = B2(λi − kr−1,m+ S + E − V ). (13)

We must also note that ϕ̌i does not coincide with ϕT
i ; the left and right eigenvectors of the matrix D(r)

are orthogonal:

(ϕ̌i, ϕj) =
2∑

α=1

(ϕ̌i)α(ϕj)α = const δij . (14)

As usual, δij is the Kronecker symbol.
We use Eq. (9) with n = 0 to find the function y0(r). We set ϕ(0) = ϕi in this equation and multiply

both sides from the left by the row vector ϕ̌i. Then, in view of (12), the left-hand side of the final relation
is zero, and we obtain an equation for y0(r), which implies

y0(r) = − (ϕ̌i, ϕ
′
i)

(ϕ̌i, ϕi)
. (15)

As we saw above (see (11), (13)), the eigenvectors ϕi and ϕ̌i are determined up to arbitrary factors
A1,2 and B1,2. This arbitrariness can be removed by imposing the natural condition

(ϕ̌i, ϕ
′
i) = (ϕ̌

′
i, ϕi) (16)

on ϕi and ϕ̌i. In this case, the integral in (6) is calculated in closed form as∫ r

y0(r′) dr′ = log
[
(ϕ̌i, ϕi)−1/2

]
. (17)
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Then the desired semiclassical solution of system (5) becomes

χi = (ϕ̌i, ϕi)−1/2 exp
{∫ r

λi(r′) dr′
}
ϕi. (18)

Continuing these constructions, we can successively find all the other terms y1, y2, . . . and ϕ(1), ϕ(2), . . .

in expansion (6). But the formulas for them turn out to be very cumbersome. Hence, only the leading
term (18) in expansion (6), corresponding to the well-known expression ψ ∼ p−1/2 exp

{
i
∫ r
p(r′) dr′

}
in the

usual nonrelativistic semiclassical theory [5], is customarily used in applications. Indeed, an essential point
is that formal expansion (6) in powers of � generally does not converge but is the so-called asymptotic series
whose first several terms give a good approximation to the exact solution only if the expansion parameter
� is sufficiently small.

Finally, it remains to show that condition (16) can always be satisfied by appropriately choosing the
normalization factors A1,2 and B1,2 in formulas (11) and (13). Substituting (11) and (13) in (16) leads to
the equation

A1B
′
1 −A′

1B1

A1B1
= − (m+ S)V

′ + (E − V )S′

q(q ± kr−1)
. (19)

This and representation (18) give the expression for the leading term of the asymptotic approximation of
the radial functions χi in the subbarrier region:

χ± =
[
2q
(
q ± k

r

)]−1/2

×

× exp
{
±
∫ r

q dr +
1
2

∫ r (m+ S)V ′ + (E − V )S′

q(q ± kr−1)
dr

}(
m+ S + E − V

kr−1 ± q

)
. (20)

If we start from the second expressions for the eigenvectors ϕi and ϕ̌i (with the normalization factors A2

and B2 in formulas (11) and (13)), then similar constructions lead to the WKB representation

χ± =
[
2q
(
q ∓ k

r

)]−1/2

×

× exp
{
±
∫ r

q dr − 1
2

∫ r (m+ S)V ′ + (E − V )S′

q(q ∓ kr−1)
dr

}( ±q − kr−1

m+ S − E + V

)
. (21)

Before we discuss the meaning of the obtained formulas, we note that y−1(r) and y0(r) are real-valued
functions in the classically forbidden regions q(r) > 0. The plus and minus signs in (20) and (21) correspond
to solutions exponentially increasing and decreasing as r increases. We must use formula (20) for k < 0
and formula (21) for k > 0 for the decreasing solution (the minus sign), and the situation is opposite
for the increasing solution. A simple and often efficient method for choosing a convenient expression of
the solutions is based on the requirement that the quantity Q± = q ± k/r be positive in the classically
forbidden region. Under the opposite choice of the solution, an indeterminacy of the form 0/0 can appear
in expressions for F and G at the point r = rg, where Q± = 0. This fictitious singularity makes the direct
use of formulas (20) and (21) impossible in a neighborhood of rg. Therefore, the procedure for obtaining
semiclassical formulas for F and G free from singularities requires evaluating these indeterminacies at the
point rg, which in turn requires additional, rather cumbersome calculations.

We now consider applications of this version of the WKB method to specific physical problems. The
semiclassical approximation is typically used in the case of a discrete spectrum. Somewhat less often, it is
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used to calculate the wave functions of the continuous spectrum and in the scattering theory [5]–[9], [13].
But in many areas of physics, we encounter potentials with a barrier for which the quasistationary states
(resonances) with the complex energy E = Er − iΓ/2 appear instead of discrete levels. In the next section,
we consider this problem in the semiclassical approximation, which permits finding general expressions for
the resonance position Er and its width Γ, and these expressions hold for arbitrary barrier-type potentials
V (r) and S(r).

3. The WKB method for subbarrier resonances

In this section, we briefly show how the WKB method can be used to solve one important problem
related to the study of decaying (quasistationary) states of quantum objects [35]. As is known, such
states are introduced by analogy with the usual stationary states of the discrete part of the spectrum of
eigenvalues of the Dirac Hamiltonian Ĥ . They are associated with the poles of the stationary Green’s
function G(E) = (E − Ĥ + iη)−1 on the complex plane of the energy E [35].

But the introduction of complex energy levels violated one of the main postulates in quantum theory
according to which the spectrum of eigenvalues of any Hermitian operator must be real and the corre-
sponding eigenfunctions must be normalized. The analytic continuations of the stationary solutions to
the complex plane of energies hence have a principally new meaning. They give the simplest and most
convenient approximation of nonstationary solutions in the main domain of the variable range, i.e., in the
domain where the exact wave functions Ψ̃(r, t) come closest to the functions of stationary bound states,
Ψ̃(r, t) ≈ Ψn(r) exp(−iEnt), ImEn  ReEn.

The problem of obtaining a more precise determination of the applicability domain of the original
representations in the theory of quasistationary states and improving the calculation methods has been
the main problem in these studies for a long time. This problem also remains relevant now, especially in
applications to specific systems. As examples, we can here mention the fundamental problems of atomic
and nuclear physics such as the ionization of atomic systems under the action of an external electromagnetic
field [10], [36], decay of radioactive nuclei or unstable particles [37], reaction of electron separation in low-
energy collisions of atomic particles [38], etc. At the same time, the logic for developing the theory of
decaying states obviously dictates that several qualitatively new problems must be stated similarly to those
previously solved only in the nonrelativistic approximation. The natural question arises of how different
physical factors (such as relativistic effects and spin–orbit interaction, external fields with a mixed Lorentz
structure of the interaction potentials, adiabatically slow variations in the parameters, etc.) influence
the properties of decaying quasistationary states. The results obtained by solving similar problems are
interesting for the quantum mechanics of a non-Abelian particle in an external Yang–Mills gauge field [39],
for the study of the vacuum shell of supercritical atoms [18]–[24], for the description of effects of the
spontaneous creation of positrons under slow collisions of heavy nuclei [23]–[28], and also from the standpoint
of the study of solutions of the Dirac equation in strong external fields.

3.1. Structure of WKB solutions. We return to WKB asymptotic approximations (20) and (21)
and see that the function q(r) involved there coincides with the radial momentum of a classical relativistic

particle (up to the factor i =
√−1 ). If we write this function as q =

√
2m(U − E ) , then expression (10)

is associated with the effective energy E = (E2 −m2)/(2m) and the EP for the radial motion,

U(r, E) =
E

m
V + S +

S2 − V 2

2m
+

k2

2mr2
. (22)

Further analysis significantly depends on the form of the EP U(r, E) and the position of the turning
points (the zeros of q(r) on the semiaxis 0 < r < ∞). To describe the phenomena related to the creation
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Fig. 1. Form of the barrier-type effective potential U(r,E); r0, r1, and r2 are roots of quasimomen-

tum (10).

and decay of quasistationary states, we distinguish the class of potentials V (r) and S(r) for which the EP
U(r, E) has the form of a well, separated from the exterior region by a potential barrier. In what follows,
we assume that V (r) and S(r) do not have singularities for 0 < r < ∞ and satisfy the conditions (at the
limit point r = 0)

lim r1+δV (r) = 0, lim r1+δS(r) = 0 as r → 0 with δ > 0. (23)

For potentials exhibiting a power-law behavior at small distances,

V (r) ∼ r−β1 , S(r) ∼ r−β2 , βi ≤ 1, r → 0. (24)

These conditions eliminate the “fall to the center” [2], [23]. For scalar potentials S(r) more singular than
r−1, the term with the centrifugal potential in expression (22) does not play any essential role, and the
asymptotic approximation of the solutions F and G as r → 0 is independent of k. If V (r) and S(r) satisfy
conditions (23), then the EP U(r, E) has a second-order pole at r = 0. The qualitative behavior of the
barrier-type EP U(r, E) and the position of the turning points rj for E < Um (Um is the top of the potential
barrier) are shown in Fig. 1.

In the semiclassical approximation, the wave function of a quasistationary state has different asymptotic
forms in the following regions: (I) the potential well r0 < r < r1, (II) the subbarrier region r1 < r < r2,
and (III) the classically allowed region r > r2 with a quasidiscrete energy spectrum [5]. The boundaries
between the different regions (i.e., the turning points rj , j = 0, 1, 2) are here the roots of the equation
E = U(r, E). We omit the calculation details and write the smooth terms of the asymptotic approximation
of the solutions of Dirac system (3) in each of these three regions.

I. In the classically allowed region r0 < r < r1, the asymptotic approximation of the WKB radial
functions F and G are oscillatory:

F (r) = C±
1

[
E − V +m+ S

p(r)

]1/2

cosΘ1,

G(r) = C±
1 sgnk

[
E − V −m− S

p(r)

]1/2

cosΘ2.

(25)
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In this case, according to (10),

p(r) =
[(
E − V (r)

)2 − (m+ S(r))2 − (k
r

)2]1/2

(26)

is the semiclassical momentum for the radial motion of a particle, sgn k is the sign of k, and the phases Θ1

and Θ2 are determined by the relations

Θ1(r) =
∫ r

r1

(
p+

kw

pr

)
dr +

π

4
, Θ2(r) =

∫ r

r1

(
p+

kw̃

pr

)
dr +

π

4
, (27)

w =
1
2

(
V ′ − S′

m+ S + E − V
− 1
r

)
, w̃ =

1
2

(
V ′ + S′

m+ S − E + V
+
1
r

)
. (28)

In formulas (25) and in all the WKB representations of solutions given below, the normalization constants
Cj related to the states with k > 0 and k < 0 are denoted by the superscripts + and −.

Under the natural assumption that the level width Γ is sufficiently small, the wave function of a
quasistationary state can be normalized to a single particle localized in the region of potential well I
(see [5]–[7] for details) as ∫ r1

r0

(F 2 +G2) dr = 1.

In this case, the fast oscillating functions cos2Θ1(r) and cos2Θ2(r) must be replaced with their average
value 1/2; we then obtain the relation for the normalization constants C±

1 in (25):

|C±
1 | =

{∫ r1

r0

E − V (r)
p(r)

dr

}−1/2

=
(
2
T

)1/2

. (29)

The quantity T in this expression coincides with the period of radial oscillations of a classical relativistic
particle with the energyE in potential well I. We note that the relationE−V (r1) =

[(
m+S(r1)

)2+k2/r21
]1/2

holds at the turning point r = r1; therefore, the quantity E − V is positive in region I.

II. In the subbarrier region r1 < r < r2, the quantity p takes purely imaginary values, p = iq,
p2(r) < 0, and q(r) and y0(r) are real functions. Oscillating-type WKB solution (25) is then continued here
by a solution exponentially decreasing as the distance increases in the classically forbidden region II. For
states with k > 0 (sufficiently far from the turning points r1 and r2), we have

χ =

(
F

G

)
=

C+
2√
qQ
exp
{
−
∫ r

r2

[
q +

(m+ S)V ′ + (E − V )S′

2qQ

]
dr

}( −Q
m+ S − E + V

)
. (30)

The same solution for the states with k < 0 can be written as

χ =
C−

2√
qQ
exp
{
−
∫ r

r2

[
q − (m+ S)V

′ + (E − V )S′

2qQ

]
dr

}(
m+ S + E − V

−Q

)
. (31)

We have Q = q + |k|r−1 in the last two formulas, and the function q(r) is given by formula (10).
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III. In the “exterior” classically allowed region r > r2, a quasistationary state is associated with the
divergent wave

χ =
C+

3√
pP
exp
{∫ r

r2

[
ip+

(m+ S)V ′ + (E − V )S′

2pP

]
dr

}(
iP

m+ S − E + V

)
. (32)

This expression must be used to study the states with k > 0; in this case, P = p+ i|k|r−1, and the radial
momentum p(r) is again positive. A similar expression for the states with k < 0 has the form

χ =
C−

3√
pP
exp
{∫ r

r2

[
ip− (m+ S)V

′ + (E − V )S′

2pP

]
dr

}(
m+ S + E − V

iP

)
. (33)

3.2. Formulas relating the WKB solutions. The semiclassical formulas obtained in Sec. 3.1
approximate the desired solution of Dirac system (3) for all r except in small neighborhoods of the turning
points rj , j = 0, 1, 2. The unified solution of system (3) on the entire interval of r can be obtained by
passing around the turning points rj (in the plane of the complex variable r) and establishing relations
between the coefficients C±

j of the semiclassical solutions (25)–(33) constructed in different regions. A
rigorous mathematical consideration of the relations between the WKB solutions generally requires taking
into account that the second-order pole at the point r = 0 and at the turning point r0, as well as at the
turning points r0 and r1 (a narrow well and deep subbarrier resonances with an energy near the bottom
of the potential well), can approach each other and the effective potential energy U(r, E) can have points
of inflection. In the problems of quasistationary states with large quantum numbers, additional difficulties
always arise when the approach (towards each other) of the turning points r1 and r2 (a narrow barrier and
the Rydberg states of atoms with energies close to the top of the barrier, Er → Um) and the drift of the
turning points r1 and r2 into the complex plane (complex potentials and overbarrier resonances situated
over the classical ionization threshold, Er > Um) must be taken into account. But we do not dwell on this
class of more complicated, but simultaneously more interesting, problems; the study of these problems is
beyond the scope of this paper and needs special investigations. We here consider only the most typical
case where all three turning points rj , j = 0, 1, 2, are strongly separated and can be analyzed independently
of each other. More precisely, we assume that the conditions

∣∣ ∫ rj+1

rj
p(r) dr

∣∣ � 1, j = 0, 1, are satisfied.
(As a rule, precisely this situation occurs in the physical problems considered in the next section.) We
can then use the standard methods [5]–[8] to bypass these points and match the WKB solutions. One of
these methods, proposed by Zwaan and Stueckelberg and later developed in many papers, is based on the
Stokes phenomenon: the coefficients C±

j of the asymptotic representation of the solution in a neighborhood
of the turning point rj jump in passing through the Stokes line Re

∫ r

rj
p(r′) dr′ = 0. It is also based on the

requirement that the exact solution be unique while going around the turning point along a closed contour.
Another possible method is to reduce Dirac system (3) near the turning point rj , j = 1, 2, to a

second-order equation (a nonrelativistic Schrödinger-type equation) with a potential linearly depending on
r − rj , whose solution is described by the so-called Airy function. This exact solution is then matched
with the semiclassical solution on both sides of the turning point rj . Because the details in both methods
are described sufficiently fully in numerous sources in the literature, we here present only the scheme for
solving the problem of matching the WKB expansions and, as the concluding result, write the final formulas
relating the coefficients C±

j in the semiclassical solutions of the Dirac equation for the problem with three
isolated turning points considered in this paper:

1. The usual formulas [5]–[8] relating the WKB solution to the left and to the right of the turn-
ing point rj remain valid if in the asymptotic formulas of form (30), (31) and (32), (33), we
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consider only the behavior of the leading factors p−1/2 exp
{± ∫ r

rj
p dr

}
, singular as r → rj , in a

neighborhood of this turning point.

2. The formulas thus constructed, relating the coefficients C±
j of semiclassical solutions (25)–(33) in

regions I–III, have the form

C±
2 = −iC±

3 = ∓ C±
1

2

[
E − V (r1) +m+ S(r1)

|k|r−1
1

]±1/2

×

× exp
{
−
∫ r2

r1

[
q ± (m+ S)V

′ + (E − V )S′

2qQ

]
dr

}
. (34)

Although obtained semiclassical formulas (25)–(34) have a very complicated analytic structure, using them
in specific problems does not create any principal difficulties, because all the quantities contained in F and
G are determined in terms of one-dimensional quadratures.

3.3. Equations for the energy of quasistationary levels. As already noted in Sec. 3.1, to find
the quasistationary states, it is usually required that the solution of the Dirac equation at infinity be a
divergent wave given by (2), (32), (33); this corresponds to a particle eventually escaping from a decaying
system [5]. The condition that there is no converging component in the asymptotic expression for the wave
function of the quasistationary states permits choosing complex energy eigenvalues E = Er − iΓ/2, where
Er is the resonance position and Γ is the resonance width corresponding to the quasistationary state. The
quantity Γ is positive and determines the probability of decay per unit time: W = Γ/�.

We derive the condition determining the position of the quasistationary levels in the semiclassical
case. Neglecting the barrier penetrability in the region r1 < r < r2 and assuming that only exponentially
decreasing WKB solutions remain to the left and to the right of the potential well r0 < r < r1, we obtain
the quantization condition

∫ r1

r0

(
p+

kw

pr

)
dr =

(
nr +

1
2

)
π, nr = 0, 1, 2, . . . , (35)

from (25), where nr is the radial quantum number. This equation determines the real part of the energy level
Er. It differs from the usual semiclassical Bohr–Sommerfeld quantization condition [5] in the relativistic
expression for the momentum p(r) and by including a correction ∼ w(r) taking the spin–orbit interaction
into account and resulting in splitting the levels with different signs of the quantum number k.

As follows from expression (28) for w(r), the difference V ′ − S′, where the additive contributions due
to the scalar (−S′) and vector (V ′) versions of the interaction have opposite signs, is completely responsible
for the fine splitting of the levels. Of course, this effect is based on dependence of the sign of the spin–orbit
interaction on the Lorentz structure of the interaction potentials. At the same time, this can be treated
as a reflection of the spins of particles in the vector field being oriented in the direction [Fvecp], where
Fvec = −n dV/dr is the force acting on the particle, p is its momentum, and n is the unit vector aligned
with r. In the scalar field, the spins of particles are oriented in the direction −[Fscp], where Fsc = −n dS/dr.
This reasoning clearly explains that the level j = 3/2, l = 1 lies below the level j = 1/2, l = 1 in the scalar
field and the situation is opposite in the vector field.

In what follows (Sec. 4), we see that in the more general case where a particle interacts with a scalar
and a vector field simultaneously, the value and the character of the spin–orbit splitting of the levels depends
significantly on the relative role of these interactions. Thus, the combined information about the position
and the fine splitting of the levels can already reveal the roles of S(r) and V (r) separately.

Because quantization condition (35) takes only the spin–orbit correction into account and neglects the
correction due to the spin–spin coupling, it is necessary to assume the following. Of course, if we acted
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formally, then we could use the recursive technique developed in the preceding section to obtain a more
precise equation for the level energy Er, which together with the spin–orbit correction also takes the spin–
spin interaction into account. We recall that to include this correction in (35), we needed to calculate the
functions y1(r) and ϕ(1)(r), i.e., terms of the order of � in semiclassical expansion (6). But this refinement
of quantization condition (35) is hardly meaningful because taking the spin–spin interaction into account
would exceed the accuracy of semiclassical calculations (in contrast to the spin–orbit interaction). In what
follows (Sec. 4), we illustrate this with an example of the Coulomb and oscillatory potentials; for these
potentials, quantization formula (35) gives the energy spectrum exactly.

We now calculate the level width Γ = 2 ImE. For this, we multiply the first equation in system (3) by
G∗ and the second equation by F (after passing to the complex conjugatesG∗, F ∗, and E∗ = Er+iΓ/2), sum
the obtained relations, and integrate them over the variable r from 0 to∞. The integral of G∗F ′+G∗′

F =
(G∗F )′ over r can be easily calculated in the general form; we must remember in this case that the product
G∗F is zero at the lower integration limit (at r = 0) and only the upper integration limit (r =∞) contributes
nontrivially. The majority of the obtained terms are real in the final relation; taking the imaginary parts
everywhere, we readily obtain the desired result

Γ = −2 Im[G∗(r)F (r)
]∣∣

r→∞. (36)

This result for the resonance width Γ can also be obtained by directly calculating the particle flux to
infinity normalized to a single particle localized in the region r0 < r < r1. We now use asymptotic
representations (32) and (33) of the radial functions F and G to the right of the turning point r2 and
formulas (34) relating the normalization constants C±

j in regions I–III and thus obtain the expression for
the leading term of the WKB approximation of the level width:

Γ =
Γ0

T
exp
{
−2
∫ r2

r1

q(r) dr
}
, (37)

where

Γ0 = exp
{
2k
∫ r2

r1

w

rq
dr

}
(38)

and the period T of radial oscillations is given in (29).
We note that obtained semiclassical formula (37) is a relativistic generalization of the well-known

Gamow formula for the width of a quasistationary level. A nontrivial point in this generalization is that the
expression for the oscillation period T is different and an additional factor Γ0 appears in expression (37)
before the exponential (this factor depends only on the sign of the quantum number k and originates from
the spin–orbit coupling in the mixture of the scalar S(r) and vector V (r) interaction potentials). In the
nonrelativistic case, this factor is practically equal to unity, and formula (37) has a clear interpretation.
Namely, 1/T is the number of impacts per unit time of a particle (localized inside region I) on the interior
wall (r = r1) of the potential barrier r1 < r < r2, and the exponential factor exp

{−2 ∫ r2

r1
q dr

}
corresponds

to the probability that the particle penetrates this barrier at each impact.
Formulas (35) and (37) are the main result in our study: they determine the spectrum of quasistationary

states of a spinor particle (s = 1/2) in a barrier-type EP U(r, E).
To avoid misunderstanding, we stress the following here: when we speak about a barrier-type po-

tential (or, equivalently, a potential with a barrier), we mean not the original potentials V (r) and S(r)
directly contained in system (3) of Dirac equations but the energy-dependent EP U(r, E) generated by
the original potentials (according to expression (22)). Somewhat more generally (than in definition (22)),
the EP appears in squaring the Dirac equation, i.e., in reducing system of equations (3) to a (single)
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mathematically equivalent (Schrödinger-type) second-order equation; moreover, small spin corrections con-
taining the function w(r) are added to expression (22) for U(r, E). In the nonrelativistic case, we have
U(r, E) ≈ S(r) + V (r); but if the level binding energy Eb = m − Er is comparable to the rest energy m,
then the difference between the potentials U and S + V becomes very essential.

We conclude this section by remarking that if the scalar field is switched off (S = 0), then the semi-
classical formulas obtained here for Er and Γ agree completely with the well-known results [26], [27] for the
same characteristics of resonances in the purely vector field V (r) = −eA0(r).

Before we pass to specific applications of the method considered above, we first test quantization
rule (35) in the case of model potentials where all calculations can be performed analytically.

4. Comparison with exact solutions

We consider several examples of the potentials V (r) and S(r) for which semiclassical quantization
condition (35) gives the exact values of all energy levels including the ground state.

Example 1. We begin with one of the simplest problems: to calculate the spectrum of relativistic
bound states in the mixture of a scalar S(r) and a vector V (r) attractive Coulomb-type potential,

V (r) = −ξ
r
, S(r) = −ξ

′

r
, (39)

where ξ and ξ′ are the electrostatic and scalar coupling constants. This problem is often used as a model
approximation in the relativistic description of the spectra of “exotic” HL systems, for example, lepton
atoms for which the interaction between their components is realized as an exchange of quanta of fields of
two types [40], [41]. Namely, if the Coulomb interaction V (r) = −ξ/r is caused by an exchange of a virtual
photon (an electromagnetic field quantum), then the lepton–nucleus interaction S(r) = −ξ′/r responsible
for the scalar coupling can be caused by an exchange of a virtual neutral spin-0 particle. The main
candidate for this role is the scalar σ-meson, whose existence is confirmed by serious theoretical arguments
(see, e.g., [42] and the references therein). Moreover, it was reported quite recently [43] that an anomalously
wide scalar resonance in cascades of nonlepton decays of heavy mesons (D, B, and J/ψ) was observed by
two groups of experimenters. We also note that the discovered scalar meson has a comparatively large
mass (Mσ = 390MeV [43], [44]). Hence, the scalar potential S(r) corresponding to the exchange of such
a particle is indeed a short-range (Yukawa-type) potential. Nevertheless, as noted in [40] and [41], in the
framework of a comparatively simple model with a scalar–vector version of interaction such as model (39)
considered here, many interesting characteristics of the energy spectrum of lepton atoms can already be
found, and these characteristics are preserved when a more realistic model is considered (see [40], [41] for
further physical details of model (39)).

We use the notation

λ = (m2 − E2)1/2, γ = (k2 − ξ2 + ξ′2)1/2 (40)

to rewrite expressions (26) and (28) for p(r) and w(r) as

p(r) =
λ

r

√
(r − r0)(r1 − r), w(r) = − m+ E

2
[
ξ − ξ′ + (m+ E)r

] , (41)

where the turning points r0 and r1 are determined by the formulas

r0,1 =
1
λ2

[
ξE + ξ′m∓

√
(ξE + ξ′m)2 − λ2γ2

]
. (42)
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Quantization condition (35) in this notation becomes

λ

∫ r1

r0

√
(r − r0)(r1 − r)

dr

r
− k(m+ E)

2λ

∫ r1

r0

dr[
ξ − ξ′ + (m+ E)r

]√
(r − r0)(r1 − r)

=

=
(
nr +

1
2

)
π, nr = 0, 1, 2, . . . . (43)

It is convenient to let I1 and I2 denote the respective first and second integrals in this formula. Each of
these integrals can be calculated in three steps. First, we change the integration variable as r =

[
(r1 −

r0)x + (r1 + r0)
]
/2 to reduce the quadratic forms under the radical signs in I1 and I2 to diagonal form.

Second, we substitute y =
[
(1− x)/(1 + x)

]1/2 to reduce the integrands in I1 and I2 to rational form:

I1 = λ
(r1 − r0)2

r0

∫ +∞

−∞

y2

(1 + y2)2(y2 + a2)
dy, (44)

I2 = −k
2

√
m+ E
m− E

· 1√[
ξ − ξ′ + r1(m+ E)

][
ξ − ξ′ + r0(m+ E)

] ∫ +∞

−∞

dy

y2 + 1
, (45)

where a2 = r1/r0. These integrals can be calculated using the residue theorem. For this, we must close
the integration path in both integrals (44) and (45) by a semicircle of infinitely large radius in the upper
half-plane of the complex variable y and take into account that the integrand in (44) has poles at the points
y = ia and y = i; moreover, the last pole is a second-order pole. In turn, the integrand in (45) has a unique
simple pole at the point y = i in the upper half-plane. Calculating the integrals in (44) and (45) over the
residues of the integrands, we finally obtain

π

2

{
λr0

(√
r1
r0

− 1
)2

−
√
m+ E
m− E

k√
(ξ − ξ′)2 + (ξ − ξ′)(m+ E)(r0 + r1) + r0r1(m+ E)2

}
=

=
(
nr +

1
2

)
π.

Simplifying this expression, we obtain the equation for the energy eigenvalues:

ξE + ξ′m√
m2 − E2

− γ − 1
2
sgnk = nr +

1
2
. (46)

We solve this equation for E and obtain

E = m

{ −ξξ′
ξ2 + (N + γ)2

∓
[(

ξξ′

ξ2 + (N + γ)2

)2

− ξ′2 − (N + γ)2
ξ2 + (N + γ)2

]1/2}
, (47)

where N = nr + (1 + sgnk)/2 = n − |k|, k = ∓(j + 1/2) for the states with j = l ± 1/2, and n = 1, 2, . . .
is the principal quantum number. This formula coincides (for all values of nr and k) with the well-known
exact expression (see p. 186 in [40]) for the spectrum of spinor equation (1) with scalar and electrostatic
Coulomb-type potentials (39), although according to the semiclassical method used to derive this formula,
it can formally be used only for nr � 1.

We briefly analyze the results following from (47) in some most important cases.
A. We first consider the situation where the external electrostatic field is switched off (ξ = 0) and

expression (47) for the discrete energy levels then becomes

E± = ±m
√
1− ξ′2

(n− |k|+ γ)2 , (48)
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where we now have γ =
√
k2 + ξ′2 . This formula shows that the Dirac equation with a scalar coupling

for S(r) = −ξ′/r has two branches of the massive fermion energy spectrum symmetrically situated (with
respect to the zero level E = 0) corresponding to the two possible values of the square root in (48). More
precisely, the positive sign of the root in formula (48) corresponds to the energy spectrum of a particle,
and the negative sign corresponds to the energy spectrum of an antiparticle (with the minus sign). We can
thus see that considered spinor equation (1) with a scalar coupling simultaneously describes the behavior
of particles and antiparticles. In this case, the energy levels in each branch of the spectrum are ordered in
succession, starting from the ground state: 1S1/2, 2P3/2, 2S1/2 and 2P1/2, 3S1/2, and so on.

We also note that the energy gap between the spectra of particles and antiparticles decreases as the
scalar coupling constant ξ′ increases, and in the limit as ξ′ → ∞, the energy levels tend asymptotically to
zero (E± → ±0) but never reach it. Therefore, neither the creation of pairs nor the collision of levels of
particles and antiparticles occur here, i.e., the Dirac vacuum is stable in the case of the scalar coupling.

B. We now consider what happens when the external scalar field is switched off. We set ξ′ = 0 in (47)
and obtain the well-known Sommerfeld formula [2] for the fine structure of the levels of an HL atom,

Enj = m

[
1 +

ξ2(
n− |k|+ γ)2

]−1/2

, (49)

where γ =
√
k2 − ξ2 , ξ = Zα = Z/137, Z is the nuclear charge, and α is the fine structure constant. The

second branch of the energy spectrum corresponding to the negative sign of the root in (47) is neglected
because it gives extra solutions of original equation (46) in the special case ξ′ = 0 under study: for E < 0
and ξ′ = 0, the left-hand side of (46) is negative, and the right-hand side is positive. This mathematically
explains the well-known fact that the discrete spectrum of the Dirac equation with a vector coupling does
not contain bound states for antiparticles under the given condition V (r) < 0, although there is the effective
attraction U(r, E) ∼ −V 2/(2m) at small distances, which holds for both particles and antiparticles. As
follows from (49), each level of the discrete spectrum in the Coulomb field of the nuclear charge Z arises only
from the upper continuum and decreases monotonically to zero as Z increases. For ξ = |k|, the parameter γ
in (49) has a root singularity, which gives complex values of the energy Enj when (49) is further continued
to the domain ξ > |k| = j + 1/2 (a detailed discussion of problems related to this singularity is contained
in [18], [23], [24], [25], [40], [41]). As is known, if the finite dimensions of the nucleus are taken into account,
then this anomaly disappears, and the bound states of an electron in the strong field of the Coulomb
potential (cut off at small distances, r ≤ 10−12 cm) exist up to Zc, where Zc is the value of the charge Z at
which the energy of the considered state attains the boundary m of the lower (positron) continuum. For
the first four levels 1S1/2, 2P1/2, 2S1/2, and 2P3/2, calculations give the respective values of the critical
charge Zc 172, 185, 245, and 255 [24]. It is essential that the electron and positron states are not mixed
for Z < Zc (1S1/2); the Dirac equation with a vector coupling does not have “positron levels” that would
arise from the lower continuum. Therefore, the spectrum of the Dirac equation in the field of the nucleus
is completely determined for Z < Zc. Obviously, the phenomena arising for Z > Zc have an essentially
multiparticle character and must be described in the framework of the field theory formalism [25], [45].

Based on the above discussion, we conclude that because the Coulomb field of the nucleus consid-
ered here acts on particles and antiparticles differently (attracts electrons and repels positrons), the energy
spectra of particles (electrons) and antiparticles (positrons) are nonsymmetric. This is precisely the prin-
cipal difference between this case and the preceding case of interactions of massive fermions with external
Coulomb-type scalar field (39); the influence of the latter leads only to variations in the mass (which is
the same for both types of Fermi particles, i.e., electrons and positrons). This means that in contrast to
the electrostatic field, the scalar field acts equally on both particles and their antiparticles (and this is the
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reason that the discrete spectra of electrons and positrons are symmetric for the Dirac equation with a
scalar coupling).

C. We consider another important particular case realized for ξ = ξ′. In this situation, γ = |k|,
n− |k|+ γ = n, and expression (47) becomes noticeably simpler:

E± = m

[ −ξ2
ξ2 + n2

± n2

ξ2 + n2

]
. (50)

In this expression, the spectrum branch E− = −m corresponding to the lower (minus) sign must be omitted
because this branch leads to a violation of relation (46) in our particular case ξ = ξ′. The branch of the
spectrum remaining in (50) then gives the particle energy

E+ = m

[
1− 2ξ2

ξ2 + n2

]
. (51)

This implies that the energy gap ∆ = m+E+ between the bound state and the lower continuum decreases
as the coupling constant ξ increases. Nevertheless, in the limit as ξ → ∞, the energy levels do not enter
the lower continuum but only asymptotically approach its boundary and never attain the value E = −m.
The energy of the lower level n = 1 becomes zero for the particular value ξ = 1.

We now consider the problem of whether the semiclassical approximation can be applied to compound
Coulomb-type field (39) studied here. To obtain a qualitative estimate, we transform expression (41) for
the semiclassical momentum p(r) as

p(r) =
γ

r

√(
r

r0
− 1
)(
1− r

r1

)
, (52)

where γ is again determined by expression (40). The applicability condition for the semiclassical approach
then becomes

d

dr

(
1
p

)
= γ−1

(
r

rmin
− 1
)[(

r

r0
− 1
)(
1− r

r1

)]−3/2

 1 (53)

and is better satisfied for larger γ. Here, rmin = 2/(r−1
0 + r−1

1 ) is the point at which effective potential (22)
attains its minimum. Under the condition ξ′ > ξ (which corresponds to the case of a strong scalar field), the
solution of Dirac system (3) for potentials (39) under study has a semiclassical form in the entire domain
of r except in narrow intervals immediately adjacent to the turning points r0 and r1. But if ξ � ξ′, then
the situation is similar to the case of a strong Coulomb field in the theory of supercritical atoms [26], [27].

For γ � 1, the centrifugal potential γ2/(2mr2) plays an important role (dominating as r → 0) in the
effective potential (22) in the region r < r1. In this region, the momentum p(r) is similar to γ/r, and
the ratio of two terms in the integrand in (35) has the order of kγ−2rw(r) ∼ (ξ′ − ξ)−1. Because the
semiclassical approximation for the wave function has the order of magnitude of (ξ′ − ξ)−2 for ξ′ � ξ ∼ 1
(see [18]), the spin–orbit terms must be preserved (as corrections of the order of (ξ′ − ξ)−1).

Example 2. We find the energy spectrum of a relativistic particle of mass m and spin 1/2 in the
mixture of scalar and vector potentials of the oscillatory form,

S(r) = V (r) = ω
r2

4
, ω > 0. (54)

The solution of the spectral problem for the Dirac equation with such potentials is particularly interesting
from the theoretical standpoint in the spectroscopy of hadrons [31], [46].
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It is clear that the model of the interquark Qq̄ interaction composed only of oscillatory-type poten-
tials (54) does not take the Coulomb attraction at small distances corresponding to the interaction of free
quarks into account. But for large r, the effective string tension responsible for the confinement of quarks
inside hadrons is taken into account in this model. Moreover, the Dirac equation can be solved exactly for
this simple model of the Qq̄ interaction, which is particularly interesting in itself.

For potentials (54), we obtain

p(r) =
β√
2 r

[
(r2 − r20)(r

2
1 − r2)

]1/2
, w(r) = − 1

2r
, (55)

β =
√
ω(E +m) , and the turning points r0 and r1 are determined by the formulas

r0,1 =
1√
ω

[
E −m∓

√
(E −m)2 − 2k2ω2β−2

]1/2

. (56)

We replace the momentum p(r) and the function w(r) in (35) with their explicit expressions (55) and
integrate over the new variable x = r2. As a result of the above transformations, quantization rule (35)
becomes

β

23/2

∫ x1

x0

√
(x− x0)(x1 − x)

dx

x
− k

23/2β

∫ x1

x0

dx

x
√
(x − x0)(x1 − x)

=
(
nr +

1
2

)
π, (57)

where nr = 0, 1, 2, . . . and the new boundaries of the integration domain are given by the formulas x0 = r20
and x1 = r21 .

The quantization integrals can be calculated using the residue theory as in the case of the integrals
I1 and I2 in formula (43). Because all technical details necessary for these calculations have already been
described in detail, we here present only the final result

β(E −m)
23/2ω

− |k|
2

− 1
4
sgnk = nr +

1
2
. (58)

If we introduce the notation K = |k|+(1+sgn k)/2 and replace the parameter β with its explicit expression,
then the last relation can be rewritten as

(E −m)
√
2(E +m) − (4nr + 2K+ 1)

√
ω = 0. (59)

We solve this equation for E and obtain the energy eigenvalues as functions of the quantum numbers nr

and K:

Enr ,K =
2m+ 8 · 22/3m2A−1/3 + 21/3A1/3

6
, (60)

where we introduce the notation

A = −B +
√
B2 − 1024m6 , B = 32m3 − 27ω(1 + 2K+ 4nr)2.

The applicability condition for semiclassical expression (60) is nr � 1. As we show in the appendix, in
the exact solution of the Dirac equation with scalar S(r) and vector V (r) oscillatory-type potentials (54),
the energy of stationary states is given by formula (60) for all values of nr.

As follows from (60), each of the states is characterized by two quantum numbers nr and K. The
energy depends only on the combination 2nr + K = Λ of these quantum numbers, and Λ = 1, 2, 3, . . . can
hence be called the principal quantum number. Each value of Λ ≥ 3 can be realized in several combinations
of the values of nr and K, and energy levels (60) with a value of Λ ≥ 3 are hence degenerate.
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Example 3. We derive the energy spectrum of the Dirac equation for a massless fermion in an external
scalar field with a combined “funnel”-type potential

S(r) = −ξ
′

r
+ σr, σ > 0, V (r) = 0. (61)

The specific character of the considered model with such a scalar interaction is manifested, in particular,
in the spontaneously violated chiral symmetry of an originally symmetric system. The point is that for
a massless particle (m = 0), Dirac equation (1) with a purely vector coupling (for S(r) = 0) is invariant
under the global transformation of the wave function Ψ → exp(iα′γ5)Ψ, Ψ̃ → Ψ̃ exp(iα′γ5). The chiral
symmetry of the spectrum is manifested in the degeneration of all the states with respect to their parity;
more precisely, the masses of the states 0+ and 0− (or 1+ and 1−) are the same.

The invariance under global transformations does not exhaust all the symmetry properties of the
massless Dirac equation. It is easy to verify that system of equations (3) in the chiral limit (m = 0) is
invariant under more general transformations of the form [29]

E → E, k → −k, S → −S, V → V, G(r)→ −F (r), F (r)→ G(r), (62)

which are not related to a geometric space–time symmetry. This implies that the spectrum is degenerate
with respect to the sign of the Dirac quantum number k in the absence of an external scalar field (S(r) = 0),
i.e., the spectrum depends only on the total momentum j and not on its components (the orbital l and spin
s = 1/2 momenta) separately (the chiral degeneration).

A straightforward verification easily shows that the massless Dirac equation is also invariant under the
charge conjugation transformations

E → −E, k → −k, S → S, V → −V, G(r)↔ F (r). (63)

We see that these symmetry transformations contrast with preceding transformations (62) because they
couple states with positive and negative values of the energy. In particular, in the absence of an external
electrostatic field (the purely scalar interaction), there are pairs of states with a given value of |En| but with
opposite signs of the energy En = ±|En| itself. This fact permits restricting our consideration to studying
only one (positive) branch of the spectrum En > 0 in detail, which simplifies the problem of finding the
energy eigenvalues En for Dirac system (3) with scalar interaction version (61). This last problem can be
solved either numerically or in the semiclassical approximation, which can formally be applied to higher
excited states but (as we show below) gives results with a good accuracy even for the ground and first
excited states.

For potential (61) and a particle with zero mass, expressions (26) and (28) for p(r) and w(r) become

p(r) =
σ

r

[
(r2 − r20)(r

2
1 − r2)

]1/2
, w(r) = −1

2

(
1

r − P+
+

1
r − P−

)
, (64)

where

P± =
1
2σ
(−E ±

√
E2 + 4ξ′σ

)
, γ =

√
k2 + ξ′2 , (65)

and the position of the turning points r0 and r1 is determined by the relation

r0,1 =
1√
2σ

√
E2 + 2ξ′σ ∓

√
(E2 + 2ξ′σ)2 − 4σ2γ2 . (66)
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In this notation, the semiclassical quantization condition can be written as

σ

∫ r1

r0

√
(r2 − r20)(r21 − r2)

dr

r
−

− k

2σ

∑
i=±

∫ r1

r0

dr

(r − Pi)
√
(r2 − r20)(r

2
1 − r2)

=
(
nr +

1
2

)
π, nr = 0, 1, 2, . . . . (67)

We can use appropriate changes of integration variables to calculate the first integral in the left hand-
side of (67) over the residues of the corresponding path integral. The second integral in (67) (under the
summation sign) can be expressed in terms of the complete elliptic integrals of the first K(ν) and the third
Π(α2, ν) kind [47],

K(ν) =
∫ π/2

0

dϕ√
1− ν2 sin2 ϕ

, Π(α2, ν) =
∫ π/2

0

dϕ

(1− α2 sin2 ϕ)
√
1− ν2 sin2 ϕ

. (68)

As a result of these calculations, semiclassical quantization condition (67) becomes the transcendental
equation

E2 + 2σ(ξ′ − γ)
4σ

− k

σ(r0 + r1)π

[
2r0

(
Π(α2

+, ν)
r20 − P 2

+

+
Π(α2

−, ν)
r20 − P 2−

)
−

−
(

1
r0 + P+

+
1

r0 + P−

)
K(ν)

]
= nr +

1
2
, (69)

where we use the new notation

ν =

√
E2 + 2σ(ξ′ − γ)
E2 + 2σ(ξ′ + γ)

, α2
± = ν

P± + r0
P± − r0

.

Equation (69) can be solved explicitly in the two limit cases σ → 0 and σ → ∞. In what follows,
we only consider the practically important case of weak coupling, where for small values of the parameter
σ (namely, for σ � 0.2GeV2), the condition E2

nr ,k � 2σγ is exactly satisfied for all possible values of
the energy levels Enr ,k. In this case, the above formulas become noticeably simpler, and Eq. (69) for the
semiclassical spectrum takes the sufficiently simple final form

E2
nr ,k = 4σ

[
nr +

1
2
+
γ − ξ′

2
+

k

4γ
+

σk

2E2
nr,k

R(Enr ,k)
]
+O

((
σγ

E2
nr,k

)2)
, (70)

where σ > 0 and the notation

R(Enr ,k) =
1
π

(
0.38 + log

E2
nr ,k

σγ

)
is used. In the case where potential (61) dose not contain the Coulomb-type term (i.e., for ξ′ = 0), Eq. (70)
exactly coincides with the semiclassical quantization condition proposed in [30] for the energy levels in the
scalar well U(r, E) generated by the linear confining interaction S(r) = σr, V (r) = 0.

Equation (70) for Enr ,k can be easily solved numerically. Comparing the results of such calculations
for Enr ,k with the exact values [29] obtained by numerically integrating Dirac system (3), we see that
semiclassical equation (70) ensures a fully appropriate accuracy for the energy spectrum: even for lower
states with nr ∼ 1, the error in calculating Enr ,k does not exceed 5% and rapidly decreases as nr increases.
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Along with directly solving transcendental equations (69) and (70) numerically, it is expedient, after
several simplifications or approximations, to construct approximate analytic expressions for the energy
levels, which would rather easily permit tracing the dependence of Enr,k on the quantum numbers nr and k
and the parameters of model interaction (61). For this, we note that R(Enr ,k) ∼= 0.6 to 0.8 for lower states
with the radial quantum number nr ∼ 1. But as nr increases, this quantity rapidly attains unity, and, as
numerical calculations show, there exists a sufficiently large region of the energy spectrum (see Table 1)
where we can set R(Enr ,k) = 1. In this approximation, Eq. (70) has the analytic solution

εnr,k =
Enr ,k√
σ
= ±

√
N ′ − ξ′ +

[
(N ′ − ξ′)2 + 2k

]1/2
, (71)

where N ′ = 2nr + 1 + γ + k/(2γ). The positive sign of the root corresponds to the energy of a particle,
and the negative sign corresponds to the energy of the antiparticle taken with the minus sign. We make
several remarks concerning formula (70) and some singularities of the relativistic spectrum of model (61)
under study.

Table 1

States ξ′ = 0 ξ′ = 0.4

nr k εnr,k[29] εWKB
nr,k ε

(as)
nr,k EWKB

nr,k , GeV E
(as)
nr,k, GeV

0 −1 1.61944 1.62292 1.4142 0.55809
1 −1 2.60263 2.60381 2.5887 1.02972 1.04765
2 −1 3.29118 3.29182 3.2886 1.33819 1.35699
3 −1 3.85541 3.85581 3.8555 1.58633 1.60356

0 −2 2.14652 2.14721 2.0009 0.82198 0.72702
1 −2 2.95197 2.95230 2.9208 1.18994 1.18375
2 −2 3.57353 3.57371 3.5616 1.46502 1.46751
3 −2 4.09947 4.09961 4.0941 1.69492 1.69967

0 −3 2.56927 2.56951 2.4495 1.01854 0.95639
1 −3 3.26852 3.26871 3.2287 1.33151 1.31723

0 −4 2.93218 2.93231 2.8284 1.18253 1.15227

0 1 2.29403 2.29251 2.3178 0.93348 0.92051
1 1 3.03103 3.03038 3.0359 1.25659 1.23879
2 1 3.62598 3.62557 3.6265 1.51411 1.49669

0 2 2.70440 2.70391 2.7443 1.09944 1.10954
1 2 3.35376 3.35350 3.3693 1.38451 1.38364

0 3 3.05967 3.05589 3.1021 1.24973 1.26591

0 4 3.40866 3.36945 3.4183 1.38513 1.40086

Eigenvalues Enr,k and εnr,k of the massless Dirac equation with scalar interaction (61)

for two values of the Coulomb parameter ξ′: εnr,k is the result of numerical calcula-

tions [29], εWKB
nr ,k and EWKB

nr,k are the results of solving transcendental equation (69) nu-

merically, ε
(as)
nr ,k and E

(as)
nr,k are asymptotic approximations of (70), and |σ| = 0.18GeV2.

1. The dependence Enr,k(σ) ∝ σ1/2 already follows from the scaling argument; the change r → µr in
system of equations (3) with the mass m = 0 and combined potential (61) gives Enr,k =

√
σ εnr,k under an

appropriate choice of the scale factor µ
(
r → r/

√
σ
)
.

2. The massless Dirac equation in external scalar field (61) with arbitrary ξ′ and σ �= 0 has only
a discrete spectrum of energy levels, which is easily explained. The EP U(r, E) at small distances in
model (61) contains the prevailing term γ2/r2 corresponding to the repulsion and eliminating the “fall to
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the center” for each value of the parameter ξ′. On the other hand, at large distances (where the energy
spectrum is just formed), the EP U(r, E) contains the dominating relativistic term S2/(2m) leading to
the quadratic confinement (σr)2/(2m) (independently of the sign of the parameter σ). Therefore, the
EP U(r, E) in model (20) always (for both positive and negative values of σ and ξ′) has the form of an
oscillatory potential well. This is the essential distinction from the nonrelativistic potential model in which
the effective potential in the radial Schrödinger equation has a barrier for negative values of σ, and the
quasistationary states with complex energy hence appear instead of discrete levels.

3. The spectrum of the eigenvalues Enr,k of massless equation (1) with a scalar interaction of the
linear form S(r) = σr (V (r) ≡ 0) was calculated with a high accuracy in [29] by directly integrating this
equation numerically. Semiclassical expression (70) is compared with the exact values of εnr,k obtained
in [29] and with the results of solving transcendental equation (69) by a computer implementation of the
minimization method. This comparison is shown in Table 1 for two values of the Coulomb parameter ξ′:
ξ′ = 0 and ξ′ = 0.4. We see that the applicability domain of semiclassical asymptotic approximation (70),
which formally holds under the quantization condition E2

nr ,k � 2σγ (for excited states with nr � 1), can
be “extended” up to the conventional string tension σ ∼= 0.18GeV2 even for the ground state (nr = 0). This
shows that asymptotic approximations of the semiclassical type can be useful in the qualitative analysis of
the spectrum of original equation (1).

4. Numerical calculations of Enr ,k using transcendental equation (69) show that the general character-
istics of the spectrum depend weakly on the value and even on the sign of the parameter σ if |σ| � 0.18GeV2.
But this assertion does not hold for the fine structure of P levels. For example, the P1/2 level lies above
the P3/2 level for σ > 0 and below the P3/2 level for σ < 0.

Appendix

We obtain the exact solutions and the energy spectrum of Dirac equation (1) in external centrally
symmetric fields determined by scalar S(r) and vector V (r) oscillatory-type potentials (54). We eliminate
the function G(r) from system (3) and obtain the second-order equation for F (r)

d2F (r)
dr2

+
[
(E +m)

(
E −m− ωr2

2

)
− k(k + 1)

r2

]
F (r) = 0. (A.1)

According to the character of the asymptotic behavior of the radial functions F (r) and G(r) for large and
small r, we seek the solution of Eq. (A.1) in the form

F (r) = e−βr2/23/2
rKf(ρ), (A.2)

where ρ = βr2/
√
2 and the parameters β and K are respectively determined in (55) and (59). Substituting

this expression in (A.1) gives the equation for the function f(ρ):

ρf ′′(ρ) + (4α− ρ)f ′(ρ)−
[
2α− β(E −m)

23/2ω

]
f(ρ) = 0, (A.3)

where α = (2K + 1)/8. The solution of this equation, which is finite for ρ = 0, can be expressed (up to a
constant factor C) in terms of the degenerate hypergeometric function F (a, b; z) as

f(ρ) = CF

(
2α− β(E −m)

23/2ω
, 4α; ρ

)
. (A.4)
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For the hypergeometric function F (a, b; ρ) in the right-hand side of (A.4) to reduce to a polynomial,
the parameter a must be a nonpositive integer, which leads to Eq. (59) for determining the discrete energy
levels.

The solution for G(r) is given by the formula

G(r) =
1

m+ E

(
dF (r)
dr

+
k

r
F (r)

)
, (A.5)

where the expression for F (r) obtained above and the recursive relations for the degenerate hypergeometric
functions [47] are used. The overall normalization coefficient C, which remains undetermined in F (r) and
G(r), can be obtained from the condition

∫∞
0 (F

2 +G2) dr = 1.
In conclusion, the final expressions for the radial wave functions of the discrete spectrum are

F (r) = Ce−βr2/23/2
rKF

(
−nr,

2K + 1
2

;
β√
2
r2
)
, (A.6)

G(r) = C
23/2β

(2K + 1)(m+ EnrK)
e−βr2/23/2

rK+1 ×

×
[
nrF

(
1− nr,

2K + 3
2

;
β√
3
r2
)
+
2K + 1
4

F

(
−nr,

2K + 1
2

;
β√
2
r2
)]
, (A.7)

where the normalization coefficient is

C =
β(2K+1)/4

2−1+(2K+1)/8Γ((2K + 1)/2)

√
Γ((2K + 1)/2 + nr)

(
Enr ,K +m

)
nr! (3Enr ,K +m)

.

The exact solutions and the energy spectrum of the Dirac equation with oscillatory potential (54) were
recently studied in [48], where only the states with k < 0, K = |k|, were considered. In this particular case,
our expressions (60), (A.6), and (A.7) give the results obtained in [48].
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