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Introduction

The problem of simulation of stochastic process has been a matter of active
research in recent decades. It has become an integral part of research, development
and practical application across many fields of study. That is why one of the actual
problems is to build a mathematical model of stochastic process and study its
properties. Because of the powerful possibilities of computer techniques, the
problems of numerical simulations have become especially important and allow us to
predict the behavior of a random process.

There are various simulation methods of stochastic processes and fields. Some
of them can be found in [OGO 96, ERM 82, CRE 93, KOZ 07a]. Note that in most
publications dealing with simulation of stochastic processes, the question of accuracy
and reliability is not studied.

In this book, the methods of simulation of stochastic processes and fields with
given accuracy and reliability are considered. Namely, models are found that
approximate stochastic processes and fields in different functional spaces. This
means that at first we construct the model and then use some adequacy tests to verify
it.

In most books and papers that are devoted to the simulation of stochastic
processes, the modeling methods of exactly Gaussian processes and fields are
studied. It is known that there is a need to simulate the processes that are equal to the
sum of various random factors, in which effects of each other are independent.
According to the central limit theorem, such processes are close to Gaussian ones.
Hence, the problem of simulation of Gaussian stochastic processes and fields is a hot
topic in simulation theory.

Let us mention that in this book only centered random processes and fields are
considered, since simulation of determinate function can be made without any
difficulties.
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Note that all results in this book are applicable for Gaussian process.

Chapter 1 deals with the space of sub-Gaussian random variables and subclasses
of this space containing strictly sub-Gaussian random variables. Different
characteristics of these random variables are considered: sub-Gaussian standard,
functional moments, etc. Special attention is devoted to inequalities estimating “tails”
of the distribution of a random variable, or a sum of a random variable in the some
functional spaces. These assertions are applied in investigation of accuracy and
reliability of the model of Gaussian stochastic process.

In Chapter 2, general approaches for model construction of stochastic processes
with given accuracy and reliability are studied. Special attention is paid to
Karhunen-Loeve and Fourier expansions of stochastic processes and their
application to the simulation of stochastic processes.

Chapter 3 is devoted to the model construction of Gaussian processes, that is
considered as input processes on some system of filter, with respect to output
processes in a Banach space C(T') with given accuracy and reliability. For this
purpose, square-Gaussian random processes are considered; the concept of the space
of square-Gaussian random variables is introduced and the estimates of distribution
of a square-Gaussian process supremum are found. We also consider the particular
case when the system output process is a derivative of the initial process.

Chapter 4 offers two approaches to construct the models of Gaussian stationary
stochastic processes. The methods of model construction are generalized on the case
of random fields. The proposed methods of modeling can be applied in different areas
of science and technology, particularly in radio, physics and meteorology. The models
can be interpreted as a set of signals with limited energy, harmonic signals and signals
with limited durations.

In Chapter 5, the theorems on approximation of a model to the Gaussian random
process in spaces L1([0,77]) and L,([0,T]), p > 1 with given accuracy and
reliability are proved. The theorems are considered on estimates of the “tails” of
norm distributions of random processes under different conditions in the space
Lp(T), where 7' is some parametric set, p > 1. These statements are applied to
investigate the partition selection of the set [0, A] such that the model approximates a
Gaussian process with some accuracy and reliability in the space L,([0,T]) when
p > 1. A theorem on model approximation of random process with Gaussian with
given accuracy and reliability in Orlicz space Ly (€2) that is generated by the function
U is also presented.

In Chapter 6, we introduce random Cox processes and describe two algorithms of
their simulation with some given accuracy and reliability. The cases where an
intensity of the random Cox processes are generated by log Gaussian or square
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Gaussian homogeneous and inhomogeneous processes or fields are considered. We
also describe two methods of simulation. The first one is more complicated to apply
in practice because of technical difficulties. The second one is somewhat simpler and
allows us to obtain the model of the Cox process as a model of Poisson random
variables with parameters that depend on the intensity of the Cox process. The
second model has less accuracy than the first model.

Chapter 7 deals with a model of a Gaussian stationary process with absolutely
continuous spectrum that simulates the process with a given reliability and accuracy
in Ly(0,T). Under certain restrictions on the covariance function of the process,
formulas for computing the parameters of the model are described.

Chapter 8 is devoted to simulation of Gaussian isotropic random fields on
spheres. The models of Gaussian isotropic random fields on n-measurable spheres
are constructed that approximate these fields with given accuracy and reliability in
the space L,,(S,), p>2.



The Distribution of the Estimates
for the Norm of Sub-Gaussian
Stochastic Processes

This chapter is devoted to the study of the conditions and rate of convergence of
sub-Gaussian random series in some Banach spaces. The results of this chapter are
used in other chapters to construct the models of Gaussian random processes that
approximate them with specified reliability and accuracy in a certain functional
space. Generally, the Gaussian stochastic processes are considered, which can be
represented as a series of independent items. It should be noted that, as will be
shown, these models will not always be Gaussian random processes. In Chapter 7,
for example, the Gaussian models of stationary processes are sub-Gaussian
processes. The accuracy of simulation is studied in the spaces C(T'), L,(T), p > 0,
and Orlicz space Ly (T'), where T is a compact (usually segment) and U is some C-
function. In addition, these models can be used to construct the models of
sub-Gaussian processes that approximate them with a given reliability and accuracy
in a case when the process can be performed as a sub-Gaussian series with
independent items. Section 1.1 provides the necessary information from the theory of
the sub-Gaussian random variables space. Sub-Gaussian random variables were
introduced for the first time by Kahane [KAH 60]. Buldygin and Kozachenko in their
publication [BUL 87] showed that the space of sub-Gaussian random variables is
Banach space. The properties of this space are studied in the work of Buldygin and
Kozachenko [BUL 00]. Section 1.2 deals with necessary properties of the theory for
strictly sub-Gaussian random variables. In [BUL 00], this theory is described in more
detail. Note that a Gaussian centered random variable is strictly sub-Gaussian.
Therefore, all results of this section, as well as other results of this book, obtained for
sub-Gaussian random variables and processes are also true for the centered Gaussian
random variables and processes. In section 1.3, the rate of convergence of
sub-Gaussian random series in the space Lo(7") is found. Similar results are
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contained in [KOZ 99b] and [KOZ 07a]. Section 1.4 looks at the distribution estimate
of the norm of sub-Gaussian random processes in space Lp (T). These estimates are
also considered in [KOZ 07a]. For more general spaces, namely the spaces Sub,,(2)
such estimates can also be found [KOZ 09]. These estimates are used to find the rate
of convergence of sub-Gaussian functional series in the norm of spaces L, (€2). Note
that in the case where p = 2, the results of section 1.3 are better than section 1.4. In
section 1.5, the estimates of distribution of the sub-Gaussian random processes norm
in some Orlicz spaces are found; in section 1.6, these estimates are used to obtain the
rate of convergence of sub-Gaussian random series in the norm of some Orlicz
spaces. Similar estimates are contained in [KOZ 99b, KOZ 07a, KOZ 88, ZEL 88,
RYA 90, RYA 91, TRI 91].

The results on the rate of convergence of sub-Gaussian random series in the
Orlicz space that were received in section 1.6, are detailed in section 1.7 for the series
with either uncorrelated or independent items. In sections 1.8 and 1.9, the rate of
convergence for sub-Gaussian and strictly sub-Gaussian random series in the space
C(T) is obtained. Similar problems were discussed in [KOZ 99b] and [KOZ 07a].

Section 1.10 provides the distribution estimates for supremum of random
processes in the space L, (€2).

1.1. The space of sub-Gaussian random variables and sub-Gaussian
stochastic processes

This section deals with random variables that are subordinated, in some sense,
to Gaussian random variables. These random variables are called sub-Gaussian (the
rigorous definition is given below). Later, we will also study sub-Gaussian stochastic
processes.

Let {2, B, P} be a standard probability space.

DEFINITION 1.1.— A random variable & is called sub-Gaussian, if there exists such
number a > 0 that the inequality

242
Eexp{A¢{} < eXp{%} [1.1]

holds true for all A € R. The class of all sub-Gaussian random variables defined on a
common probability space {2, B, P} is denoted by Sub({2).

Consider the following numerical characteristic of sub-Gaussian random variable

&:

a?)\?
7(¢) = inf{a > 0: Eexp{A¢} < exp{ 5 bAe R}. [1.2]
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We will call 7(&) sub-Gaussian standard of random variable £. We put 7(§) = oo
if the set of @ > 0 satisfying [1.1] is empty. By definition, £ € Sub(f?) if and only if
7(§) < 0. The following lemma is clear.

LEMMA 1.1.— The relationships hold

() = sup ZinBexp{A) lnEi);p{)\é}] . [1.3]
A#£0, AeR
Forall A e R
2,2
Eexp{\¢} < eXp{)\;(f)}. [1.4]

The sub-Gaussian assumption implies that the random variable has mean zero and
imposes other restrictions on moments of the random variable.

LEMMA 1.2.— Suppose that £ € Sub(2). Then
E|¢]Y < o0

for any p > 0. Moreover, E¢ = 0 and
E¢? < 7%(¢).

PROOF.— Since as p > 0 and z > 0 the relationship 2P < exp{z}p” exp{—p} is
satisfied. Hence, if instead of = we substitute || and take the mathematical expectation
then obtain that

E[¢[P < p? exp{—p}Eexp{[¢[}.
Since
72(€)
Eexp{[¢|} < Eexp{¢} + Bexp{—(} < 2exp{—>} < oo,

then E|£|P < oo. Further, by the Taylor formula, we obtain

Eexp{\¢} =1+ AE¢ + %2E§2 + 0(\?),

Xp{)\ TQ(§>}21+%T2(§)+0(A2)

as A — 0. Then inequality [1.4] implies that E¢ = 0 and 72(§) > E¢£2. O
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The following lemma gives an estimate for the moments of sub-Gaussian random
variable.

LEMMA 1.3.— Let £ € Sub(€), then

P p/2
B <2(2)" oy
for any p > 0.
PROOF.— Since for p > 0, z > 0 the inequality

a? < exp{x}p” exp{—p},

holds, then we can substitute A|€|, A > 0 for = and take the mathematical expectation
of such a value. Hence,

p
Bl < (L) Bewiel [15)

Since
Eexp{)\[{|} < Eexp{A\{} + Eexp{—A¢},

then it follows from [1.5] and [1.4] that for any A > 0 the inequality

» p\" AT
Bl <2( L) e )

is satisfied. The lemma will be completely proved if in the inequality above we

substitute A\ = T\/fﬁ) under which the right-hand side of the equality is maximized. [J

EXAMPLE 1.1.— Suppose that £ is an N (0, 0%)-distributed random variable, that is &
has Gaussian distribution with mean zero and variance o2. Then

Eexp{\¢} = eXp{ 022)\2 }7

meaning that £ is sub-Gaussian and 7(§) = o.

Example 1.1 and lemma 1.1 show that a random variable is sub-Gaussian if and
only if its moment generating function is majorized by the moment generating
function of a zero-mean Gaussian random variable.This fact somewhat explains the
term “sub-Gaussian”. Note that a function Eexp{A{} is called moment generating
function of &.
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EXAMPLE 1.2.— Suppose that £ is a random variable that takes values 0 £ 1 with
probabilities P{{ = +1} = p/2, P{¢ =0} =1—p,0 < p < 1. Then forp # 0

Bexp{A¢) = (1-p) + 2 (exp{x} i exp{—A})
o0 )\Qk

+pz

> /\ )\2k k Qkk'
2 +Z 2FK ph1(2k)!

9] 2 k k—1
S (zp) &) &
k=0 3p ’
Therefore, Eexp{\¢(} < exp{%} as p > 3, Eexp{A¢} < exp{%z} as

0<p< i, which means ¢ is sub-Gaussian random variable. From lemma 1.2 it
follows that for p > £ 72(¢) = E¢? = p, forp < 1 7%(¢) < L.

EXAMPLE 1.3.— Let £ be uniformly distributed on [—a, a] random variable, a > 0,
then

1 [° smh Aa) = (Na)?*
_a 0
> A2 a?
<1 Z 6%; - P{jg}-

. . . . 2
That is, £ is a sub-Gaussian random variable, 72(§) = E¢? = 4.

LEMMA 1.4.— Let £ be a bounded zero-mean random variable; that is, E£ = 0 and
there exists ¢ > 0 such that |¢| < ¢ almost surely. Then, £ € Sub(f2) and 7(§) < c.

PROOF.— Put ¢(\) = In Eexp{A{}. Then

/ - E¢ eXp{)‘é}
VY " EenDel.
Since (X)) = ¥(0) + ¢’ (0)A + %@AQ, then from last inequality and (0) = 0
' (0) = 0 follows that y()) < 2%, O

Exponential upper bounds for tails” of a distribution are of importance in various
applications of sub-Gaussian random variables. An N (0, 02)-distributed random
variable ¢ satisfies the following inequality for x > o:

202

P{{ >z} < exp{xz}.



6  Simulation of Stochastic Processes with Given Accuracy and Reliability

A similar inequality also holds for a sub-Gaussian random variable. To avoid
ambiguity, we put exp{—u/0} = 0 for any u > 0.

LEMMA 1.5.— Suppose that £ € Sub(€2), 7(£) > 0. Then, the following inequalities
hold for x > 0:

Ple>n) < V() Ple<-a < V()
P{l¢| > 2} < 2V(7é))7. [1.6]

where V(z) = exp{—% .
PROOF.— By the Chebyshev—Markov inequality, we have
E 2.2
(M) _ ANTO)
exp{ Az} 2

for any A > 0 and x > 0. Minimizing the right-hand side in A > 0 gives the first
inequality in [1.6]. The proof of the second inequality is similar, and the third
inequality follows from the former two:

P{|¢]| >z} =P{{ > 2} + P{¢ < —x}.

P{{ >z} <

O
THEOREM 1.1.— The space Sub(€2) is a Banach space with respect to the norm 7(¢).

PROOF.— Prove now that Sub(€2) is a linear space and 7(&) is a norm. If £ = 0 almost
surely, then 7(£) = 0 by the definition of sub-Gaussian standard. The converse is also
true, since 7(¢) = 0 implies E¢? = 0 by lemma 1.2, almost surely giving & = 0.

By the definition of 7, we have

7(c§) = er(§).

Let us prove triangle inequality 7(£ + 1) < 7(§) + 7(n). It is sufficient to prove
this inequality in the case when & € Sub(Q2), n € Sub(Q2) and 7(§) # 0, 7(n) # 0.
The Holder inequality gives the following inequality for any p > 1, ¢ > 1 such that
%+%:1andany)\€R:

1

q

E exp{pA¢}

Eexp{A(§+n)} <

E eXp{qAn}l

< on{ 5 6m2(©) + a0}
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For a fixed A € R, the minimum in p > 1 on the right-hand side of the last
inequality attained at

r_ (&) +7(n)
T

Substituting p’ into the input inequality, we get

Bexp(N€ + )} < exp 3 (r(€)+ 7)),

that is 7(& + ) < 7(£) + 7(n). Show now that the space Sub(£2) is complete with
respect to 7. Let {&,,n > 1} € Sub(Q2) and

lim sup 7(&, — &m) =0, [1.7]

n—oo m>n

it means that the sequence &,, is fundamental with respect to the norm 7. Since E(¢,, —
Em)? < T2(&n — &n) — 0, as n,m — oo, then the sequence &, converges in mean
square, hence and in probability. We denote limits as {... Forany A € Rand e > 0

14-¢
supE {exp{/\fn}] = sup Eexp{A\(1 +¢)&,}
n>1 n>1

{AQ(l +e)%r2(&,) } .

< sup exp 5

n>1

By the theorem on uniform integrability[LOE 60], we obtain

A2 SUPy>1 2 (&n) }
> .

Eexp{X} = 1311 Eexp{),} < eXp{

It follows from [1.7] that sup,,~; 72(&,) < oc. This means that £ is a sub-
Gaussian random variable and that

7(€oo) < sup7(&n)- [1.8]

n>1

The random variables £, — &,, n > 1, are also sub-Gaussian, since the space
Sub(€?) is linear. In analogy with [1.8], we can show that

T(goo - gn) S sup T(gm - gn)

m>n

By [1.7], we finally obtain
nh_lgoT(goo —&)=0.
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From now the sub-Gaussian standard 7 will also be called the sub-Gaussian norm.

1.1.1. Exponential moments of sub-Gaussian random variables

Let £ be a Gaussian random variable with parameters 0 and o2 > 0. Then, it is
easy to show that

2
Eexp{;i} = (1—3)_%. [1.9]

as s < 1. For sub-Gaussian random variables, this inequality is transformed to the
following inequality.

LEMMA 1.6.— Assume that £ € Sub(£2) and 7(£) > 0. Then, forall 0 < s < 1, we
have

5&2
27%(¢)
PROOF.— The result is obvious for s = 0. Let F'(x) be the cumulative distribution
function of £. Inequality [1.4] can be rewritten as

/ " exp{Aa} dF(z) < exp{ AQT;(O }

— 00

[N

Eexp{ } <(l—-s)"2. [1.10]

Let s € (0,1). The inequality above implies that

/ ” expae) exp{—>\27;(§)} dF(z)

— 00

el (1)

for any A € R. Integrating by X in both sides of the last inequality gives

/_Z /_Z exp{Az} exp{— )\2;25(5) } d\dF (x)

g/_ exp{—)\gT;(g)(1;S>}d)\. [1.11]

Now, we transform [1.11]. On the one hand, we have

[l () o
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B Lo 5 o

<6 () -3 ()

On the other hand, we obtain

/_ O:O exp{)\x}exp{ }

Nr2(6) - /s
25 }‘“ @)

-2 /Z exp{)\m}exp{

Ll i)

Hence,

/_ O:o ( /_ O; exp{z} exp{— A?;Z(g) } d>\> dF(z)

_ {% /O; exp{;ifg)} 4F (2) [1.13]

V2ms Ee { s€2 }

= Xp .
7(§) 272(¢)

Ifin [1.11] we substitute [1.12] and [1.13], then we obtain inequality [1.10]. [

The above exponential moment can be finite for s > 1. The random variable taking
values +1 with probability % is a simple example.

1.1.2. The sum of independent sub-Gaussian random variables

By theorem 1.1, the sub-Gaussian standard is a norm in the space Sub(£2). This
means that for any &1, ..., &, € Sub(£2), we have

T<Z @) <> r(&)
k=1 k=1
This inequality can be made sharper when sub-Gaussian terms are independent.

LEMMA 1.7.— Assume that &,...,&, are independent sub-Gaussian random
variables. Then

- (Z@c) <D - [1.14]
k=1 k=1
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PROOF.— For any n and A € R, we have

Eexp{)\Z§k} = H Eexp{A\}
k=1 k=1

k=1
—en{ 36
- p 2 T k 9
k=1
giving [1.14] by definition of 7. (]

1.1.3. Sub-Gaussian stochastic processes

DEFINITION 1.2.— A stochastic process X = {X (t), t € T}, is called sub-Gaussian
ifforanyt € T X(t) € Sub(Q) and sup,c 7(X (1)) < o0.

LEMMA 1.8.— Let¢&;, ¢+ = 1,...,n be sub-Gaussian random variables, and z =
(&1, .. .,&,) be a sub-Gaussian random vector with 7(&;) = 7;. Then, for all ¢ > 0 the
following inequality

2
Eexp{t||||} = Eexp {tgl&-l} <2expq 5 (2_?) [1.15]
holds.

i = 1. Then, it follows from the
1 7

PROOF.— Lett > 0,p; > 1,1 =1,...,n,

n
1=

Holder inequality that

n 1

Eexp{t(i &)} < T1(Bew i)™

i=1

n t2 t2 n
< 2Hexp{pi7'125} = 26Xp{5 Zpﬂf}.
i=1

i=1

If in inequality above put p; = 7, ' >° 7;, we get [1.15]. O
j=1
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LEMMA 1.9.— Assume that the conditions of lemma 1.8 are satisfied. Then, for all
1 <a<2ands € [0,1) the inequality

> J&il" 1
e R (R
i=1

FEexp

holds.

PROOF.— Since 7 is a sub-Gaussian random variable with the norm 7(n) = 7, then it
follows from lemma 1.6 that for s € [0, 1)

-

2
Eexp{zzz} <(1-s)7%. [1.16]

n [LOE 60], the following inequality has been proved for x > 0 and y > 0

Pyt 1.1
xyg——i——, where —+-—-=1,p>1.

p q p q

Let o be a number such that 1 < « < 2, then substituting in inequality above

p= %,q = ﬁ we obtain

2 2—a 2
T

zy < Gud 4 oSy, [1.17]

1\3\@

From [1.16] and [1.17] follows that forall 0 < s < 1

« 2 9 _
Eexp 2 m < Eexp i + 2—a) 2
a\ T a27? 2«

= Eexp{;zz} ~exp{(2;a)S} <(1 —s)%exp{@;j)s}. [1.18]

(07

n
Let r > 0 and consider such values p; > 1,7 =1,...,n, that > 1 =1

Then

Eexp{iikﬂ“} ﬁ(EeXp{pz£l| })121.

i=1 i=1
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From [1.18], it follows that for —— pit

and

1 ard =\ 2 —
1n1§§j<2 )-1n<1p0”1)+ Y a

© Pi :

1=1

r — 2r ¢
B ay 1« o LR I (piatf)*
=(1-3) X Ly X

¥, 0<s<1,then

1 X sk 1
111]§2(1—§>+2z:15k:(1 a)g—fln(l—s).

2 2

This implies the statement lemma for 1 < o < 2

n
Let us study a case when aw = 2. Then, forr > 0,p; > 1,i=1,...,n, Y 1=
we have:

=1
1 < - i|&il? "
Eexp{TZ|§i|2}<H<Eexp{pf| }) =1.
i=1 i=1

i=1
From [1.16], it follows that for 2270

<1

S {W'i')?})’!n@%%

and
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v j=1 =1
1 X sk
InI < 3 Z % =——1In(l —s)
k=1
Hence,
S 2
Xl 1
Eexp 51:711 <(l-—s)"2
> 77
i=1
[l
COROLLARY 1.1.— Let &g, ¢ = 1,...,mg, mip — oo be sub-Gaussian random

me
variables with 7, = 7(&;). If there exist the limits 7 = lim |€ix| (almost
mip — 00 1

1=

mp
everywhere or with probability) and lim Tik =71 > 0, then forall t > 0
mp — 00 i=1

tsz
Eexp{tm} < 2exp < (-

my
If there exists 77, = lim > |&x|* (almost everywhere or with probability) and
mip—r

=1
mi
forl <a<2, lim 7§, = Ta, then for all s € [0, 1)
M —>00 i=1
. . 9
Eexp{sn} <(l—s)"zexp {(a)s} .
QT 2c

The assertion of this corollary follows from the Fatou lemma.

COROLLARY 1.2.— Assume that X = {X(¢), ¢t € T} is a sub-Gaussian random
process, where (T, A, 1) is a measurable space. Denote 7(t) = 7(X (t)). If for some
1 < a <2 (with probability one or in mean square), there exist the integrals

[1x@rduc)

and

/ (r(t)” d(2),

T
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then forallt > 0, (o =1)

) 2
Bexp dt [1X(Oldu(t) p < 2ex09 5 | [ r0autt
T T

orforalls € [0,1) (1 <a<2)

s Jo |X(#)*dp(t) . (2—a)s
Eexp{am}<(l—s) exp{Qa } [1.19]

The assertion of this corollary follows from corollary 1.1.

REMARK 1.1.— If for random variable § > 0 and all £ > 0 the inequality holds

2
Eexp{td} < 2exp {tzbz} ,

then (see e.g. [BUL 00]) for all z > 0

2
P{@>x}§2€xp{—;l)2}. [1.20]

Suppose that for random variable > 0 and for all s € [0, 1)

Eexp{%} <(1—s)"%exp {(2;:‘)5} ,

then from the Tchebyshev-Markov inequality it follows that for any z > 0
sn ST 1 1 1 =
P{n>x}§Eexp{—}-exp{——}g(l—s) Texpis|(——-—= )
o o a 2 «o

Sets =1— (2(£+3— é))_l (the minimum point of right-hand side of last
inequality), then

2 2 1 T
P{17>:c}§\/xa—i—l—aexp{a}-exp{—a}. [1.21]
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1.2. The space of strictly sub-Gaussian random variables and strictly
sub-Gaussian stochastic processes

Lemma 1.2 shows that for any sub-Gaussian random variable £, we have
E¢* <7%(¢), E{=0,

where 7(§) is the sub-Gaussian standard. Now we consider a subclass of sub-Gaussian
random variables where the above inequality becomes equality.

DEFINITION 1.3.— A sub-Gaussian random variable £ is called strictly sub-Gaussian
if 72(&) = EE2, that is, if the inequality

2 2
Eexp{\} < exp{’\; } [1.22]

0% = E€2, holds for all A € R . The class of strictly sub-Gaussian random variables
will be denoted by SSub(£2).

Each zero-mean Gaussian random variable is strictly sub-Gaussian (for
example 1.1). A random variable from example 1.2 will be strictly sub-Gaussian as
p > % It can be shown [BUL 80b] that for p < % p # 0 it is not strictly
sub-Gaussian. Uniformly distributed on interval [—a, a], a random variable is also
strictly sub-Gaussian (for example 1.3). Sufficient conditions for a random variable
to be strictly sub-Gaussian are given in [BUL 80b]. In [BUL 80b], it is also shown
that the sum of strictly sub-Gaussian random variables need not be strictly
sub-Gaussian. The next lemma points out an important situation where a sum of

strictly sub-Gaussian random variables is strictly sub-Gaussian.

LEMMA 1.10.— Suppose that £ is a strictly sub-Gaussian random variable and c is an
arbitrary constant. Then, c£ is also a strictly sub-Gaussian random variable. Assume
that £ and n are independent strictly sub-Gaussian random variables. Then, the sum
& + n is also strictly sub-Gaussian.

The first statement of the lemma is obvious. The second statement follows from
inequalities by lemma 1.7:

E(+n)? <7°(E+mn) <76 + ()
=E¢ + En® = E(§ +1)°.
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DEFINITION 1.4.— A family of random variables A from Sub(f) is called strictly
sub-Gaussian if for any at most countable set of random variables {&;,1 € I} from A
and for any \; € R the relationship

2

7 <Z /\1&) =E (Z >\i§z’> [1.23]
i€l i€l

holds true.

LEMMA 1.11.— Assume that A is a family of strictly sub-Gaussian random variables.
Then, a linear closure of A in Lo () is strictly sub-Gaussian family.

PROOF.— Let &1,&s,...,&, be random variables from A, n; = Z;’Zl ai;&, 1 =
1,...,m are the elements of linear span of A. Then

7 (Zm: )\i77i> =7 (i Ai Zn: aijfj)
i=1 i=1  j=1
=72 (Zn: <§: ,\iaij>gj> [1.24]
1 =1

j=

) E(Z (Z Aiaij>€j>2 - E(; Ami)g.

j=1 Ni=1
The assertion of the lemma for boundary elements of linear closure of A follows
from [1.24] by limit transition (see theorem 1.1). O

DEFINITION 1.5.— A strictly sub-Gaussian family of random variables, that is closed
in Lo(R2), is called a space of strictly sub-Gaussian random variables.

The space of strictly sub-Gaussian random variables is denoted by SG(£2).
EXAMPLE 1.4.— Suppose that = = {&,k = 1,2,...} is a sequence of independent

strictly sub-Gaussian random variables. A linear closure of = in Lo () is a space of
strictly sub-Gaussian random variables.

%
DEFINITION 1.6.— A random vector €1 = (&1,...,&,) is called strictly
sub-Gaussian if £, are random variables from strictly sub-Gaussian family.
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%
LEMMA 1.12— Let &7 = (&1,...,&,) be a strictly sub-Gaussian vector with
uncorrelated components, E¢Z = o7 > 0. Then, for any s such that 0 < s < 1, and
N =1,2... the inequality

S N Lo I 88 o
por{s 2t <ovls X 2o e
is satisfied, where Ry = (Zzzl U;%N) ~

PROOF.— It follows from the definition of a strictly sub-Gaussian vector and [1.24]
that forall A\, € R, k =1,2,...,n, we have

Eexp{; )\kfk} < exp{ (Z Ak&c) }
:exp{ Z/\kak} [1.26]

Suppose that sy, are such arbitrary numbers that 0 < s, < 1. Multiplying right-

hand and left -hand sides of [1.26] by exp{— >}, ’\"‘7 &} and integrating both parts
by Ak, we obtain

R N Nio?
E/w.../ooexp{;()\kfk . )}dAl...dAn
)\iak 1
exp (1— =) pdAi...d\,. [1.27]
2 Sk

The left-hand side of [1.27] will be defined as A,,. It is easy to see that
a8 o}
An_EH/ooexp{ 25, }d)\
k=1
n (\27sy
H( mk) Ee p{Zf’“sk} [1.28]

Ol

The right-hand side of [1.27] is defined as B,,. Then, it is clear that

BH:H/OO exp{ W}d/\k [1.29]
k=1~ k

_ - 2msy, - -1

—H(ng )-H(l—sk) . [1.30]
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[1.27]-[1.29] yield that for all 0 < si < 1 the inequality

n

Eexp{z gksk} <T[(-s1)” [1.31]

(NI

holds.

2
SO

Denote now s = et where s is a number such that 0 < s < 1. From [1.31], it

follows that

Em{m Z&}<H( %j

The inequality above yields the following relationship
InEex iiﬁ < —liln 1- @
Pl2Ry £+ =72 Rn
k=1 k=1
1 o2ls! 1 = 5 = g
B zz:zz:l}y A'QEg;lRazgéggk‘

k=11=1

l

The lemma is proved for 0 < s < 1. In the case of s = 0, the inequality [1.25] is
trivial.

O
REMARK 1.2~ Ifin
@)0<Zﬁ7mw,wad,
i=1 i=1
we put x; = afl, o= %,Z > N, then
n % n
<Z a,%l> <N oV, [1.32]
k=1 k=1
Hence, when !l > N Ré\, > ZZ=1 a,%l. Therefore,
l
N I=N

which means that the series

i 2t

Nkl
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converges for any N > 1. Furthermore, [1.32] yields an inequality
Ry >Ry as I > N. [1.33]

%
LEMMA 1.13.— Assume that a random vector £ T = (&y,...,§&,) is strictly sub-

— ——
Gaussian, Cov & = E¢ €T = B, A is symmetric positive definite matrix. Then for
any0<s<land N =1,2,...

s = = Ry sz !
Eexp{QZNfTAf}Sexp{2Zl<ZN) }, [1.34]

where

1
2

7 = (Sp(BA)l) , [1.35]

Sp is a trace of matrix.

PROOF.— Assume that S is such a matrix that S-S = A, S = S7, O is an orthogonal

marix that transforms SBS to diagonal matrix OSBSOT = D = diag(d}),_. Let
— — — -
f =0S¢.Bylemma 1.11, 6 is also strictly sub-Gaussian vector.

— —
Cov § = 0SCov £ SOT = 0SBSOT = D, [1.36]
- - - =
077 =Y 07 = €7TS0T0SE = €TAE.
k=1
Therefore, from lemma 1.12 follows that for 0 < s < 1 the relationships

s —=r > s ==
Eex 2 T A }—Eex{ 2 aTe}
p{zRNé i p N

1K sLR!
gexp{2z ﬁ’ﬁv}’ [1.37]

=1 !

1
1

holds true, where 1, = (Y-}, d!) 7.
Since R} = SpD!, then [1.36] yields that
SpD' = Sp(OS(BA)""'BSO™) = Sp(S(BA)'"'BS)
= Sp((BA)") = Z}.

Hence, from equality above and [1.37] follows the statement of the lemma. (]
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REMARK 1.3.— Since [1.33] holds for R; and Z; = R;, then
In>7 at 1> N, [1.38]
Ry . = =
and the series Y ;- 124 is convergent for arbitrary N. Moreover, Z; = E¢TA €.
N

COROLLARY 1.3.— Suppose that the conditions of lemma 1.13 are satisfied. Then for
all0 <s<land N =1,2,..., the inequality

Eexp{QzNgTAg} gexp{;u]v(s)—i—w]v(s)} [1.39]

holds, where

N-1

> (s2))
ZST (s l , [1.40]

=N =1 1z

l\DM—l

as N > 1.

COROLLARY 1.4.— Assume that the conditions of lemma 1.13 are satisfied. Then for
any 0 < s < 1, the inequality

5~%TA?}< 1

E
eXp{Q.E?TA? 1-s

[1.41]

holds.

PROOF.— The statement of corollary follows from lemma 1.13 (inequality [1.34]).
Taking N = 1, by remark 1.3, we obtain

i}(le> isj —1In(1 —s).
1=1 =1

= =
Moreover, we can readily show that Z; = E¢ TA ¢ . (]

%
COROLLARY 1.5.— Letn, = f A, f n» Where f n are strictly sub-Gaussian
random vectors, B,, = Covf n» A, are symmetric positive definite matrices,

o~

Lip = <Sp(BnAn) > . If n is a random variable such that ,, — 7 in probability

as n — oo and the condition

lim Z;,=2,>0 at [=1,2,...,N [1.42]

n—roo
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is satisfied, then the inequality
E 1L < expd Lo (s) + wn (s) [1.43]
expl —— Xp] = .
Xp 2n [ = b 5VN N
holds for any 0 < s < 1, where wy (s), v (s) are defined in [2.25],

when N > 1.

v1(s) =0, wn(s)=

PROOF.— Inequality [1.39] and the Fatou lemma yield the statement of corollary. [
. . 2
LEMMA 1.14.— Assume that either the conditions of lemma 1.13, 7 = £ * A are
satisfied, where Z; is defined in [1.35], or the conditions of corollary 1.5 are satisfied,
where 1 and Z; are defined in corollary 1.5. Then forany N = 1,2,..., 2 > 0,
0<s<1
P{n >z} < Wx(s,x), [1.44]

Where
[[ N S)m e::p e::p 2 NS WN(S bl

wn (s) and vy (s) are defined in [2.25].

PROOF.— The Chebyshev inequality and either [1.39] or [1.43] imply that the
inequality

P{n>x}P{ ULB }

2N~ 22n
< Eexp{;ZnN}exp{—Z?N} < Whn(s,x)
holds forx > 0,0 < s < 1. O

REMARK 1.4.— From [1.38] follows that the greater N, the more accurate inequality
[1.44] is for a large enough z. Furthermore, [1.44] implies

P{n>uz}< oggfa Wi (s, ). [1.45]
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EXAMPLE 1.5.— By putting N = 1, wi (s) = —% In(1 — s), the inequality [1.44] will
be expressed as

P{n>x}<exp{—;§1}(l—s)_é. [1.46]

By minimizing right-hand side of [1.46] with respect to s, we obtain that the
inequality

Nl

P{n>z} < e? (Z) exp{221} [1.47]

holds true for x > Z;.

EXAMPLE 1.6.— Taking N = 2, wa(s) = —21In(1 — s) — £ inequality [1.44] has
been expressed as

P{7}>x}<exp{—s($2_zzzl)}exp{—;}(l—s)é. [1.48]

By minimizing the right-hand side of [1.48] with respect to s,we obtain that the
inequality

~ 7 1 ~ 7z
P{y>a} < (2 7 +1)? exp{—x2221} [1.49]

holds as x > Z;.

1.2.1. Strictly sub-Gaussian stochastic processes

DEFINITION 1.7.— A stochastic process X = {X (t), t € T}, is called strictly sub-
Gaussian, if the family of random variables { X (t),t € T} is strictly sub-Gaussian.

EXAMPLE 1.7.— Suppose that X (t) = >_77, & fx(t), where & = {&, k= 1,2,...}
is a family of strictly sub-Gaussian random variables and the series

SN EGaf0fit),

=1 k=1
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is convergent for any ¢ € T, then from lemma 1.11 it follows that X (¢) is a strictly
sub-Gaussian stochastic process. Lemmas 1.10 and 1.11 imply that in the case of
independent strictly sub-Gaussian random variables &, and

D EGfI(t) < oo
k=1

forall t € T, X (t) is a strictly sub-Gaussian stochastic process.

DEFINITION 1.8.— Stochastic processes X; = {X;(t), t € T, i=1,2,...,M},
are called jointly strictly sub-Gaussian, if the family of random variables {X;(t),
teT,i=1,2,..., M} is strictly sub-Gaussian.

REMARK 1.5.— A zero-mean Gaussian stochastic process is sub-Gaussian.

LEMMA 1.15- Let X = {X(¢),t € T} be a strictly sub-Gaussian stochastic
process and (T,L,u) be a measurable space. Assume that Lebesgue integral
J-(BEX?(t))du(t) is finite. Then, there exists almost sure the integral [, X2 (t)dpu(t)
and the inequality

oxpd S Jr X2(t)dp(t) _ )12
B p{sz<EX2<t>>du<t>} =)
holds forall 0 < s < 1.

PROOF.— From the Fatou lemma follows the existence of integral [, X*(t)dyu(t) with
probability 1. Since [, X*(t)dpu(t) can be represented as the limit

X2(t)du(t) = lim A u(Ag),
| X 0duo i D2 e

n
where A, € £, Ay NA; =0,k # jand |J Ay =T, ¢ are the value of X (¢) in
k=1
some points from Ay and

EX2(t)du(t) = lim Ec?u(Ay),
| BXaut Jim D Betu Ay

then the statement of lemma follows from corollaries 1.4 and 1.5 and the Fatou lemma.
O

COROLLARY 1.6.— Suppose that for X = {X(¢),t € T} the conditions of
lemma 1.15 are satisfied. Then, the inequality

=

—&
ex"{ 2 [ (EX2()du(t)) }
[1.50]

P{/T X2()du(t) > e} < et <fT(EX;<t>du<t>>)
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holds as
2
> /T(EX () du(t).

PROOF.— The proof is similar to the proof of example 1.6. (]
1.3. The estimates of convergence rates of strictly sub-Gaussian
random series in L,(T)

In this section, the results of previous section are used for finding norm distribution
estimates in Lo (7") for residuals of strictly sub-Gaussian stochastic series.

Assume that (7,2, i) is some measurable space. Consider a stochastic series in
the form

=Y &fult), teT, [1.51]
k=1

where £ = {&,k = 1,2,...} is a family of strictly sub-Gaussian random variables
and f = {fx(¢),k = 1,2,...} is a family of function from Ls(T"). Suppose that the
following condition holds: for allt € T'

Z E&.& fi(t) fr(t) < oo, [1.52]

11=1

M8

b
Il

which means that the series in [3.1] is mean square convergent for all t € T" and S(¢)
is strictly sub-Gaussian process.

Denote forl <n <m < 0o

()= &fr(t)
k=n

DEFINITION 1.9.— The series [3.1] mean square converges in space Lo(T), if
n 2 mn
E [ (5) = S1(0)" dutt) = BIS(O) = S0, — 0
asn — 0.

We can readily show the next assertion.
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LEMMA 1.16.— The series [3.1] is mean square convergent in Lo(7') if and only if
either

BIST 012,00 =3 3 Bet / Fo(6) Fu(t) dpa(t) —

l=n k=n

as n,m — 0o, or

ZZEfkﬁl/sz(t)fk(t) dp(t) < oo [1.53]

k=11=1

The following theorem gives a convergence rate estimate of the series [3.1] in
Ly (T).

THEOREM 1.2.— Let 4,, , = ||aleZfl:n,

ar = /T i) fet) du(t), Bom = |
k= B&RE.

If the condition [1.53] is satisfied and for [ = 1,2, ..., N there exists a limit
1
T

lim (Sp(BnmAnm)l> = Jui,

m—r oo

then the inequality

P{||sg°(t)||L2(T) > x} = P{/T|S§°(t)|2du(t) > xQ}

< Vn(s,2?%) [1.54]

holds true forany z > 0,0 < s <1, N =1,2,...,n=1,2,..., where

= &fr(t)
k=n
Vi (s,2) = o Lon(s) + wn ()
N\S,T 2JnN 21/1\/ S WN LS s
wp (s) is defined in [2.25], 74 (s) = 0,

N—-1 1
Uy (s) = (s‘]l"l) ., N>1.

=1 lJnN
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PROOF.— The assertion of the theorem follows from lemma 1.14. A random variable
IESGI L(r) 1S Mean square limit as m — oo, that is why in probability also, of
random variables

1S5 Ol Loy = DY aéran

l=n k=n

Really, from [1.53] it follows that

B[SOl z,ry = 157 Ol )|

<E|S2(t) - S -0

m 2
w0
as m — Q. O

COROLLARY 1.7.— Suppose that either random variables in [3.1] are uncorrelated,
E¢? = o7, or the system of function fy(¢) is orthogonal

An@mwwwzﬁﬁ

where 8 is Kronecker symbol. If the series
Zazai < o0 [1.55]

converges, where

it = | SOt

then the series [3.1] is mean square convergent in Lo(7T") and for all z > A
n=1,2,..., the inequality

Sl

oo 1, = z?
PSSy (t)HL2(T)>:c Sexp{i}gexp{—ﬁ} [1.56]

holds, where A, = Y7 otai.

PROOF.— Since under condition of the corollary

> fsz/fk ) fi(t) du(t) Zakak<oo

=1 k=1
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then the series [3.1] converges in mean square. By theorem 1.2 as N = 1, the estimate
[1.54] is satisfied, where

m oo
Jp1 = lim E otai = E orai = A
m—0o0
k=n k=n

Minimizing the expression [1.54] in 0 < s < 1 (see example 1.5), we obtain
inequality [1.56]. (]

COROLLARY 1.8.— Assume that random variables in [3.1] are uncorrelated and the
system of function fy(t) is orthogonal, B} = o7, [ | fx(t)? du(t) = af. If

> ot} < oo, [1.57]

then the series [3.1] is mean square convergent in Lo(7") and forall z > 0,0 < s < 1,
N =12 ...,n=1,2,...,the inequality

P{HS;;O(t)HLZ(T) > x} < Vn(s,z?) [1.58]

holds, where the function Vi (s, x) is from [1.54], and

Tnt = It = (Za” 21) : [1.59]

PROOF.— The assertion of corollary 1.8 follows from theorem 1.2. In this case, equity
[1.59] holds and condition [1.57] provides the convergence of the series [1.59] for all
> 1. O

EXAMPLE 1.8.— If in corollary 1.8 we put N = 2 and minimize the right-hand side
of [1.58] in 0 < s < 1, then we obtain (see, example 1.6) that the inequality

P{HSSO(t)HLg(T) s x}

2 3 3 2 3
< <me + 1) eXp{—W} [1.60]
Jng 2Jn2

holds true for all 22 > J,,1.
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1.4. The distribution estimates of the norm of sub-Gaussian stochastic
processes in L,(T)

In this section, the estimates for distribution of the norm in L,(T) of
sub-Gaussian random processes are found. Obtained results are applied to strictly

sub-Gaussian stochastic processes and series.

Let (T, 2, 1), u(T) < oo, be some measurable space. L, (T') is a space integrated
in the power of p measurable functions

f= /).t e T, nm%:(ﬁuwwmm)5

Assume that X = {X (¢),t € T} is a sub-Gaussian stochastic process,

sup7(X(t)) =7 < o0.
teT

Since
EAW@W@@=AEW@PW@

and from lemma 1.2 it follows that there exists such constant ¢, that
sup,cr B|X (t)|P < ¢p, then

E [ IXOP dult) < eou(T) < .

Therefore, [;.|X (t)|” du(t) < oo with probability 1, it means that X € L,(T)
almost surely.

THEOREM 1.3.— The inequality
22
P{||X|., >z} < 2exp{—2} [1.61]
272 [u(T)]»
holds true for any p > 0 and

> p (1)),
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PROOF.— By the Lyapunov moment inequality for s > p > 0, we have

E[| X3 E(/T X(t)lpdu(t))S/p E[/T |X(t)|pd</i‘((:tp)>>r/p(um)s/p

<[ [ 1xoFa( £ |y = [ Bxopr ).

Then, it follows from the Chebyshev inequality that
E[| X5

:L-S

P{||X]|z, >} <
and lemma 1.3 implies that

P{||X|L, >z} < 25*/%a",
where a = % Let s = a—2e~! (it is a point that minimizes the right-hand

side of inequality above). Then, for s = —i— > p, that is for z > p'/2(u(T))Y/Pr, the
inequality

1
P{||X||Lp > x} < 26xp{2a%}

is satisfied. So, the theorem is completely proved. O

Consider now the random series
St) =Y fr(t), [1.62]
k=1

where £ = {&,k = 1,2,...} is a family of strictly sub-Gaussian random variables,
f={felt),teT,k=1,2,...} isafamily of measurable functions. The following
theorem gives convergence rate estimates of the series [1.62] in L,,(T').

THEOREM 1.4.— Assume that the condition
SupZZEfkflfl(t)fk(t) < 0 [163]
t€T 3 21 1=t

holds true. Then, for arbitrary p > 0 and

x> p (1) 7o, <p <2
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where

= sup Z ZEﬁkfzfz )fi(t),

knln

the following inequality

2
P{|S (1)1, > 7} < 2ex {—x} [1.64]
S 1\ 202z
holds.
where  Sp°(t) = Y & fi(t)
k=n

PROOF.— Since stochastic process Sg° = {S°(t),t € T} is sub-Gaussian with
72(S%°(t)) = 02, then theorem 1.4 is a corollary of theorem 1.3. O

COROLLARY 1.9.— Suppose that random variables in & [1.62] are uncorrelated.
Then, the assertion of theorem 1.4 holds, where

= sup Z EGLfR (1)

tET

COROLLARY 1.10.— Let the series in [1.62] be stationary. That is
=" (€x cos At + e sin Agt),
k=1

where E£i & = Engn = 0, when k # [, for all k and [, Efkm =0, Efi = En,% = b%.

Then, the assertion of theorem 1.4 holds, where o2 Z b2

REMARK 1.6.— It is clear that the estimates in [1.64] are the best for stationary
random series. In other cases they can be improved, which will be done in the
following sections.

1.5. The distribution estimates of the norm of sub-Gaussian stochastic
processes in some Orlicz spaces

In this section, the estimates for norm distribution of sub-Gaussian stochastic
processes in Orlicz space are found such that generated functions increase not faster
than the function U(z) = exp{z?} — 1. The results are applied to strictly
sub-Gaussian processes and series.
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Let (T, 44, 1), u(T) < oo, be some measurable space, Ly (T') be Orlicz space with
generated C-function U = {U(z),x € R}. Remember that a continuous even convex
function U () is called C- function if it is monotone increasing, U(0) = 0, U(x) > 0,
as x # 0. For example, U(z) = exp{|z|*} — 1, o > 1.

The Orlicz space, generated by the function U(x), is defined as the family of
functions {f(¢),¢t € T'} where for each function f(¢) there exists a constant r such

that
AU(@) du(t) < .

The space Ly (T') is Banach with respect to the norm

£l =intfr>0: [ 0( L) duoy <1}, [1.65]

Anorm || f||,, is called the Luxemburg norm.

Let X = {X(t),t € T} be a sub-Gaussian stochastic process, sup,c, 7(X (t)) =
T < 00.

THEOREM 1.5.— Assume that the Orlicz C-function U = {U(z), z € R} is such that

Gu(t) = exp{ (U(—l)(t - 1))2}7 t>1,
is convex as t > 1, (U= (¢) is an inverse function to U (¢)). Then, for all z such that
v > [(T)r(2+ (UCD(1)72)3, [1.66]
where (i(T) = max(u(T), 1) the inequality

P{X®)|L, > =}

holds.

PROOF.— Note that from the definition of the function G (t) follows that forall z > 0
the equality

Gu(U(z) +1) = exp{2?} [1.68]
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holds true. Equality [1.68], the definition of the norm || - |1, (see [1.65]), the
Chebyshev inequality and the Jensen one for any p > 1, x > 0, imply the
relationships:

PO > o} = P{ [ 052 dute) =1}
Lo (52 =1}
(o)1) 5 =2

(e [ (v(52)un+ 1))
(

(oo
<
N p
fTE(GU (U(X(”; <T>> - 1)) )
<

(Gu(2))
| Jp Bexp{ POyt

w(T)
) . 69

=P

=P

If now in [1.69] we set p = sz?(ji(T)7v/2) "2, where 0 < s < 1, then for such
(p > 1) that

g2 > 2 [1.70]

from lemma 1.6 we have

Eexp{fWW}:Eexp{W}g L [1.71]

2 272 1—s

Hence, [1.69] and [1.71] yield

P{IX®)|L, > 2} <

2(77(=1) (1))2
exp{—W}. [1.72]

1—s (i(T))?7?
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If we minimize the right-hand side of the inequality above with respect to s, 0 <
s < 1, it means that

_ (@D (1.73]

RO

then for « from [1.70] and since s > 0

M [1.74]

inequality [1.67] is obtained.

To complete the proof of the theorem, it is enough to remark that for s in equality
[1.73], inequality [1.70] holds true if and only if [1.66] is satisfied. It is clear that for
such z inequality [1.74] holds true. (]

REMARK 1.7.— From [1.67] it follows also that the trajectories of the process X
almost surely belong to the Orlicz space L ().

REMARK 1.8.— It is easy to obtain from theorem 1.5 the estimates of distribution
| X(t)|| L, because L,(T') is the Orlicz space generated by C-function U(x) = |z[?,
p > 1. But in this case, we should consider a C-function, that is equivalent to U (z) =

|z|P and the assumptions of the function Gy (x) hold true. However, the estimates of
section 1.4 are more precise.

EXAMPLE 1.9.— The conditions of theorem 1.5 are satisfied for C'-function

Uq(x) = exp{|z|*} — 1, 1<a<2.
In this case

U = (In(t+ 1)+, USV() = (n2)w,

Gy, (t) —exp{ (Int %}

EXAMPLE 1.10.— The conditions of theorem 1.5 hold for C'-function

ooy = { (B 0

exp{|z|*}, |z > (3)*,

Q=

where 0 < o < 1. In such a case, U=V (1) = ()

ex
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Consider a random series [1.62]

S(t) =Y & fu(t)
k=1

where § = {&;,k = 1,2,...} is a family of strictly sub-Gaussian random variables.
The following theorem gives convergence rate estimates of the series [1.62] in the
norm of space Ly ().

THEOREM 1.6.— Leta C-function U (z) satisfy all conditions of theorem 1.5. Assume
that the condition [1.63] also holds true. Then for

> (U(T)on(2+ (UCD(1)72)z, [1.75]

where

= sup Z ZEfkflfk )fi(t),

knln

the inequality
P{IS°(0)||lLy, > =}

1 xU( Da 22U (1))2
<only i |-t ) 170

holds.

REMARK 1.9.— If & are uncorrelated, then

= sup Z EGfR (1)

tET

o0
>~ b3. Here, remark 1.6 can be
k=n

And if S(t) is a stationary process, then 02 =

applied.

1.6. Convergence rate estimates of strictly sub-Gaussian random series
in Orlicz spaces

In this section, the estimates for the norm distribution in Orlicz space of residuals
of strictly sub-Gaussian random series from classes Dy (c) are found. Examples of
such series will be considered later. In contrast to previous sections, here the Orlicz
spaces are considered that are generated by C'-functions, which grow faster than the
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function Uz(z) = exp{z?} — 1. Note that in some cases, even when generated C-
functions grow not faster than Us (), and also for L, (T") these estimates can be better
than estimates discussed in previous section.

Let (7,2, ) be some measurable space, Ly (T'), is the Orlicz space that
generated C-function U = {U(z),z € R}.

DEFINITION 1.10.— Assume that f = {fi(t),t € T, k = 1,2,...} is the family
Sfrom the space Ly (T). This family belongs to the class Dy (c), if there exists such

numerical sequence ¢ = {ci,k = 1,2,...}, 0 < ¢, < ciy1, that for any sequence
r={ri,k=1,2,...} the inequality

> rkfelt) > refelt)
k=1 k=1

holds true.

[1.77]

<ecp
U

L Ly

REMARK 1.10.— In definition 1.10, the sequence ¢ = {ck, k = 1,2,...} is the same
for any sequence 7. It means that ¢ depends only on f and U.

Consider random series (process)
S(t) =" &fult), [1.78]
k=1

where § = {&;,k = 1,2,...} is a family of strictly sub-Gaussian random variables.
Suppose that f = {fx(¢),t € T, k = 1,2,...} is the family of functions from the
space Ly (T) that belong to the class Dy (c). Assume that the condition [1.52] is also
satisfied. Hence, the series [1.78] converges in mean square. Denote for 1 < m < n <
00

Si(t) = Z & fi(t).

Assume that a = {ax, k = 1,2,...} is some sequence such that 0 < aj, < ag41,
ap — 0o at k — o0o. For 1 < n < m, we denote

n

Splat) = a;&f5(0).

j=m
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It is easy to check that the equity

A(S@(“t) ii z%/fz (£)1;(¢) du(t)

= g’l)'LkAmk (f)gmk [1.79]

holds true, where m < k, §mk = (Em>&mats - 6k

Anie(£) = lai; (A5 jmms i (f) = aiaj/Tfl-(t)fj(t) dp(t).
Let

mk - COngk - HEflé.j H

i,j=m"
Define

1
[

Ji(m, k,a) = <sp(BmkAmk(f))l>

LEMMA 1.17.— Suppose that the sequence a = {ax, k& = 1,2,...} is such that
ap < agqp forany0 < s <1, N =1,2,...and m < n. Then, the inequality

2

is satisfied, where

Ay(m,n,a,s) = Z bkn(JN(mvkva))%

k=m

as N > 1and A;(m,n,a,s) =0,

By(m,n,a) = Y ba(Jn(m,k,a))2,

k=m

bin = Crdpn, Ay, = (alzl — akﬂ) k=m,m+1,. — 1, dpy = a; b, wn(s)is
defined in [2.25].
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PROOF.— The equity (Abel transform) is carried out

n—1
Sm() =D (ay" = ag})Sh(at) + a, ' Sh(a,t)
k=m
=Y dinSh(a,t). [1.81]
k=m

From [1.81] and definition 1.10 follows inequality

1S3z < Y dinll S (ast)llz,

k=m

<> dpnckl|SE (1) L, [1.82]

k=m

= Z banan(aat)”IQ

k=m

Let 6 > 0, k = m,m + 1,...,n be such numbers that »_ d; = 1. Suppose
k=m
W is an arbitrary number. A convexity of the function y = z? and the Holder
inequality imply the relationships:

n k 2
I Bexp { <zk_m bkn||Sm<a7t>||L2) }

Wm,n
n ) k ¢ 2
k=m m,n

n k 2
< EeXp{ 3 &(W) }
k=m m,n

- bS5 (. )13, 1)
< I (o™ )

k=m
Denote

— \/ibkn((JN(m, k, a))%
T VW

W = \/E > bin((In(m, k,a))?.

k=m

Ok
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Then, [1.79] and corollary 1.3 as N > 1 yield inequality:

b3, 1S (a, 1|17 s[|Sh(a, 1)[|7
E BLUSUASSRCALET T G, 7)) Wm A N Le 1.84
exp{ 6]%W7%L,TL } exp{ 2JN(m7k7a) } L1841

< exp Nz: lemk:a +wn(8) .
- — mka)

It follows from [1.82]—[1.84] that
sISm )z,

2(22_m bin (Jn(m, k,a))?

= (sJi(m, k,a))
<I”<exp{ ZZ : 5k+wN(s)}.

= = mka)

E exp{

K

If now in above inequality we substitute the value dy, then inequality [1.80] is
obtained.The proof will be the same when N = 1. (]

LEMMA 1.18.— Suppose that the assumptions of lemma 1.17 are satisfied, then for
anyxz >0,0<s<1

P{IS5 ()L, > =} [1.85]
8372 AN (m7 n,a, 8)
<o gmtmaar < B 0}

PROOF.— From the Chebyshev—Markov inequality follows

P{IS5. (L, > =}

{ slsn @2, sz }
2By (m, k,a)? ~ 2(By(m, k,a))?

2 sl|Sy )7,
<o atmtmmar ) P w7

The above inequality and [1.80] yield inequality [1.85]. ]

THEOREM 1.7.— Suggest that the assumptions of lemma 1.17 are satisfied. Assume
that for some sequence a = {ax,k = 1,2,...}, such that a;, < ajy1, ar — oo as
k — oo, for some integer N > 1, all 0 < s < 1 the conditions

By(m,n,a) -0 as m,n — oo, [1.86]
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An(m,n,a,8) -0 as m,n— oo [1.87]

hold, where By (m,n,a), Ay(m,n,a,s) are defined in [1.80]. Then, a stochastic
process

S(t) = S°(t) = D &k fult)
k=1

almost surely belongs to the space Ly (€2). If in this case, there exists a limit
By(m,a) = lim By(m,n,a) < oo,
n—oo

An(m,a,s) =limsup Ay (m,n,a,s) < oo,
n—oo

then forany x > 0,0 < s < landm = 1,2, ... the inequality

P{ISx ()|, >z} [1.88]

o sx? o An(m,a,s) +wn(s)
X B —————— . X s ——

=P 2(By(m,a))? P 2By (m,a) WhAS
holds, where wy (s) is defined in [2.25].

PROOF.- It follows from [1.85] that forall z > 0,0 < s < 1,

PS5 @)Ly > =}

sx? — Ax(m,n,a,s)By(m,n,a)
< exp{ (B (1, 0))? } -exp{wn(s)}.

Hence, [1.86] and [1.87] imply that for any z > 0
P{|IS} ()L, >x} =0 as m,n— oo,
it means that
1Sy (), — 0 as m,n — oo in probability.
Then, there exists a sequence my < ng, k = 1,2, ..., such that
1Sk (t)]|L, — 0 as my — oo almost surely.

my

That is S(t) almost surely belongs to the space Ly (€2). Since S20(t) = S(t) —
S~ (t) almost surely also belongs to Ly (£2), then it is easy to show that

1Seo(t) — S (t)|lL, = 0 as n — oo in probability. [1.89]
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Therefore, for arbitrary > 0
P{IS ()L, >z} = P{IS(t)||lL, > =}  as n— oo

From [1.89], inequality [1.85] and the conditions of the theorem follows inequality
[1.88]. ([l

REMARK 1.11.— As N =1 A;(m,n,a,s) = 0, that is why to obtain theorem 1.7 it
is sufficient to satisfy the condition

Bi(m,n,a) -0 at m,n — co.

As N > 1 (see remark 1.3) from [1.87] follows [1.86].

REMARK 1.12.— It is easy to show (see remark 1.4) that under large enough x
inequality [1.88] the better the larger /N. But to apply this inequality under large N is
too complicated, because of cumbrous calculation. It can be minimized with respect
to s right-hand side of [1.88] as either N = 1 or N = 2 and obtain quite precise
simple inequalities.

COROLLARY 1.11.— Suppose that the conditions of lemma 1.17 hold. If for some
sequence a = {ay,k = 1,2,...}, such that aj, < agy1, ap — oo as k — oo, for any
m = 1,2, ... there exists a limit

Bi(m,a) = nl;n;o Z bin (J1(m, k a))% [1.90]

and the condition [1.86] as N = 1 is satisfied, then stochastic process S(¢) almost
surely belongs to Orlicz space Ly (2). In this case for arbitrary © > By (m,a), the
inequality

PSS ( IILU > fﬂ}

.’EQ
holds.

PROOF.— The condition [1.87] of theorem 1.7 holds because of A;(m,n,a,s) = 0.
That is why the assertion of the corollary about S(¢) almost surely belonging to the
space Ly (Q) is carried out. Inequality [1.88] in this case has a view (see example 1.5)

2

5 } [1.92]

oo #ex TR (2
PUISmOllre > 7} < —— P{ 2(B1(m, a))?

Minimizing [1.92] with respect to 0 < s < 1, i.e. setting s = 1 — (]31(2172"1))2, we

obtain inequality [1.91] as > Bj(m, a). O
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COROLLARY 1.12.— Let the assumptions of lemma 1.17 hold true. If for some

sequence a = {ax,k = 1,2,...}, such that a, < agy1, ap — oo as k — oo, and for
any m = 1,2, ... there exist the limits

Bs(m,a) = lim Z bin (Ja(m, k, @))% < oo,

n— o0
k=m

Ji(m, k,a)
C =1 by — ) 1.93
) g B A pon

and

n

Ji(m, k,a)
3, i)

n +—0 at m,n— o0 [1.94]
k=m (JZ(makaa))Q

holds, then stochastic process S(t) almost surely belongs to Orlicz space Ly (€2). And
for any 2 > (Ba(m, a) - Ca(m,a))2, the inequality

P{[Sy O)llL, > =}
< (QU - 02(m7 G)BQ(m7 a) + (B2(m’ a>)2)%

< Bo(m, a) [1.95]
2

e LU

holds true.

PROOF.— Corollary 1.12 follows from theorem 1.7 if we consider N = 2. Really, we
can easily show that

B2(m7naa) = Z bkn(JQ(m’ k‘l7a’))%’

k=m

Ay, a) —SZ kw
— (J2(m,k,a))2

That is why [1.94] yields [1.86] and [1.87] as N = 2 (see remark 1.3). Therefore,
S(t) almost surely belongs to Ly (€2). In this case, inequality [1.88] for arbitrary x >

0,0 <s<landm =1,2,... has the following representation:

P{IST Oy > =}

< oot sten] s oo i |
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Minimizing right-hand side of last inequality with respectto 0 < s < 1, i.e. setting

s=1-— (x2 - Cz(mﬂEgB;?(nTiL;)l) + Bg(m,a)>1’

as 22 > Cy(m, a) Ba(m, a), inequality [1.95] is obtained. O
1.7. Strictly sub-Gaussian random series with uncorrelated or
orthogonal items

In this section, the results of the previous section are applied to the series with
uncorrelated or orthogonal items.

Consider stochastic series [1.78]
St) =Y Gf(t),
k=1

where f = {fi(t),t € T, k = 1,2,...} is a family of functions from the space
Ly (T) that belongs to Dy(c), and £ = {&k,k = 1,2,...} is a family of strictly
sub-Gaussian random variables.

This section deals with convergence rate of the series [1.78] if either random
variables £, are uncorrelated or the functions fi(¢) are orthogonal. In this case, the
estimates of previous section are essentially simplified.

THEOREM 1.8.— Consider random series (process) [1.78]. Suppose that the
assumptions ~ of  lemma 1.17 are satisfied, random  variables

& = {&,k = 1,2,...} are uncorrelated or the functions f = {fi(¢),t € T,
k=1,2,...} areorthogonal

(/T @) fit)du(t) =0, k# l);

Ee? = o2 > 0, / e ()2 dpu(t) = B > 0.
T

If there exists such sequence a = {ag,k = 1,2,...} that 0 < ar < agi1,
ap — 00 as k — oo, and

o0 k %
ch(a,;1 — a;jl) <Z U?b?a?) < 00, [1.96]
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then stochastic process S(t) almost surely belongs to the space Ly (€2) and for any
x > Bj(m, a) the inequality

P{||S°° )|z, > x} [1.97]

holds, where

a) = i cu(ay' —aply) (Z 021) as >
k=m

PROOF.— The assertion of theorem follows from corollary 1.11. Really, it is easy to
check that under conditions of the theorem

1(m, k,a) ZO’

That is why the equality
Bi(m,n,a) [1.98]

n—1 1 c n 1

n 272 2
= 3 axlar — i, (zo @) + 2 (Y oad)
k=m " Nj=m

holds. The condition [1.96] implies that
cx(ay, akH <Z 02b2 2)

<Y eyt —arh, (20262 2) -0 [1.99]

k=m

as m,n — oo. Similarly, the next relationships follow:

() < (L)

Nl

[1.100]

N Il
[]e M8
= =
= =
— —_
S S
Rl = |
+ = —+ =
= =
o 3]
el 3
7N 7 N
R
bq Q
o Y
QQM @M
~_ ~~_
Nl =
o
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as n — oo. Hence, [1.98]-[1.100] yield that B;(m,n,a) — 0 as n,m — oo, it
means that the condition [1.86] holds. It is clear that the condition [1.90] also holds
true, that is

Bi(m,a) nlurolo Z bk”(Z o; b2 2)

j=m

N

oo k %
=3t —al (L) = Bona
k=n j=m

Inequality [1.97] follows from [1.91]. O

COROLLARY 1.13.— Consider random series [1.78] (process). Assume that either
random variables £ = {&,k = 1,2,...} are uncorrelated or the functions f =
{fe(t),t € T, k =1,2,...} are orthogonal E& = of > 0, [, [fu(®)?du(t) =
b2 > 0. Let the conditions

ZO—%Q [1.101]
o 212
chak—b’“«)o [1.102]

be satisfied. Then, stochastic process S(t) almost surely belongs to the space Ly (€2)
and for any = > Bj(m) the inequality

P{HS ||LU >l‘}

2
ool -5 A0S
holds, where
o] 0o -1 %
Bi(m) = Z ckaﬁbk{ <Z 0262> - (Z Jfbf) } .
k=m s=m

PROOF.— Show that the corollary follows from theorem 1.8. Choose in [1.96] the
sequence ay, as:

- (o)

1
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Estimate now B 1(m, a) from [1.97] under chosen sequence a. It is easy to see that
the following relationships hold true:

k
212 2
> apbia3
j:

S, A BT

= SE = . PR —— 2

Jj= e =j 02b2) j=m (Zs:j ngg) (Zs:k ngg)
k-1 00 2b2 ZOO 0.2b2

< ; 7+ ( U2b2) [1.104]
i= ( 02b2)( o j1 0303) Z
k-1

S () (L) )+ ()

(Z 02b2> o (i a§b§>_1.

S=m

Q

[1.104] and equality a;, ' — a; !, = o'7b7 imply that
By (m,a) < By(m). [1.105]

From [1.105] and [1.102] it follows that Bl(l, a) < 00, it means that condition
[1.96] of theorem 1.8 holds. Inequalities [1.97] and [1.105] provide [1.103], since the

2
function c¢(x) = x exp{ f%} monotonically decreases as x > 1. ]

From theorem 1.8 follows corollary 1.14.
COROLLARY 1.14.— Let the assumptions of corollary 1.13 be satisfied. Instead of
conditions [1.101] and [1.102] the following condition holds true: suppose that for

some sequence a = {ap,k = 1,2,...}, such that 0 < ap < agy1, ap — 00 as
k — oo,

> erlagt = apy) < oo, [1.106]
k=1

Z 02b2
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Then stochastic process S(t) almost surely belongs to space Ly (£2) and for any
x > Bj(m, a) the inequality

P{|ISyy ()|, > =} [1.107]

< exp{;}gl(:m eXP{M}
holds, where
(o) (o)

Finding the sequence a = {ax,k = 1,2,...}, which satisfies equation [1.106]
will be useful in the next lemma.

LEMMA 1.19.— Assume that there exists a function ¢ = {c(u),u > 1}, such that
¢(k) = ¢k and c(u) monotonically increases. Suppose that a = {a(u),u > 1} isa
function such that a(u) > 0, a(u) monotonically increases, a(u) — 00 as u — 00
and there exists a derivative o’ (u). If the following integral converges

/WM@«”, [1.108]
1

then the condition [1.106] is satisfied for the sequence a = {ag, k =1,2,...}.

PROOF.— The assertion of the lemma follows from such inequalities:

O

THEOREM 1.9.— Consider random series (process) [1.78]. Let the assumptions of
lemma 1.17 hold. Assume that random variables £ = {&,k = 1,2,...} are
uncorrelated and the functions f = {fi(¢),t € T, k = 1,2,...} are orthogonal;

E€2 = o2 > 0, / e (0)[2 dpu(t) = 12 > 0.
T
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If there exists a sequence a = {ax,k = 1,2,...} such that 0 < ap < agy1,
ar — oo as k — oo, and

> <ak‘

k=1

)(Z]%b%> < 0, [1.109]

Ak+41

then stochastic process S(t) almost surely belongs to the space Ly (£2) and for any
x> (By(m, a)Cy(m, a))?, the following inequality holds true

P{||S7n ||LU >Jf}
@—@mm@mm+@mwwﬁ
Bsy(m, a)
exn] z? Cy(m, a)
Xp{m&mmﬁ%@mm}

b~ Sl ) (o)

<

[1.110]

b k41 =
Co(m,a) = c ojbja
2l kgr:n k(ak ak+1><z| il )

PROOF.— The proof of theorem follows from corollary 1.12. Really, it is easy to see
that under conditions of theorem

: i
(m, k,a) Z o3bia3, Jo(m, k,a) = (Z U?bﬁa?) .
j=m
The Holder mequallty yields that

= Jl(m7kaa)
byn—"—"""7"+
2 b (Ja(m, k,a))?

k=m

k Ik 4
n X boasld)? X ba
< Z b (Z]:m lojbjasl ) (Z]:T |oj Jaj|3)
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From the inequality above and condition [1.109] as in the previous theorem it
follows that [1.94] is satisfied. Inequality [1.95] implies [1.110], because of
Bs(m,a) = Bsy(m,a), and from the Holder inequality it can be obtained that
Cy(m,a) < Cy(m,a). O

COROLLARY 1.15.— Suggest that the assumptions of theorem 1.9 are satisfied. Let
the following conditions instead of [1.109] hold true: for some sequence a = {ag, k =
1,2,...} such that 0 < ay, < ag1, ap — oo as k — oo, [1.101] is satisfied, the next
series converges

> Jojbia;)E < oo [1.111]

j=1
Then, stochastic process S(t) almost surely belongs to the space Ly (£2) and for
any > (Ba(m,a)C2(m, a))? the inequality
P{IST Oy > o}

< (@ = Cam, @) By(m, a) + (By(m, a))*)*
- Bsy(m, a)

X exp{—2(32(::j%a))2 + 2%2(?;2)}

holds, where

Bo(m, a) = <i|ajbjaj|4) i C’“(al,f - )

[1.112]

Bl

a
A k+1

3 oo . 3 o0 1 1
Cz(mva)—<2|0jbjaj3> kzZka(ak— )

a
iz k41

1.8. Uniform convergence estimates of sub-Gaussian random series

In this section, the conditions and the rate of convergence of sub-Gaussian random
series are given.

Let (T, p) be separable metric space. U is a o-algebra of Borelean set on (7', p)
and p(-) is o-finite measure on (T, U); C(T) is a space of continuous and bounded
functions on (7, p) with norm || f(¢)||c = sup,er | f(t)].

DEFINITION 1.11.— We will say that the sequence of functions { fi.(t),k = 1,2,...}
from C(T') belongs to the class B, if the following conditions hold true:
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a) there exists a continuous function c(t), such that |c(t)| < 1 and

[ 1ol dute) < .
T

furthermore, for any € > 0 there exists a compact K. C T that outside of this compact
inequality |c(t)| < € holds.

b) there exist continuous functions q,(6) > 0, 6 € R, n = 1,2, ..., such that for
each n and &1 < da we have ¢,(61) < gn(02), ¢n(6) = 0, as § — 0, g, (0) — oo,
n— 00,asd >0, gn, (§) < ¢n,(0) asny < ng, § > 0.

c) For any sequence of numbers {b,,n = 1,2,...} forall t,s € T and all n, the
inequality

c(t) > brfilt) = c(s) Y bifi(s)
k=1 k=1

<

c(t) > bi fi(1)
k=1

n(p(t,5))
c
is satisfied.
REMARK 1.13.— In definition 1.11, sequence ¢, (d) and function ¢(t) are the same
for any sequence {by,k =1,2,...}.

LEMMA 1.20.— Assume that f = {fi(t),k = 1,2,...} is asequence from class B,
n
and R, (t) = > by fr(t). Then, for arbitrary 0 < 6 < 1 there exists a set A(0, {bx})
k

such that u(A(8. {bx})) > 6. (6), where

on(0) = inf u(s: plt s) < a7 (0)),
(¢ (6) is inverse function of g, (6)) and for z € A(0, {bx}) inequality

le(t) R ()] = (1 = 0)||c(t) Bn (1)l [1.113]
holds.

PROOF.— It follows from the properties of ¢(t) and fy(t) that there exists a point
to such that |e(to) Ry, (tg)] = ||c(t)Rn(t)||c- To clarify uncertainty, we suggest that
¢(to) Ry (tg) > 0. Then

c(to)Rn(to) — c(t)Rn(t) < c(to)Rn(to)an(p(t, to))-
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Let A(,{br}) be a set of points ¢ such that p(t,ty) < q,(L_l)(Q). Then, for ¢ €
A(0,{by}) the inequality
C(tQ)Rn(to) - C(t)Rn(t) < C(to)Rn(to)e
holds. It means that for ¢t € A(6, {bx}) [1.113] carries out and p(A(0, {bx})) > §,,(0).
(I

DEFINITION 1.12.— The measure p(-) in definition 1.11 is called admissible if the
function 0,,(0) has a property 6,,(6) — 0 asn — oo, 8 > 0, and for any n §,,(0) — 0
as @ — 0.

REMARK 1.14.— It is clear that the function J,,(6) has such properties: for any n
dn(61) < 0,(62) as 01 < 05 and for any 6 0, (8) < dp, (0) as ny > no.

Consider some examples of sequences from the class B with admissible measure
.

EXAMPLE 1.11.— Let T = [=b,b], b > 0, p(t,s) = |t — s|, and pu(-) is Lebesgue
measure,
n mkx . wkx
fnlz) = k;ﬂ <ak cos - + ¢ sin b>

is a trigonometric polynom. The sequence of function f, (x) belongs to class B.
Furthermore, c(t) = 1, g,(0) = 225, 6,(0) = -20. Really, since

R,(x) = 14:21 bi fr.(x) is trigonometric polynomial, then from the Taylor formulas

and the Bernstein inequality (see [BUL 00]) follows the inequality

[Ra(@) = Ra(y)] = R, (2)(z = y)| < 25| Ba(@)llcle = yl.

Hence, g, (8) = %6, ¢\ " (6) = 26 and 6,,(6) = -24.

n

DEFINITION 1.13.— A function of complex value z f(z) is called an integer function
of exponential type if for any complex z the following inequality holds true

|f(2)| < Aexp{Blz[}, [1.114]

where the numbers A > 0 and B > 0 do not depend on z. The type of the function is
defined by the formula

w= Tm 1n|f(z)\
|z| =00 |Z|

[1.115]
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EXAMPLE 1.12.— Let T = R, p(t,s) = (-) is the Lebesgue measure,
fu, (2) is a function of exponential type u,,, bounded on real axis u,, < Upt1, B =
1,2, - (Definition 1.13). A sequence of functions f,, (z),n = 1,2,---, belongs to
the class B, moreover c(t) = 1, ¢, (0) = und, 6,(0) = 1%9 Really, since a function

R,(x) = Z bk, fu, () is a function of exponential type w,,, then from the Taylor
formula and the Bernstein inequality (see [BUL 00]), it follows

[Rn(z) = Ru(y)] = | R (2)(x — y)| < unlRu(@)llclz —yl.

Hence, ¢, (8) = und, ¢ (8) = 2 and 6, (0) = 0.

Un

EXAMPLE 1.13.— Let T = [0,b], b > 0, p(t,s) = |t — s|, u(-) is Lebesgue measure,
B(t,s), t,s € [0,b], is continuous symmetric non-negative definite function, (),
k = 1,2,---, are an orthonormal eigenfunctions and A are corresponding
eigenvalues of integral equation

b
z(t) = /\/O B(t, s)z(s) ds.

Then, it can be shown that (see, [KOZ 07a]) the sequence of functions x,,(t), n =
1,2, -, belongs to the class B with q,,(6) = A\, vbwp(6), c(t) = 1, where

[N

wﬂﬁ—-sq)(A%BWJﬂB@J»%h)

lu—v|<o

Therefore, q,(fl)(é) = wgl)( 0 ) and 6, (0) = Wj(g_l)( . )

An\/g )\n\/g
Consider now the series
St) =Y & fr(t),
k=1
where £ = {&,k = 1,2,---} is a family of sub-Gaussian random variables,

f={fx,k =1,2,---} is a sequence of functions from the class B with admissible
measure p. For 1 < m < n < oo, denote

ka: (t)&k, Ry (t Zbkfk )€k

9 1
Zy, = | (B ()¢

where {by,k = 1,2,---} is some numerical sequence, 7(R},(t)) is sub-Gaussian
standard of R, ().
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LEMMA 1.21.— Forn =1,2,...,and 6 € (0, 1), such that

600" [ let)lautt) =1,
for any y > 0, the inequality
E exp{yllc(t) Ry, ()llc} [1.116]
2

2 Y n\2
o | eolanoen] e

<

holds true.

PROOF.— It follows from lemma 1.20 that with probability 1
0n(0) (exp{yllc(t) Ry, (D)} — 1)

< / (exp{ylle(® R} — 1) dut)
A(0,{br})

<o (oo grmmnl) 1) i
< [ (ew{ {Zgromnen} - 1) anco
< [1ewi(exo{ glrn ol - 1) au

If we take mathematical expectation from both parts and take into account sub-
Gaussian random variables

27_2
Bexp{A]} < 2exp{ 25},

we obtain
E exp{y|lc(t) R}, (t)llc}
1 y . )
= 5n(9)E/T c(t)|<eXp{19|Rm(t)|} 1) du(t) +1
2 /2 )
<55 /T |c<t>|dﬂ<t)eXp{M(Zm)2}

1
-5 /T (O] du(t) + 1
2

Y n\2
o [leolaten] 5 @) .
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LEMMA 1.22.— For arbitrary y > 0, 6 € (0, 1) such that

S ACCILIORS

and for non-decreasing sequence {bg, k = 1,2,--- }, by, > 0, the inequality

E exp{ylle(t) Sy, (1)l o} [1.117]
2

<2 [Jetolaute ] 5 gz (n? + g DA},

holds, where
n—1
A= (0 = b)) Zn 0. 20

k=m

n—1 1
n 1 _ _ 1 Zg@ Iné,(0)|2
D0 =24 (X077 - il Zhlmao)t + 2O ),

PROOF.— Consider Abelian transform

n—1
Sm(t) =Y (b = b ) RE, (1) + b R (1),
k=m

Then
B exp{y[c(t)ST (1)} < Eexp{ 3 ydk||c<t>an<t>c},
k=m

where

_J b b,zﬂ, k=m,n—1;
d’f‘{bnl, k= mn.

From [1.116] and the Holder inequality, for {aj} such that S°)_ a; ' = 1,
ay, > 1, it follows that

E exp{yllc(t) Sy, (t)llc }

< ﬁ (EeXp{yOékdk:” ||C})

k=m

<l£[<5k /|c )| du(t) eXp{WD@

k=m
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oy, d? Zk 1
<2/| )| dp(t exp{zy i ak|ln5k(9)}.

Note
2 _ v di(Zp,)?
FTo(1—0)27
510 2
ap = (|65 (6)] + v)

Hy, ’

n
where v > 0 such that Y «; ' = 1. Remark that under these conditions

k=m
1= oyl = < —,
2= 2 et S 2

which means that v < (Y7_, Hy)”. Hence,
Eexp{ylle(t)Si0)]lc}
<2 [ (ol dntt)
=2 [ Je(t) dutt)

. 2/T |c<t)|du(t>exp{(i Hk)Q £23 Hilnby(0 >|;}

k=m k=m

O

THEOREM 1.10.— If there exists a sequence {by, k = 1,2,--- }, bg > 0, by, < b1,

br — oo as k — oo, that satisfies conditions: foranym > 1,s < m,0< 60 <1

o0

STt = b)) ZE I 6(0)]F < oo,
k=m
Z7| 16, (0)[2

—0 as n — oo,
br,
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then ||c(t)(S(t) — ST7(¢))|lc — 0 as n — oo in probability and for z > ’”(9 and 6,
such that

)t /T ()] dut) > 1
we have

P{llc®)Sy ®)lc > =} [1.118]

<2 [ el aut o] by (= 220) 1 op2),

where
o0
= > 0 = b2,
k=m
:2% Z *b;ﬂ | I 65, (0 )\%
k=m

PROOF.— By the Chebyshev inequality and lemma 1.117 for all y > 0, the following
relationship is obtained

E exp{ylle() Sy, (t) [0}

P{lle(®)Sn@)lo > 2} <

exp{yz}
<2 [ el aute exp{MW +y g2 - e,

where A?, D" (6) i ( ),

v= (e~ %?)“ - o

Then, we have

P{llc®)S0)lc > «}

<2 [ leolantyesn] 5z (2 %?)2(1 -0} =0,

as m — oo, n — oo. Since A7, — 0 and Dj,(f) — 0 as m,n — oo, then
lle()Sy.(t)|lc — 0 as m,n — oo in probability, therefore
le(t)(S(t) — S (t)|lc — 0 in probability as n — oco. The estimation of convergence
rate is obtained from the above inequality, if the limit is taken as n — oo. ([
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Let r(u) > 0, u > 1, be a monotonically non-decreasing function such that
r(exp{u}) as u > 1 convex, for example, 7(u) = u®, a > 0; r(u) = (Inu)*, o > 1.

LEMMA 1.23.— For any y > 0, non-decreasing sequence {by,k = 1,2,---}, such
that b, > 0, by, — oo as k — oo and such 6 € (0, 1), that 6;(0) < 1 and

1
535A@@MMU>1

the inequality

E exp{y[c(t)S™ (6)]1c}
szﬁwmwww

A4 - V8 U BN VPR P
Xexp{2(1—9)2<<,§;ﬂ(bk bk+1)>Z +b Z ) } [1.119]

XMD( b (o = ) Zhr (0 @%M#%M%%W>
b (O = 0) 28+ 552, ’

holds, where (—1) (u) in an inverse function of r(u).

PROOF.— Similarly to the proof of lemma 1.22 for any ap, > 0,k = m,m+1,...,n,
such that a,:l =1, and y > 0 we obtain
k=m
Eexp{yllc(t)Sy, (@)llc} [1.120]
y akd ( '"L) 1
<2 t)| du(t =+ —|Indg(0 .
<2 [ jeto) ~<>6Xp{2§;( i R0

Since exp{ Z o lnék(9)|}

k=m

= (D [r (exp{ f: ozt In 5,@(9)})}

k=m

<3 etz
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then from [1.120] inequality

B exp{yl|e(t)S2 (8)c)
c ex Y apHZ br=h Y a tr(6t
<2 [ [e(o)autt p{k; ka} (k;n U <e>>)

is obtained,
2 _ dei(Zﬁl)z
BT 21 —-0)2

If we put a, = H, ' ( Y. Hy), then the assertion of lemma is proved. O
k=m

THEOREM 1.11.— If there exists the sequence {bg, k = 1,2, }, b > 0, b, < bgr1,

b — oo as k — oo, and the next conditions are satisfied: for arbitrary m > 1, s < m,
6 €(0,1)

o

> (bt = bity) ZEr(8,1(9)) < oo,
k=m
Zer(0,1(9)

—0 as n — oo,
br,

then ||c(t)(S(t) — ST (t))||lc — 0 as n — oo in probability. As = > 0 and 6 such that
dm(0) < 1and

w)
—— | Je(®)|du(t) > 1,
5@ J, el ant®
the following inequality is fulfilled

P{llc®)Sy @lc > «}

x2(1 — 9)2
< 2/T le(t)] du(t) exp{—wn} [1.121]
o LN -
(07 ity o)),
M k=m
n—1
Am = (g = b)) Zn,.
k=m

PROOF.— If the conditions of theorem 1.11 are satisfied, then the conditions of
theorem 1.10 also hold true, that is the assertion about the convergence carries out.
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Similarly to the proving of [1.118], the inequality [1.121] follows from [1.119] and
the Chebyshev inequality if we put

z(1—0)?
y= n 2
(Zk:m de’rIiz)
and take a limit as n — oo. O

1.9. Convergence estimate of strictly sub-Gaussian random series in
C(T)

In this section, the results of the previous section are improved for strictly sub-
Gaussian stochastic series. Consider now T' as R™ or a rectangle on R™, u(t) is a

Lebesgue measure.

Let C(T) be a space of continuous and bounded functions with a norm
If®)llc = sup|f(#)].
teT

Consider a series
S(t) = fe(t)s,
k=1

where & = {&,k = 1,2,...} is a family of strictly sub-Gaussian non-correlated
random variables, f = {fi,k = 1,2,...} is a sequence of the functions from class
B and p(-) is a Lebesgue measure. For function f, there exists constant ) > 0 such
that forallk =1,2,...

sup | f{ ()] < Q*.
teT

Denote for1 <m < n < oo

Sn(t) = fu®k,  Rp(t) = befu(t)r,
k=m k=m

Zy, = ||r(B5.0) ]|

where {by, k = 1,2,...}, by > 0, is some numeric sequence.
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REMARK 1.15.— For such series, the following estimates hold true
n 2 n
B(Sp(1)* = E(Z USIEED
k=m k=m
<@’ Z biok, [1.122]

where o7 = E&3.

REMARK 1.16.— For simplicity, consider the case when @@ = 1. And

1
[ e@®)|dt>1,  k=1,2,...,
W)/Tw

The obtained estimates can be easily rewritten in the case of () # 1 that will be
carried out in examples.

THEOREM 1.12.— Let there exist the non-decreasing sequence {b;,k = 1,2,...},
b > 0, by — oo as k — oo, and the following condition is fulfilled

D (bt = bjty) I (ok( ))|2(Z b§a§> < 0. [1.123]

k=1 s=m

Then, ||c(t)(S(t) — S7(t))||c — 0 in probability as m — oo and for any y > 0,
6 € (0,1), such that

—1/ le(t) dt > 1,
T
the inequality

Eexplyllc(t)Syy (t)lc} [1.124]

2 , NG)
< 2/T|c(t)|dtexp{2(1y_9)2AW+ (13/_ G)Dm}

is obtained, where
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PROOF.— It is easy to show that the second condition of theorem 1.10 follows from
[1.123]

Nl

b, Z7, | n(65(6))]

= (Zb > |In(s (gm%
- <§ bgaé?)é g(bi AN CACHIE

oo k % N
<3030 w02) mon] 5" - bik) 0
k=n ‘s=m

as n — oo. Hence, uniform convergence in probability of the series ¢(¢)S(t) follows
from theorem 1.10. From [1.117] and [1.122] it follows that

E exp{y[e(t)Sp (1)l }

2
< 2/T|c(t)|dtexp{M(A;)2+ (f\/;)pn}

n—1 k % n %
A= (b b;+1)<2 b?af) +bn1<Z biaf) :

k=m s=m s=m
n—1 N k %
Dy, = Z (b = bity) | (8n(6))]2 (Z biag)
k=m s=m
by (Z b0 ) (0, (6))|?
Taking a limit as n — oo, we have [1.124]. U

LEMMA 1.24.- If £ = {&;,k = 1,2,...} is a family of strictly sub-Gaussian non-
correlated random variables and for 5 € (0,1/2), the condition

[es) N o] ps—1
> I (5,(6) 2ak<za§> < 00 [1.125]

k=1 s=k

is satisfied, then the assumption of theorem 1.12 holds and for y > 1, § € (0, 1) such

that
—1/ le(t) dt > 1,
T
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the estimate

Eexp{y||c(t)s,;'$(t)lc <i "3)é}

sS=m

< 2/ (b)) dt [1.126]
T
2

y 28+1
><exp{2(1_9)2 + y26+ (\/5(19)2+ -9

holds true.

S

o0
PROOF.— For simplicity in proving we suppose that > o2 = 1. As
sS=m

{bk,k =1,2,...}, by > 0, choose the sequence

[e%s) —1
bk_l—i-yp((Za?) —1>,
s=k

where p > 0 is some number. If for the sequence condition [1.123] is satisfied, then
theorem 1.12 holds true. Let us estimate the right-hand side of [1.124]. From the
Minkowski inequality, we have:

() = (S0 s((S) ) )

k=m m s
n z 1 n o -1 2 z
(S HE(E) )
k=m Yy k=m s=k
n—1 ) -1 2 oo -1 2,1
<14+ — ZO’%((ZO’?) 1) Jrai((Zaf) 1>
k=m s=k s=n
1 n—1 DDy gf oo -1 2
<1+ — / << af) — 1) dz
yr ];1 Ykt 0? ;c
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2

SH;Z/:M (ia;%)_l—1>

s=n

R (E -5 (597

1

2

k=m s=k+1 s=n

o) -1 %
(S )
yr s=n
Then
e’} oo —1 %
e S oe Z((E) )
k=m s=k
o] 0o 00 —1 %
-t S () )
k=m Yy k=m s=k

Denote

EzJ((iko)—l)

then from above inequality follows that

S

Am

IN

1+

1
Z (Exq1 — Ep)Ep
v

y: = (1+ Ex)(1+ Ext1)

Ex41 ;dl‘
gZ/ (L4 Ey) (1 + Egt1)

Sinceas0 < a < b

[ [ o
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then

Brt WVrdr
(1+x)?

3 Vrdr 2 %E
<1—|—<yp> /0 (1+2)7 —1—|—<yp> 5 [1.127]

For D,,, the following inequality holds true

-

Dy, < Q i (1+Ep)™ =1+ Egy1)™)

>< ((fj a) - 1);\111«5&(9))!é

_l’_
—~
—
—_
_l’_
&
=
~—
|
—
[—
Jr
&
ol
+
—
~—
—
~—
=3
—~
=2
o
—~
)
~—
—
[N

L= Y (4B = (0 Bue) ) e 0)

Ly = (A+Ep) =1+ Egy1)™Y)

Since 8 € (0, 3], then

1 Eyy1 — Bk
L, < 1 (x( 2
! Z n(9k( (1+ Ep)P(1+ Exq1)

<> |k (0))|?
k=m

X

S o2+1-302) (@ 3 o2+1- 3 o?)
s=k

s=k s=k+1 s=k+1
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Since y > 1,theny? > oo, 02 +1— 322, 02 > 1, therefore,

s=k s
[eS) 1 e8] p—1
<y 3 meo)foR(Se?)
k=m s=k
Similarly,
1
2 — 1 (Exp1 — E N
L < 22 3 oo B )
yr = (14 Ep)PHY2(1 + Egya)
V3 & L p(1/248) 52
<— Z |ln(5k(9))|2yo,%2155-
Y k=m (Zs:k Us)

Put p = 2(1 + 23) ! and define
oi

Fy=S" @, 0) —Z
’ k:zm‘ | (Zio:ko-s) ’

Then
D,, < (ypﬁ + ﬁyp(ﬂ_l/”)Fg = <y2§il + ﬁy%)Fg. [1.128]
Substituting [1.127] and [1.128] into [1.124], [1.126] is obtained. O

THEOREM 1.13.— Let 3 € (0,1/2], 6 € (0,1) and m is large such that

(6 (6)) " /T ()] de > 1,

and condition [1.125] is satisfied, then ||c(¢)(S(t) — S7*(t))|lc — 0 as m — oo in
probability and for > 2 the estimate

oo 1

P{||c(t)52$(t)c > x(z Jg) 2}

s=m
2 1 —
< 2/ |c(t)|dtexp{—9;+1+\/§xigil (Fﬂ+;) [1.129]
T
48 — 1—-2p8 7T2
+ 2x2F+T <F5Q5($) + 1’“”) }

hold true, where

~ oo 9 N |3 %) B—1
F/g: Z 1n5k<1—(1—x2> ) U;%(ZUE) )
k=m s=k
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17 B c 11

ga(x) = o ke

x SlerEay ,B € (0 6)'

PROOF.— The convergence follows from lemma 1.24. If for § € (0,1) we put

y=21(1 — 0)?, then when z(1 — #)? > 1 by the Chebyshev—Markov inequality and
[1.126] we obtain

Pl ol > (3 "5)5}

s=m

22(1 — )2
<2/T|c(t)|dtexp{—(129)

#VER g ()

1-6 ' 2(1-6)?

_ap_ s F 2
+ 2x26+1 (1_9)22[1+1 <1_ﬁ0 + 8(1_9)2)} [1130]

2 1—6 2
S2/ |C(t)|dtexp{—x(2)+\f2x3§ﬂ (FB—F;-)
T

68—1 2

4 op T (Fﬂ(l — 0)2571 + %(1 _ 9)2%5;11) ) }

For x > 2set (1—0)%? = 1—2/x2, therefore #(1—60)? = x—2/x > 1. Obviously,
in a case such that (1 — 6)2 > 1/x, then

(1— ) 27 < g3t [1.131]
a1 1 1-68<0

(1— ) =052 < { 1 ep p<0, [1.132]
21525 1 — 643 > 0.

Substituting 6, [1.131] and [1.132] into [1.130], we obtain [1.129]. [l

Let r(u) > 0, u > 1, be such monotonically non-decreasing that as u > 0 the
function r(exp{u}) is convex.

THEOREM 1.14.— Let there exist non-decreasing sequence {by,k = 1,2,...}, by >
0, by, — oo as k — oo. Suppose that for all 8 € (0, 1) the condition

> (0t = b)) ZEr(5,1(0)) < 00 [1.133]

k=1
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is satisfied, where
k
Sk\2 2 2
(Zl ) = Z bsgs .
s=1

Then, ||c(t)(S(¢) — ST*(t))|lc — 0 as m — oo in probability and for such 6 that
dm(0) < 1and

‘1/ le(t)| dt > 1,
T

the following estimate

Eexp{ylc(t)Sys (t)lc} [1.134]

< 2/T|c(t)|dtexp{2(lyio)2,43n}r—l<l7zn(j)>

holds true, where

b

3

|
(e

=

= |

(=

il

N
N
1~

=y

w N

<)

« N
N———
N|=

k=m s=m

[e’e] k %
Do) = 3 " = bitro o) (3 a2 )

k=m s=m

PROOF.— Remark that
by, 'r(0,1(6)) (an biai) ’
B k
= Z (b " = bet)r (6, (Z b2o? )
< Z bl )r (Z bio )2 =0

as n — oo, it means that under [1.133] the condition of theorem 1.11 holds true. From
theorem 1.11 follows that ||c(¢)(S(t) — S7*(¢))||lc — 0 as m — oo in probability. In
the case where n — oo, relationship [1.119] yields [1.134]. (I

(NI

1

LEMMA 1.25.— Let forany 6 € (0,1), 3 € (0,1/2] and

o) oo B—1
> r(6.1(0)a <Z<72> < 0. [1.135]

k=1 s=k
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Then, the conditions of theorem 1.14 are satisfied and fory > 1, 6 € (0, 1), such
that d,,,(¢) < 1 and

*1/ le(t) dt > 1,
T

the following inequality holds true

Eexp{y||c(t)5fn°(t)|0 (i “f)é}

s=m

§2/ le(t)] dt [1.136]
T

y2

X exp{2(1 oy <1 + \/gy2>2}r(1)(G5(y45 +12)),

Gy = grwklw))az (i ai)ﬂ_l.

s=k

PROOF.— Without loss of generality suppose that 0,% = 1. As a sequence
k=m
{bx,k =1,2,...} consider

o0 —1
bk=1+14<(za§> —1).
Yy s=k

As in the proving of lemma 1.24, we obtain

oo k 3

I;(b bkil)(szzmbga§> <1+\/§2,
> b = bt )r(0; (Zb > [1.137]
k=m

< (4" + V241G < 0.

Hence, the condition [1.133] is fulfilled, which means that theorem 1.14 holds true.
The estimate [1.136] follows from [1.134], taking into account [1.137] and y4(5 -3) <
1l asy > 1, and inequality

e k 1 k
Z _b1:+1 <Zb§gf)2 ZZale.
k=m s=m s=m
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THEOREM 1.15.— Let for any 6 € (0, 1), such m that §,,,(¢) < 1 and

/ ()] dt > 1,
T

B € (0,1/2], the condition [1.135] is satisfied. Then
le)(S(t) = ST (E)lle =0

as n — oo in probability and for x > 2, the estimate
EoN3
P{lcoszole > (3 02) |
<2 / le(t)| dt
T

xexp{—i:+<1+;é>2}ﬂU(Gg@%5+-v5»

holds true, where
1
2\ 2
-1
(o <1_ (1_962> )

o0

Gy =

k=m

[1.138]

PROOF.— The convergence follows from lemma 1.25. From the Chebyshev—Markov

inequality
E exp{y|lc(t)Spy ()¢ }
exp{yx}

and [1.136] follows the estimate [1.138], if for = such that z(1 — )
2(1-0)2, and for z > 2 put (1—0)? = 1—2/22. In this case, 7(1—0)? =

P{llc®)S7 ®)lc > =} <

> 1, puty =
x—2/x > 1.

O

REMARK 1.17.— The obtained results can be carried over the case of the random

series on finite interval. Really, let there exist

A le®)] = le()] > 0.

Then

P{\Zli%“ [So @) > 2} <P{]lc®)S5 (t)llc > zle(v)]}-

EXAMPLE 1.14.— Consider the series, T' = R, t € T,

o

C(t) =Y (& cos(Axt) + mi sin(At)),

k=1
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where {&;, nk, k = 1,2,...} are independent strictly sub-Gaussian random variables,
Efk = E?]k =0, Efz = E’l],% = O’%, k=1,2,...,0 < X\ < )\k+1, A — 00,
k — oo. It follow from example 1.12, the sequence of functions

{c(t) cos(Agt), c(t) sin(Agxt)}
belongs to the class B, if

c(t) = <sin(5t)>27 e €(0,1/2).

et

oo . 2
Therefore, 6,,(0) = 225z and [ <bms(ft)> dt = I, that is
—o0

1 ° T(An + 2¢)
—_— = —2 > 1.
5. (0) /_DO ()l dt 20:  ©

1.10. The estimate of the norm distribution of L,-processes

Let X = {X(¢), t € T} bea L,(Q) -process, p > 1. Denote p,(¢,s) = || X (t) —
X (s)|lz,- Suppose that the following conditions are fulfilled:

A;) The process X is restricted in L,, i.e.

sup | X (1)), < oo,
teT

As) A space (T, p,) is separable and the process X is separable on (T, p,). Let
g0 = sup || X(t)]|z, -
teT

By N(¢) = N, (T,e) and H(e) = InN(e) denote a metric massiveness and
metric entropy of parametric set T with respect to the pseudometric p,, respectively.

THEOREM 1.16.— [BUL 00] Let an L, (£2)-process X satisfy conditions A;) and
1

€0 PN\ p

As). Suppose that [ N%(E)dé‘ < 00, then (E (sup |X(t)> ) < By, and for all
0 teT

x>0

BP
P{meuMZx}g%

teT
where

1 00
— P\ 4 inf — - »
By = sk BIXOM? + 35l 5y | Ve
0
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where 7o = sup p.(t,s) = sup || X(t) — X(s)||r,. Since o < 2¢0, then we have
t,s€T t,s€T

the following.

COROLLARY 1. 16— Assume that L,(2)-process X satisfies conditions A;) and

As). Suppose that f N'#(g)de < oo, then

(e <f2¥'X“>>p>; <B,

and forallx > 0

P{sup|X(t)| > m} < —,

teT
where
20¢eo

— p 3 P
B tlélff?(ElX(” )p+oi1(3f<101—0 /N



2

Simulation of Stochastic Processes
Presented in the Form of Series

In this chapter, the results of the first chapter are applied to construct the models
of random processes that allow for the representations of either Gaussian or strictly
sub-Gaussian series. In section 2.1, the general principles of modeling techniques are
considered. Section 2.2 is devoted to the models construction of stochastic processes
using their Karhunen-Loéve expansion. The models obtained approximate the
processes with a certain reliability and accuracy in the spaces L, (T") and C(T") and
some Orlicz spaces Ly (T'), where T is an interval. All the models considered in
other sections of this chapter also approximate the processes in the same functional
spaces. Section 2.3 deals with the models of stochastic processes applying their
representation in the form of a Fourier series. The disadvantage of these models is
that the items of these models in contrast to all other models are dependent. In
section 2.4, models of stationary processes with a discrete spectrum are discussed. In
section 2.5, the models of stationary random processes that allow for representation
as a series of independent items are investigated. The models of this chapter are
considered in the books of [KOZ99b] and [KOZ(07a] and papers of
[KOZ 88, ZEL 88, RYA 90, RYA 91] and [TRI 91].

2.1. General approaches for model construction of stochastic processes

Let a stochastic process X = {X(t),t € T} be represented in the form of the
series

X(t) = &rld),
f=1
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that converges in mean square. We say that X, = {X s (¢),¢ € T} is a model of the
process X if

M
Xnr(t) = & falt). [2.1]

k=1
Assume that stochastic process X and all Xp;, M = 1,2,... belong to some
functional Banach space A(T') with a norm ||-||. Fix two numbers cand 6 (0 < o < 1,

d > 0). Model X, approximates X with reliability 1 — « and accuracy § with respect
to the norm of the space A(T), if the following inequality holds true

P{|IX() — Xu()]| > 6} < o 22]

Therefore, for model construction it is necessary to find the number M that given
0 and « inequality [2.2] is satisfied.

Suppose that the next inequality
P{[X(t) = Xu(@)] > 6} < W (0)

is established, where W), (9), § > 0 is a known function that monotonically decreases
with respect to M and . If M is such number that Wy (d) < «, then for the model
Xy, M > M, inequality [2.2] is fulfilled. Hence, to construct the model X, that
approximates X with given reliability 1 —« and accuracy ¢ with respect to the norm of
the space A(T), it is enough to find such M (the least is desirable) that the inequality
Wi (8) < a holds true.

If in representation [2.1] £, k = 1, ..., M are independent strictly sub-Gaussian
random variables with E¢; = 0 and E¢} = 07, k = 1,2,..., M, then the simulation
of &, k = 1,...,M provides the construction of M independent strictly
sub-Gaussian random variables with En;, = 0, En? = 1, k = 1,2,..., M. Then,
& = oxmi, k=1,2,..., M, is arequired sequence.

If in the expansion of the process X (t) in series random variables £, are Gaussian
(it means that X (¢) is centered Gaussian process), then the simulation approach that
is given above allows to approximate the process X (t) with given accuracy and
reliability. If X (¢) is a strictly sub-Gaussian random process and in its representation
in the form of series random variables £ are independent with known distribution,
then X (t) approximates X (¢) with given accuracy and reliability. If the process
X(t) is strictly sub-Gaussian, but either &, are dependent or their distribution is
exactly unknown, then there are many processes that can be constructed. The
approach above allows us to construct one of the model of such processes.
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To simulate of such strictly sub-Gaussian random variables as &, the following
independent copies of random variables can be used

12)2 & 1
n= (n> Z(ai2>, [2.3]
=1

where oy, i = 1,...,n, is a family of uniformly distributed on (0,1) independent
random variables that is obtained by one of the generators of random variables
[ROS 06, OGO 96]. As n — oo an item 7 weakly converges to Gaussian one, as
n < oo — it is strictly sub-Gaussian random variable, En? = 1.

2.2. Karhunen-Loéve expansion technique for simulation of stochastic
processes

In this section, the simulation method of stochastic processes is considered that
is based on series expansion of the process by the eigenfunctions of some integral
equations.

Let T = [0,b], b > 0, be an interval in R, X = {X(¢),t € T} be continuous in
mean square stochastic process, EX(t) = 0, t € T, B(t,s) = EX(t)X(s),
t,s € T is its correlation function. Clearly, that B(¢,s) is nonnegative-definite
function. Since the process X(¢) is mean square continuous, then the function
B(t, s) is continuous on T" x T

Consider an integral equation

z(t) = )\/TB(t,s)z(s) ds. [2.4]

It is a well-known fact (e.g. [TRI 60]) that integral equation [2.4] has the greatest
countable family of eigenvalues. These numbers are non-negative. Let A2 be the
eigenvalues and z,(t) be corresponding eigenfunctions of equation [2.4]. Numerate
)\ZL in the increase order 0 < Ay < ... < A, < App1 < ... It is known that
zn(t) are orthogonal functions. That means that for the functions z,(t) the
relationship

/ (&) () dt = 57
T

holds, where 0"

™ is a Kronecker symbol. Note that the functions z, (¢) are continuous
ast e T.
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THEOREM 2.1.— A stochastic process X = {X (¢),¢ € T'} can be represented in the
form of series

X(t) = &nzn(t). [2.5]

Moreover, the series [2.5] converges in mean square, &, are uncorrelated random
variables: E,, = 0, E&, &, = 67\, 2.

n

PROOF.— According to Mercer’s theorem [TRI 60], the following representation
holds true

B(t,s) =) % [2.6]
n=1 n

where the series in right-hand side of [2.6] converges uniformly in regard to (¢, s) on
the set T" x T. The statement of theorem follows now from Karhunen theorem (see
[GIK 04]). O

REMARK 2.1.— It follows from the Karhunen-Loéve theorem that if X (¢) is Gaussian

stochastic processes, then all &, in series expansion [2.5] are independent Gaussian
random variables.

2.2.1. Karhunen-Loéve model of strictly sub-Gaussian stochastic
processes

Let in expansion [2.5] £,, be independent strictly sub-Gaussian random variables
such that E€2 = ) 2. Then, by example 1.7 random process [2.5] is strictly sub-

Gaussian with correlation function B(t, s).

DEFINITION 2.1.— A stochastic process Xy = {X (1), t € T}, where

Xn(t) = &nzalt)
n=1

is called the Karhunen—Loéve model (KL-model) of the process X = {X (t),t € T'}.
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2.2.2. Accuracy and reliability of the KL model in Ly (T')

THEOREM 2.2.— A stochastic process X 5 is KL model that approximates the process
X with reliability 1 — o, 0 < o < 1 and accuracy ¢ > 0in Lo(T), that is

P{ (/Ob(X(t) — Xn(1)? dt)é > 6} <a, [2.7]

if for M the following inequalities are satisfied:

6% > j(M+1)1,

-

62— J, 2 62— J,
( ~Jart 1) eXp{_ - <M+1>1} <a, [2.8]
J(r+1)2 2J(m+1)2
where

[e'e] ') 1
~ ~ 2
Jm1 = Z )\;27 J(M+1)2:( Z )\k4> .

k=M1 k=M1

PROOF.— Since random variables &, are independent and the functions z, are
orthogonal, then the statement of the theorem follows from inequality [1.60] of
example 1.8. (]

REMARK 2.2.— To obtain more precise estimation, the assertion of corollary 1.8 can
be used.

2.2.3. Accuracy and reliability of the KL model in L,(T'), p > 0

THEOREM 2.3.— A stochastic process X s is KL model that approximates the process
X with reliability 1 — o, 0 < @ < 1 and accuracy § > 0in L, (T'), that is

P{ </0b X (8) — Xar(t)]P dt>; > 5} <a, [2.9]

if M satisfies inequality

52
Qexp{—“} < a, [2.10]
2051107
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and
1 1
P2OML1 br < 6.
The statement of theorem follows from theorem 1.4 and corollary 1.9.

REMARK 2.3.— If for all ¢ € T the inequalities |zx(¢)] < dj hold, then in the
inequalities that define M we can put

o
2 _ —2 32
OM+1 = E Ay -
k=M+1

REMARK 2.4.— In many cases, the value M can be reduced if the results of section 1.7
will be applied. Taking into account that the norms in Lo(T') of the functions z(t)
can be significantly less than supg<,<;, |21 (t)|-

THEOREM 2.4.— Leta = {ax,k = 1,2,...} be such sequence that 0 < aj, < ag1,

ar — 0o as k — oo, p > 2. Denote
, o b N\Z 7>
Cnp = 2]{{11;1 <1 + A(N>)\n <2) > (2b> , [2.11]
) b ) L\
A(h)=  sup ( | (Br.s) - Blaais) ds> |

where
|z1—22|<h —b

[N

B(t,s) is even and 2b-periodic by ¢, s function, it is convergent to B(¢, s) over 0 <
t, s < b. If the series

o0 k 3

1 1 4\ 4
E I = E )\'_104‘ 3>
k=1 kp(@k Cbk-i-l) (jl( ’ ])

converges, then stochastic process X is KL model that approximates the process X
with given reliability 1 — o, 0 < a < 1 and accuracy § > 0 in L,(T), if M satisfies
the inequalities

§ > (Bo(M +1,a)Co(M +1,a))7, [2.12]

(82 = By(M +1,a)Co(M +1,0) + (Bo(M +1,a))) ?
BZ(M+ 17(1)
{ 52 C’Q(M+ 1,&) }
X eXpy ———= = < a,
2(Ba(M + 1,0))? ' 2Bo(M + 1, a)

[2.13]
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where
e’} k
By(M +1, a) c )\ La; ,
| k—%:ﬂ kp( ak+1>< Z s) >
= j=M+1
s 11 k N\
. B _1 4
s $ (b )5 )
k=M+1 j=M+1

The statement of the theorem follows from theorem 1.9 and from the fact that the
family of the functions z = {z;(¢), t € T = [0,b], k = 1,2, ...} belongs to the class
Dy (c) (Definition 1.10), where U(x) = |z|P, ¢, = ¢y is defined in [2.11].

COROLLARY 2.1.— Leta = {ax,k = 1,2,...} be such sequence that 0 < aj <
ap+1, ax — 00 as k — 0o, and the series

ch,,<a— ! ><oo [2.14]
k

a
h—1 k+1

converges, then stochastic process X s is the process KL model that approximates
X with reliability 1 — o, 0 < «a < 1 and accuracy & > 0 in L,(T), if M satisfies
inequalities [2.12] and [2.13], where B2 (M + 1,a) and Co(M + 1, a) are defined as

3 oo 1 1 oo :
By(M +1,0)= Y. ckp(ak— )( > I/\J»‘lajl‘*) ,

a
k=M1 k+1/ N4

. o 1 1 s o\
Co(M +1,a) = > ckp<ak— )( > |Aj1aj|a) . [215]
j=M+1

a
k=M1 k+1

2.2.4. Accuracy and reliability of the KL model in Ly (T')
THEOREM 2.5.— Let U = {U(z),z € R} be a C-function such that the conditions of

theorem 1.5 are satisfied. Then, stochastic process X s is KL. model that approximates
the process X with reliability 1 — o, 0 < o < 1, and accuracy § > 0 in Ly (7)), that is

P{IX() - Xu®)ls > 6} <a 216
if for M the following inequalities are fulfilled

§ > bor1(2+UCD(1)72)3, [2.17]
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exp{l}mexp{w} <a, [2.18]

2 EUM+1 20’%/1_‘_1?)2

where
oo
b = max(b, 1), O%r41 = SUp Z ML)
t€T 11
or if

0o
sup |fk(t)| < dk7 ol 0_]2\4+1 = Z )\Izzdi
teT iy

The statement of theorem follows from theorem 1.6 and remark 1.9.

The conditions of the theorem for C-functions from examples 1.9 and 1.10 are
satisfied. But for C-function U, (x) = exp{|x|*} — 1, where a > 2, the conditions of
theorem 2.5 are not fulfilled.

The following theorem gives a possibility to consider an essentially wider class of
Orlicz spaces. As for the spaces L, (T"), for spaces Ly (€2), for which the conditions
of theorem 2.5 are satisfied, in some cases the estimates of the following theorem can
be better than the estimates in theorem 2.5.

THEOREM 2.6.— Leta = {ay,k = 1,2,...} be asequence such that 0 < ag, < ag41,

ar — 0o as k — oo. C-function U () satisfies the condition: the functions (U (z))2
and U(+/|z|) are convex. Let

, (2 b 2
cn(U) _211Vr£f1(1+A<N)An (2> ) [2.19]

<(3) ()

where A(h) is defined in [2.11]. If the series

(- ) ()

a
k+1/ \i=

converges, then stochastic process Xj; is KL model that approximates the process
X with reliability 1 — a, 0 < « < 1 and accuracy 6 > 0 in Ly (T), if M satisfies
inequalities [2.12] and [2.13], where

oo

By(M +1,0)= Y. ck.(U)<a1k ! >( %k[:l(xglaj)‘*)i,
J=M+

a
k=M+1 k+1
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o= 3 oG -7 (2 ()

k=M+1

The assertion of theorem follows from theorem 1.9 and the fact that the family of
functions z = {z(t),t € T =[0,b], k = 1,2, ...} belongs to the class Dy (c), where
¢n = ¢, (U) are given in [2.19].

COROLLARY 2.2— Leta = {ag,k = 1,2,...} be a sequence such that 0 < a; <
ap+1, ar — 00 as k — oo, and the series

= 1 1
> a(U) (ak — ) <00 [2.20]

converges, then stochastic process X is KL model that approximates the process X
with reliability 1 — o, 0 < o < 1, apd accuracy 6 > 0 E’) Ly (T), if for M inequalities
[2.12] and [2.13] hold true, where Bo(M + 1,a) and C2(M + 1, a) are defined as

BZ(M+17G)
oo 1 1 oo %
= > Ck(U)<_ )( > IAflaj|4) : [2.21]
k=M—+1 Ak Gk+1/ \; 37 !
CQ(M—I—LCL)
e 1 1 e 1
= Y U (- )( > aj|s>
Marvi) ap Q41 Py J

2.2.5. Accuracy and reliability of the KL model in C(T)

Following from example 1.13, the sequence z,,(t) belongs to the class B with

ct)=1, 6,0 =wi <)\0\/5> T =10,b],

1
2

wp(d) = sup (/ob(B(u,x) - B(v,x))zdm)

lu—v|<6

Let Q = sup;_7 |2k(t)|. Then, from theorem 1.13 follows theorem 2.7.
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THEOREM 2.7.— Stochastic process X, is KL model that approximates the process
X with reliability 1 — o, 0 < « < 1, and accuracy 6 > 0 in C(T), if for some
3 € (0, 3] the number M satisfies conditions:

1)
— > [2.22]
QGrr+1
where
Gy = (Z J?) .
s=M

For =1 — m, where x = Q%MH, the condition of remark 1.16 is
fulfilled and inequality

4B+1

1/ 6 2 g

verl{-3(gas) <+ V2 (qmn) | (3
48

5N 5
- 2<QGM+1) < ﬁqﬁ(QGMH) 1223

1—28

taom) )]
+ — <
8 \QGu+1 =

holds, where

Fp= i ln< Y )<1_(1_2Q Chrn®” 2)2)> 5 2?12 B)’
k=M+1 Arvb Gy,

gp(x) is defined in [1.129].
From theorem 1.15 follows:

THEOREM 2.8.— A stochastic process X s is KL model that approximates the process
X with reliability 1 — o, 0 < e < 1 and accuracy § > 0 in C(T), that is

P{sup X (¢) — Xar(8)] > 5} <a

teT

if for M the conditions of theorem 2.7 are satisfied, but instead of [2.23] inequality

2bexp{ 1( d )2+(1+W>2}
QGr11 V2
_ 5 4
(o (o) )
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holds true, where r(u) > 0, v > 1, is any monotonically non-decreasing such
function that for v > 0 the function r(exp{u}) is convex,

. > 1— (1-2Q%G2,,,672)2\\ "
k=M+1 Ae Vb
2
Ok
X 2(1-8)’
Gk( B)
6= (X 02)"
s=k

REMARK 2.5.— In theorem 2.8, a more precise estimation is used than in theorem 2.7.
That is why the value M can be lower if theorem 2.8 is used. But the conditions, under
which theorem 2.8 can be applied, are harder.

EXAMPLE 2.1.— Consider a KL model of Wiener process that approximates it with

accuracy d in the space C(T'), T = [0,1]. Let us remind that Wiener process
W (t), t > 0is a zero-mean Gaussian one with the correlation function

EW ()W (s) = min{¢, s} = B(t, s).

Moreover, the sample path of this process is continuous with probability 1.
Consider now an integral equation

2(1) :/\/O B(t, $)Z(s)ds

or substituting the correlation function B(s, t), we have

t 1
Z(t) = )\/ sZ(s)ds + )\t/ Z(s)ds.
0 t
It is easy to show (see [GIK 88]) that the eigenvalues of equality above are

1
A2 =+ )?

and corresponding eigenfunctions are

©n(t) = V2sin(nt(n + %))
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Hence, the Kahrunen—Loeve expansion of Wiener process has such representation

>, sin(( 1
ﬂzgn(‘kf))a

where £,,, n > 0 are independent Gaussian random variables with mean E¢,, = 0 and
variance E€2 = 1. The KL model of Wiener process then will be

+%)>
Py

l\')\»—t

N .
t) _ \/5 Z fn SlIl
n=0

Now we find such N that the KL model Wy () will approximate Wiener process
W (t) with reliability 1 — « and accuracy ¢ in the space C(][0,1]). Let us use

theorem 2.8. In our case

Q=V3, of =((h+3)m)2

b=1,
and
)
DD P Sl vrw ity
-\ 1( 1 1 )_ 11
s:k7r2 S+% S+% 7T2k+%
If u > v, then

/01 (B(u,z) — B(v,z))* da = /01 (min(u, z) — min(v, )" dz
/Olu(gc —2)%dz + /Uu(x —v)*dz + /ul(u ~v)ds

< /Ou(u—v)2da:+/ul(u—v)2dx
= (u—v)>.

= (u—v)%u+ (u—v)*1 —u)
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It follows from the above relationship that the function wg(y) < + and

w(_l)(v) > ~. Set the function r(u) = u*, where w > 0, w > 1 — (3 and the value
f3 € (0, 3] is defined in theorem 2.7. Then

1%

_ x 52 b 1
Ga X 5=
k:%:ﬂ (ﬁG?\HlW(k’ + %)> Gi(l B)Wz(k + %)

- 52w i 1
< (\/i)wG%deﬂ'erw W (k+ %)w-',-lGi(lfﬁ)

_ 52w7r2w(M_|_ %)w i (7T2(k+%))1—ﬁ
=~ (\/Q)w,n_2+w v (k+%)11)+1

_ 62wﬂ.w—2/3(M_|_%)w i 1

2% (k-+ %)w-‘rﬁ'

k=M+1
Since w > 1 — 3, then it is easy to show that

o0

1 1 1
< .
k-:%:ﬂ (k+3)v 8 = w4+ B —1(M+ g)w+i!

Denote

. 52wﬂ.w—2[5’(M+ %)w

G = 22 (w+ B —1)(M + %)w-ﬁ-ﬁ—l' [2.25]

Moreover, inequality [2.24] can be rewritten as
142 1 T
exp{ 22(M+2)7T +(+\/§)}

x (G};((\jiﬂQ(M—F ;)45 +\/§)>w <a,

where GZ is defined in [2.25]. Furthermore, if follows from [2.22] that the condition
for0 < g < %

577\/M+g > 2v/2

should be satisfied.

In the case § = % and w = 1, the values M dependent on accuracy ¢ and reliability
1 — « are found in environment for statistical computing R and are shown in the next
table.
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a=0.1|a=0.05]a =0.01
§=0.1] 1,045 | 1,076 | 1,148
§=0.06| 2,965 | 3,051 | 3,250
§ =0.01|114,741| 117,818 | 124,935

Table 2.1. The result of simulation of Wiener process

0.4

0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 2.1. The sample path of the model of Wiener process with
accuracy 0.1 and reliability 0.90 in space C(]0, 1])

2.3. Fourier expansion technique for simulation of stochastic processes

In this section, the simulation method of sub-Gaussian processes is considered that
is based on Fourier transform of the processes.

Let T = [0,b] be an interval such that R, X = {X(¢),t € T} is mean square
continuous stochastic processes, EX(¢t) = 0, t € T, B(t,s) = EX(t)X(s),
t,s € T is a correlation function of the process. The function B(t, s) is continuous,
therefore, it can be represented in the form of Fourier series, that converges in

L2([0,b] x [0,b])

o o t
s)zZZamncos%cos$, [2.26]
n=0m=0
Amn = b2 //Bt s cosTcos$dtd [2.27]
%7m:n: b
Tmn =194 3.Mm>0n=0 or m=0,n>0,
1, m>0,n>0



Simulation of Stochastic Processes Presented in the Form of Series 85

Since the function B(t, s) is non-negative definite, then a,,,, > 0 for all m, so
(see, for example, [LOE 60]) X can be written in the form of series, that converges in
mean square

X(t) =" &, cos %"t [2.28]
n=0

where &,, are random variables such that E¢,, = 0, E{,,&, = a,,,. Note that it is
easy enough to check the equity EX (¢) X (s) = B(t, s).
2.3.1. Fourier model of strictly sub-Gaussian stochastic process

In expansion [2.28] let £ = {&;,i = 0,1,2,...} be a strictly independent sub-
Gaussian family of random variables. Then, by example 1.7, X (¢) is a strictly sub-

Gaussian stochastic process with correlation function B(t, s).

DEFINITION 2.2.— Stochastic process Xy = {Xn(t), t € T}, where

mnt
Xum(t) = Z &, cos -

is called the Fourier model (F-model) of the process X = {X (t),t € T'}.

2.3.2. Accuracy and reliability of the F-model in L, (T)

THEOREM 2.9.— Stochastic process X s is a F-model that approximates the process
X with reliability 1 — «, 0 < « < 1, and accuracy § > 0 6 Lo(T), if M satisfies
inequalities:

1
0> A3

1 ) 52
- — < .
exp{ 2} T exp{ VIV } < a, [2.29]

o0
b
where A]\/[Jrl = 5 E Akl -
k=M+1

and

PROOF.— Since the functions cos %“5, n = 1,2, ... are orthogonal, then the statement

of theorem 2.9 follows from corollary 1.7. (]

REMARK 2.6.— To obtain more precise estimation, theorem 1.2 can be used.
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2.3.3. Accuracy and reliability of the F-model in L,(T), p > 0

THEOREM 2.10.— Stochastic process X is F-model that approximates the process
X with reliability 1 — o, 0 < « < 1, and accuracy § > 0 6 L,(T), if M satisfies
inequality [2.10], where
N kt It
a%/Hl = sup Z Z aj COS % coS %
k=M+11=M+1

and inequality
p% OM+1 by < 4.
theorem follows from theorem 1.4.

The following theorem gives the estimates that in some cases can be more precise
than the estimates in theorem 2.10.

THEOREM 2.11.— Leta = {ay,k = 1,2,...} be such sequence that 0 < ay < ag1,
ar — 0o as k — oo, p > 2. Let the series

> 11 & 5
3 — — a2
>k <ak >(Za]jaj) < o0 [2.30]

a
k=1 k+1/ NG5

converge. Then stochastic process X, is F-model that approximates the process X
with reliability 1 — «, 0 < o < 1, and accuracy 6 > 0in L,(T), if M satisfies
inequalities

6> Bi(M+1,a) [2.31]
2
exp{l}~ 0 exp{— — d } < a, [2.32]
2 Bl(M + 1, a) Q(Bl(M + 17(L))2
where
Bl (M + ]-7 a)

The statement of theorem follows from theorem 1.8, since the functions cos ”T”t,

n = 0,1,2,... are orthogonal, f(f cos? me dt = g, and the family of this functions

belongs to the class Dy (c), where U (z) = [z|?, ¢, = (14 Z) (22) )
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COROLLARY 2.3.— If the series

ik%—%akk (i a2) < o0 [2.33]

k=1 s=k

converges, then stochastic process X is F-model that approximates the process X
with reliability 1 — a, 0 < a < 1 and accuracy § > 0 in L,(T), if M satisfies
inequalities [2.31] and [2.32], where

T b b
- (1 + 2) (2 [2.34]

The assertion of corollary follows from corollary 1.13 and theorem 2.11.

COROLLARY 2.4.— Let for some sequence a = {ay,k = 1,2,...}, such that 0 <
ap, < ap41, a — 00 as k — 0o, and

X1 a1/ 1
> k2w ( - ) < 00, [2.35]
ay

> aji03 < . [2.36]

Then, the statement of theorem 2.11 holds true, if M satisfies inequalities [2.31]
and [2.32], where

1
N b\r
By(M +1,a) = <1 + g) (2) [2.37]
1 1
X Z k27 » ( — > ( Z ijd?) .
k=M1 e Ak+1/ N, Sy

Corollary 2.4 follows from corollary 1.14 and theorem 2.11.
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REMARK 2.7.— Lemma 1.19 yields that condition [2.35] is satisfied by, for instance,

such sequence: aj, = k”, where f3 is any number that 8 > 1 — %.In this case,
> k;—;<1 ! >§/ $;—;d<1>
[y a  Qkg+1 M+1 P
1 o1\*! -
—8(B—2+2) M+1)E P
Bla-g+3) @reni

Therefore, to occur the statement of corollary 2.4, we can in inequalities [2.31] and
[2.32] put

BI(M + 1,&)

N\ /b\* 1 1\
DO

. 1_1 : oS} 128
if for some § > 5 — o the series 3~ /., a;;k*" converges.

2.3.4. Accuracy and reliability of the F-model in L;(T)

THEOREM 2.12— Let U = {U(x),z € R} be the C-function for which the
condition of theorem 1.5 holds true. Then, stochastic process X s is the F-model that
approximates the process X with reliability 1 — o, 0 < @ < 1, and accuracy 6 > 06
Ly (T), if M satisfies inequalities [2.17] and [2.18], where b = max(b, 1),

9 > > wkt it
0141 = Sup Z apl COSTCOS—,

b
tE€T M1 1=M+1

o0 oo
or 012w+1: Z Z |l

k=M+11=M+1
The theorem follows from theorem 1.6.
The next theorem gives a possibility to consider an essentially wider class of Orlicz

spaces than theorem 2.12. Moreover, in some cases the estimates of the theorem are
better than ones from theorem 2.12.
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THEOREM 2.13.— Leta = {ay,k = 1,2,...} be such sequence that 0 < ay < ag1,
ax — 0o as k — oo. C-function U (z) satisfies a condition: the function (U (z))? is
convex. If the series

1

S )G e e

converges, then stochastic process X, is F-model that approximates the process X
with reliability 1 — a, 0 < a < 1, and accuracy 6 > 0 in Ly (T), if for M the
inequalities [2.31] and [2.32] hold true, where

By (M +1,a) [2.40]

1421 & 3 11 i L)\
S ()5 ).

a
k=M+1 k1

The statement of the theorem follows from theorem 1.8, since the functions
mnt

cos 7=, n =0,1,2,... are orthogonal and the family of this functions belongs to the
class Dy (c). In this case

N

(1+27) n
Va U0

cn=cp(U) =

I

Nl=

COROLLARY 2.5.— Let C-function U (z) satisfy condition: the function (U(z))
convex. If the series

0o k_% ( 0o ) )—%
———— Gk ag, < 00 [2.41]
L g%

converges, then the assertion of theorem 2.13 is fulfilled, if for M inequalities [2.31]
and [2.32] hold true, where

Bi(M +1,a) = B;(M +1)

1 2 00 k‘l [es] -1
= —; T Z Uv(_%akk |: ( Z Clss> [242]
k=M+1 (7 s=M+1

() T

Corollary follows from corollary 1.13 and theorem 2.13.
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COROLLARY 2.6.— Leta = {ax,k = 1,2,...} be such sequence that 0 < aj <
ap+1, ar — o0 as k — oo, and

> k2 1 1
S s (o) < e
— UED () \ak  ag+
If the series
o0
Zajja? < 00 [2.44]

converges and U (x) is such C-function that the function (U ((z))2 is convex, then
the statement of theorem 2.13 holds true, if M satisfies inequalities [2.31] and [2.32],
where

Bl(M + 17a)

1+2r [ & d k3 11
= 5 (Z CijCL?) Z U(—l)(i) (ak_ )

J=M+1 k=M+1

W=

Corollary follows from corollary 1.14 and theorem 2.13.

2.3.5. Accuracy and reliability of the F-model in C(T")

Denote
- kt
= 3 bipcos T,
k=m

where b = {b, k = 1,2, ...} is a certain sequence,

Zn = 2 (0) = [|(B(RL(0)°) * [l

" mkt It
= sup (Z Z arbrb; cos > cos Wb )

0=t<b k=ml=m

THEOREM 2.14.— Letb = {by,k = 1,2,...}, bp > 0, by < b1, by — 00 as
k — o0, be such sequence that the series

Zlnk%(— L )<oo [2.45]
by,
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converges. Assume that for any M > 1

sup sup E(Ry(1)* = Z3,;(b) < cc. [2.46]
n>M 0<t<b
Then, forall0 < 8 < 1 and z > Dé‘ﬁfgge) , where
= 1
=27 ( > [2.47]
m(6) ml k:ZM b bit

the following inequality

P{|X(t) = Xy (t)[lc >z} [2.48]

< Qbexp{‘%w ~0)= Dy (0)}

holds true.

PROOF.— From example 1.11 follows that sequence of functions {cos ”Tkt} k =
1,2,...,ast € T = [0,b], where u(-) is a Lebesque measure, belongs to the class B
with c(y) = 1, §,(0) = %. Hence, theorem 1.10 implies the theorem, since in this
case

z 1 Zyb)|, ™
s 7 < o
b, IInd,(0)]% < ™ In 0
x|, Tk 1 1
< 7, 2 (=~
B <bk bk+1>—>o

as n — oo. Therefore, in notation of theorem 1.10

[ 1wl =b. 4, < 2,0 Du®) < D),
T
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COROLLARY 2.7.— If in inequality [2.48], we set © = yb;;HZMH(B), then as

Dm(o)bM+1
Y7 T (0)(1—6)
inequality
Zaroa(b
P{IIX(t) — Xp(®)]le > yfﬂii)} [2.49]
basarD )\ >
N GO e

is obtained.

If for y > 1 we put § = 1/y, then from corollary 2.7 the following corollary is
obtained.

COROLLARY 2.8.— Let the conditions of theorem 2.14 be satisfied, then for y > 1
such that y — /2| lny\% > Spr41, wWhere

Smv+1 =1
+ V21 Y (bl — bl ) 111%k [2.50]
a1 \Ok k+1
inequality
Zni41(b
S
~ 2
<2b exp{— (y e bM+IZlJ\)4M:(1b()1/y)> } [2.51]
+

holds true.

Corollary 2.8 follows from previous one if prove that for y > 1 inequality

S bM+1l?M+1(1/y)
" Zu+(0)(1—-1/y)

holds true in the case of y — v/2|In y|% > Syraa-

From corollary 2.8 follows the next theorem.
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THEOREM 2.15.— Stochastic process X, is F-model that approximates the process
X with reliability 1 — o, 0 < v < 1, and accuracy 6 > 0 6 C(T), if M satisfies such

conditions
1
Obnr+1 V3 ( Obari1 ) ’2
— — V2|In[ ——— >S5 )
Zp41(b) Znr+1(D) Mt

where Sjs41 is defined in [2.50] and

dbars1 byv1 7 (ZM+1(b))>2}
2bexpy | ——=——-1——""-"=D _
p{ (ZM+1(5) Zyra(0) T\ Gbarga

< a. [2.52]

REMARK 2.8.— To simplify the calculation in inequality [2.52], we substitute

Zri4+1(b) for

ZM+1(5)=< i i |aklbkbl>é,

k=M+11=M+1

as by the sequence b, = (Ink)® can be chosen, where ¢ is any number such that
e > 1/2. Note, under rigider conditions the better estimations can be obtained from
theorem 1.11.

2.4. Simulation of stationary stochastic process with discrete spectrum

This section is devoted to simulation method of strictly sub-Gaussian stationary
process with discrete spectrum.

Let X = {X(¢),t € R} be stationary stochastic process, EX(t) = 0, ¢ € R,
EX(t+7)X(t) = B(1),t,7 € R.

DEFINITION 2.3.— Stationary process X has discrete spectrum, if its correlation
Sunction B(T) is equal to

B(r) = > b} cos AT, [2.53]
k=0

where bi >0, > bi < 00, and A are such that 0 < A\, < Ag41, and A\, — o0 as
k=0
k — oo.
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THEOREM 2.16.— A stationary stochastic process with discrete spectrum
X = {X(t),t € R} can be written in the form of series

= Z(Ek cos At + ny sin Agt). [2.54]
k=0

The series [2.54] converges in mean square, E§, = En, =0,k =0,1,..., E{n =
0,k,1=0,1,...,E& = 602, Engmy = 6Lb%, where 4, is a Kronecker symbol.

PROOF.— Since

EX(t)X(s) = B(t —s) Z b2 cos(Ar(t — 5))

oo

Z cos(Agt) cos(Ags) + Zbk‘ sin(Agt) sin(Ags),
k=0 k=0

then the statement of theorem follows from the Karhunen theorem (see [GIK 04]). [

REMARK 2.9.— If X(¢) is Gaussian stochastic process, then all &, 7 in series
expansion [2.54] are independent Gaussian random variables. In the case of
non-Gaussian stochastic process X (t), the condition of independency &, 7y should
be provided.

2.4.1. The model of strictly sub-Gaussian stationary process with
discrete spectrum

In expansion [2.54] let &,,, 7, m = 0, 1, 2, . . . be independent strictly sub-Gaussian
random variables, then by example 1.7 a random process X is strictly sub-Gaussian
with correlation function B(T).

DEFINITION 2.4.— Stochastic process X pr = {Xn(t), t € T}, where T is an interval
[0, 0],

M

Xn(t) = Z(§k cos(Axt) + ny sin(Axt))
k=0

is called the model of strictly sub-Gaussian stationary process X = {X(t),t € T}
with discrete spectrum on interval T = [0,b], (D(T)-model).
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2.4.2. Accuracy and reliability of the D(T')-model in L»(T)

THEOREM 2.17.— Stochastic process Xj; is D(T')-model that approximates the
process X with reliability 1 — o, 0 < « < 1 and accuracy 0 > 0 4 Lo(T), if M

satisfies inequalities [2.29] and 6 > Afw 110 where

Ayii=b Y b [2.55]
k=M+1

PROOF.— The theorem follows from corollary 1.7, since random variables &, and 7y,
k =0,1,... are non-correlated, and

b b
b: / cos?(A\gt) dt + b3 / sin?(Apt) dt = bib.
0 0

2.4.3. Accuracy and reliability of the D(T')-model in L,(T), p > 0

THEOREM 2.18.— A stochastic process X, is D(T")-model that approximates the
process X with reliability 1 — , 0 < o < 1 and accuracy 6 > 0 in L,(T), if M
satisfies inequalities [2.10], where

o0
2 _ 2
OM+1 = E b

k=M+1
and

p%ch_Hb% < 4.
The statement of theorem follows from theorem 1.4.

REMARK 2.10.— It is clear that in this case inequality [2.10] cannot be improved due
to the results of section 1.5.

EXAMPLE 2.2.— Let X = {X(t), t € R} be a stationary Gaussian stochastic process
with discrete spectrum with EX (¢) = 0 and correlation function

B(r)=EX(t+71)X ZbkCOS)\kT

Then, by definition 2.4, the model of stochastic process X (t) has the following
representation:

Xn(t) =) (& cos(Axt) + ng sin(Agt)),

M:

>
Il

0
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where &,,, n,, n = 0, M, are independent zero-mean Gaussian random variables with
the second moment

E&} = Enj = by,

Consider a particular case when b2 = k—ls, where s > 1. Set

2
O'M+1 Z by

k=M+1
Then
=1 < ] 1 1
2
k:]MJrlk kmnip1/E=1 W Mo s—1M

Let us construct the model of Gaussian process X (¢) on the segment [0, b] that
approximates this process with reliability 1 — « and accuracy ¢ in the space Lo([0, b]).
It follows from theorem 2.18 that it is enough to choose such M that the inequalities

1
pEoarg1by <6

and

52
ronf Yo
20%/I+1bE

are fulfilled. This means that

_a 1
o —min{ —, —— ;.
M+ =0 pr V2(—n9)

Hence, it follows from [2.56] and inequality above that

(s —1)6 1 1 ey
M>|(——min{ -, —F(—— .
br pz /2(—In§)

Assume that b = 1. In the case s = 2 and p = 2 the values of M dependent on
accuracy § and reliability 1 — « are found in environment for statistical computing R
and are shown in Table 2.2.
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a=0.1la=0.05|a =0.01
0=0.1 25 28 33
6 =0.06] 41 46 95
0 =0.01| 245 272 326

Table 2.2. The result of the simulation of stationary Gaussian
process with discrete spectrum

The model of random process

[/)]

w0

[0) ]

(&)

S o

o

. _

£ o 4

© _|

EREE

g T | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

time

Figure 2.2. The sample path of the model of Gaussian
stationary process with discrete spectrum with accuracy 0.01
and reliability 0.99 in space L (][0, 1])

2.4.4. Accuracy and reliability of the D(T)-model in Ly (T')

THEOREM 2.19— Let U = {U(x),x € R} be the C-function for which the
conditions of theorem 1.5 are satisfied. Then, stochastic process X is D(T")-model

that approximates the process X with reliability 1 — o, 0 < o < 1 and accuracy
0 > 0in Ly (T), if M satisfies [2.17] and [2.18], where

oo
2 _ 2
OM+1 = E by,
k=M+1

The statement of theorem follows from theorem 1.6 and remark 1.9. In the next
theorem, the estimates of theorem 2.18 cannot be improved, but allows to consider a
wider class of Orlicz spaces than in theorem 2.18.
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THEOREM 2.20.— Leta = {ay,k = 1,2,...} be such sequence that 0 < ay < ag1,
ax — 00 as k — co. Assume that C-function U () is such that the function (U (z))2
is convex. If the series

e’} k %
ch(U)<a1k— L )(Zaibi) < 00, [2.57]

k=1 j=1

converges, where

ol 2
ck(U)z}g%(mU( 1>(h)> (1+h<)\n+b>), [2.58]

then stochastic process X s is D(T")-model, T' = [0, b], that approximates the process
X with reliability 1 — a, 0 < a < 1 and accuracy 6 > 0 in Ly (T), if M satisfies
inequalities

G(M +1,a) >4, 501
1] d(sin1)? §2(sin1)*
2 (G(M+1.a) ——— ¢ < .
exp{Q}G(M+1,a) eXp{ 20GM +1,a))2f = [2.60]
where
G(M+1,a)
S 1 1 il 3
- 3 e - L) @)

o s NA N2
S, — (/ (smu) du) .
—eo U

PROOF.— Consider the Orlicz space Ly (R), that is the space of measurable functions
on R with respect to the norm

Hﬂmmydm&:/mu<%?>ﬁg1}

— 00

For any ¢ > 0 define d.(t) = (%)2 Let f(¢) be bounded on R and Borelean

function | f(¢)| < A, t € R. Then, the function d. (t) f (¢) belongs to the space Ly (R).
Really, since |d.(t)| < 1, then U(d.(¢) f(t)) < d.(t)U(f(t)). Hence,

/wv@mﬂmﬁs[wiMﬂmﬁ

— 00

< U(A) /oo d.(t) dt < oo,
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For any 0 < [ < m, the function
X Z &k cos(Agt) + g sin(Agt)
k=l

is a function of exponential type (\,, + 2¢), bounded on a real axis. Therefore, it
follows that the sequence of functions {d.(t) cos(Axt), de(t) sin(Axt), &k = 0,1,...}
belongs to the class Dy (c) from the space Ly (R), where ¢ = ci(U), € = b~ !(see
[2.58]). Since random variables &, 7, are uncorrelated and

/ d2(t) cos®(A\t) dt + / d2(t) sin? (\t) dt

o0 : 4 o0 . 4
_ / (smst) g — 1/ <smu) du.
_eo \ €t €)oo\l U

then from theorem 1.8 follows that as 2 > G(m, a) an inequality

P[40 3 (6costu) 4 mesinins)| >
k=m Ly (R)
<e{; fatira r{ s | ol

holds true, where G(M, a) is defined in [2.60]. Since as 0 < ¢ < é the inequality
holds d.(t) > (sin 1)?, then for any bounded on R function f(¢) and for any r > 0
the following inequalities are fulfilled

/E U<f<t)> dt < /E U(ds(t)f( )> dt
0 r 0 (sin1)?
*(d()f(®)
< ZeNT I AT
- /_Oo U< (sinl)?r dt
If, in the inequality above, 7 = (sin 1) ~2(|d.(¢) f(¢)|| ., %), then the relationship

1FOllLyery < (in1)2de () f ()l Lo w)

is obtained. If in the last inequality ¢ = b~ ! is considered, then for any = > 0 we
obtain

P{|X = Xnlly () > =}

<=

dp-1(t) D (& cos(Akt) + m sin(Aet)
From the above inequality and [2.61] follows the statement of the theorem. (]

> x(sin1)2}.

k=M+1 Ly (R)
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COROLLARY 2.9.— If C-function U(z) satisfies the condition of theorem 2.20 and
the series

> U, (Z bi) e [2.62]
s=k

converges, where ¢ (U) is defined in [2.58], then the statement of theorem 2.20 holds,
if for M inequalities [2.59] and [2.60] are fulfilled, where

G(M +1,a) = G(M +1)

=V2b2S, > ck(U)bﬁ(Zbi> . [2.63]
k=M+1 s=k

Corollary 2.9 follows from corollary 1.13 and theorem 2.20.

COROLLARY 2.10.— Leta = {ax, k = 1,2,...} be such sequence that 0 < a; <
ak+1, ar — 00 as k — oo, and

> 1 1
> a(U) (ak - ) < oo. [2.64]

If the series converges
Z a3b; < [2.65]

and C-function U (z) satisfies the conditions of theorem 2.20, then the statement of
theorem 2.20 holds true, is for M inequalities [2.59] and [2.60] are fulfilled, where

G(M +1,a)

:b%54< > a§b§)2 > ck(U)<a1k— ! ) [2.66]

J=MA+1 J=M41 Ak+1

Corollary follows from corollary 1.14 and theorem 2.20.

REMARK 2.11.— Ifin [2.58], we set h = ()\n + %)71, then we obtain that as ¢, (U)
the following sequence can be considered

2+ )

en(U) = =22 T80
UED (A, + 2)
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2.4.5. Accuracy and reliability of the D(T')-model in C(T)
No loss of generality suggests that b > 2, (T = [0,D]). Following from

example 1.14, the sequence of functions {c(t) cos Ait, c(t) sin Ayt}, k = 0,1,2, ...,
where

c(t):<Si‘;t)2, e (0,1/2], (/Zc(t)dt:;r),

If ¢ = 1/b, then, taking into account

belongs to the class B, where §,,(6) = o4oe +2€
remark 1.17 (inf};<p [c(t)] = (sin1)? ), according to theorem 1.13 the following

theorem is obtained.

THEOREM 2.21.— Stochastic process Xp; is D(T')-model that approximates the
process X with reliability 1 — a, 0 < @ < 1 and accuracy 6 > 0 in C (7)), if for any
B € (0,1/2] M satisfies conditions

§ > 2(sin1)2Garq1, [2.67]
where
oo (5"
s=M
§2(sin1)4 V2 (sin1)? L
2mbexpd ————— + 1+ Fat—
e, e (ann) (03)
13
d(sin 1)2) BT ( (5(Sin 1)2>
+2( —— F —— 2.68
( Gr+ o Grt1 12681
(5(sm1)2>1+3§7r2)}
+| = RS
Gyt 8
_ > 2p—1 3 3
aa Fg= Z In A + 26 T aiGi(ﬁ b,
Laral 2(1- (1 - 202)%)
12
G MY
Gri1

gp(x) is from [1.129].

Similarly to theorem 1.15, the next theorem can be proved.
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THEOREM 2.22.— Stochastic process Xj; is D(T')-model that approximates the
process X with reliability 1 — o, 0 < o < 1, and accuracy 6 > 0in C(T'), T = [0, b],
b > 2, if the conditions of theorem 2.21 hold true, but instead of [2.68] inequality

ol (452 ()

x (=1 (GB (Wyﬁ + x/i) <a

Gyt
_ An + 2071
G5 = T( 1 )
k:gﬂ 2(1— (1 —2272)3)

§(sin1)?
Gus1

[2.69]

is fulfilled, where

o0

U%Gi(ﬂ_l),

2.5. Application of Fourier expansion to simulation of stationary
stochastic processes

Let Y = {Y(¢),t € R} be continuous in a mean square stationary stochastic
process, EY (t) = 0,t € R, EY (¢t + 7)Y (¢t) = B(7), t, 7 € R. Note that on interval

[0, 2b] the correlation function B(7) of the process Y can be expanded in Fourier
series

- k
B(r) = Z gi cos T [2.70]

k
gr = L B(7) COS%C[T

are non-negative (7, = 1,k > 1,7 = %)

Consider a stochastic process

X(t) = kZ_()(gk cos%]zt + 1y sin ﬂ;;f), [2.71]
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where &g, nx, k = 0,1,... are random variables such that En, = E&, = 0, k =
0,1,2,..., En,% = Efi = g,%.

It’s easy to verify that X = {X(¢),¢ € R} is stationary stochastic process. If this
process is considered on T = [0, b], then its correlation function EX (¢t +7) X (¢), T €
[—b, b] coincides with B(7). Hence, this process can be used for model construction
of the process Y as t € T It is clear that out of this interval, the correlation functions
of the processes X and Y can be different.

EXAMPLE 2.3.— If the correlation function B(7) is convex on [0, 2b], then from the
Hardi theorem [HAR 66] follows that Fourier coefficients of the function g,% are non-
negative. For instance, the correlation functions B(7) = Aexp{—23|7|°},0 < § <1,
A >0, B > 0, are convex for all 7 > 0.

2.5.1. The model of a stationary process in which a correlation function
can be represented in the form of a Fourier series with positive
coefficients

Following expansion [2.71], let &k, mi, K = 0,1,... be independent strictly
sub-Gaussian random variables. Then, by example 1.7, a stochastic process X is
strictly a sub-Gaussian stationary process.

If X (¢) is a Gaussian stochastic process, then i, i, k = 0, 1, . .. are independent
Gaussian random variables.

DEFINITION 2.5.— Stochastic process Xpr = {Xn(t), t € T}, where T = [0, b],

M

wkt wkt
Xp(t) = Z({k COS —— 5 ~+ 7 sin 21))

k=0

is called Fourier model of stationary process X = {X(t), t € T} with correlation
function B(1), T € [=b,b] (FS-model).

REMARK 2.12.— Since stochastic process X, deﬁned in [2.71], is a stochastic
stationary process with discrete spectrum bk = gk, A = 25 ,k=0,1,..., then to
simulate these processes the results of section 2.4 can be used.

Show, for example, how to construct F'S-model of the process X that
approximates the process with given accuracy and reliability in C(7'). From
example [1.11] follows that the sequence of functions

wkt wkt
{cos 25" blll%} k=0,1,2,..., Te€l0,b], teT,
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belongs to the class B from c(t) = 1, §,(8) = 2. One can easily show that the

nm

restriction of remark 1.16 holds true. Really, @ = 1

and / le(t)] dt(6p(0) "L = T T Sy 10,
- b 0

Hence, from theorem 1.13 follows such assertion.

THEOREM 2.23.— Stochastic process X is F'.S-model that approximates the process
X with reliability 1 — o, 0 < o < 1, and accuracy 6 > 0 in C(T), if M satisfies the
conditions

6> ZC;]\/[_H7 [2.72]
where
oo 3
s=M
and for some 3 € [0, 3] inequality [2.23] holds true as
a - b 2G?VI+1 Nk 2~2(8-1)
Fy= 3 Mo —(1-(1-—5 oG, [2.73]
k=M+1

From theorem 1.15 follows such theorem.

THEOREM 2.24.— Stochastic process X js is £'S-model that approximates the process
X with reliability 1 — o, 0 < a < 1 and accuracy § > 0 a4 C(T), if for M the
conditions of theorem 2.23 are satisfied, but instead [2.23] inequality [2.24] holds
true, where




3

Simulation of Gaussian Stochastic
Processes with Respect to Output
Processes of the System

In many applied areas that use the theory of stochastic processes, the problem
arises to construct the model of a stochastic process, that is considered as an input
process to some system or filter, with respect to the output process. We are interested
in the model that approximates a Gaussian stochastic process with respect to the output
process with predetermined accuracy and reliability in Banach space C(T). In this
case, at first we estimate the probability that a certain stochastic vector process

XT(t) = (Xl(t)v XQ(t)v BRRE) Xd(t))
leaves some region on some interval of time. For example,

sup XT()A(H) X () > e,
teT

where ¢ is a sufficiently large number, (T, p) is a metric space, X = (X (t),t € T)
is a process that generates the system and A(¢) is a matrix (in most cases positive
semidefinite). The process X (t) will be considered as Gaussian due to the central
limit theorem. Thus, the problem arises to estimate the probability

P {sup XTHABX(t) > 5} :
teT
or the probability

P {Sup IXTW)A®)X (1) — EXT (1) A)X ()] > g} ,
teT
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where X (t) is a Gaussian vector process and A(f) is a symmetric matrix. The
process X (t) is considered as centered one. In this chapter, the estimates of large
deviation probability for square-Gaussian stochastic processes are established. An

exact definition of the class of these processes is proposed in section 3.2.

Distribution properties of supremum of stochastic process were investigated by
many authors. They investigate the problem of existence of moments and exponential
moments of distribution of supremum of the process, estimates of probability
P {supy<,<p |X(t)| > €}, distribution of the number exceeding a certain level, etc.
For more details, readers can refer to books and papers by Cramér and Leadbetter
[CRA 67], Lindgren [LIN 71], Dudley [DUD 73], Fernique [FER 75], Nanopoulos
and Nobelis [NAN 76], Kono [KON 80], Kozachenko [KOZ 85b, KOZ 85c, KOZ
99a], Piterbarg [PIT 96] and Ostrovs’kij [OST 90]. In [KOZ 99a], the estimates for
large deviations of supremum of square-Gaussian stochastic processes were obtained.

The structure of this chapter is as follows. The chapter consists of eight sections.
In section 3.1, we obtain the inequalities for exponential moments

s ETAE-EETAL

Eexp /2 (Var {TAE) 1/2

where 5 is a Gaussian centered random vector and A is a symmetric matrix. Estimates
depend only on the eigenvalues of the matrix B1/2AB/2, where B = cov{. Similar
estimates are obtained for the mean square limits of sequences of quadratic forms of
jointly Gaussian random variables EZ Angn asn — 00. In section 3.2, the definition of
the space of square-Gaussian random variables and the definition of square-Gaussian
stochastic process are given. In section 3.3, estimates of probability of large deviation
of supremum of a square-Gaussian stochastic process on a compact metric space are
studied. Similar estimates are discussed in [KOZ 99a, KOZ 07a].

In section 3.4, the estimations of distribution of supremum of square-Gaussian
stochastic processes in the space [0, 7] are obtained. The results of this section are
used in section 3.5 to construct the model of a Gaussian process, that is considered as
input process on some system or filter, with respect to the output process in Banach
space C'(T') with given accuracy and reliability. Section 3.6 deals with a stationary
Gaussian stochastic process with discrete spectrum. Theorems for the simulation of
these processes, that are considered as an input process on some filter with respect to
output process in space C(T'), are also proven. A particular case is also considered
when the system output process is a derivative of the initial one.

Similar results of sections 3.4-3.6 are obtained in [KOZ 03, KOZ 06b, KOZ 07a,
ROZ 07, ROZ 08, ROZ 09a].
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In section 3.7, Gaussian stochastic fields are considered. The conditions for
simulation of these fields, that are considered as input process on some filter with
respect to output process in space C(T'), are also given. Section 3.7 is based on the
study of [KOZ 04a].

3.1. The inequalities for the exponential moments of the quadratic forms
of Gaussian random variables

In this section, we prove some inequalities for the exponential moments of the
quadratic forms of jointly Gaussian random variables. These inequalities will be
applied in the following sections.

LEMMA 3.1.— Let &1,&2,...,¢n,8n+1,8n42, - - - Entm be independent Gaussian
random variables; n = 0,1,2,...; m = 0,1,2,...; m + n > 0; and
E¢ =0, E& =07 >0, k=1,2,...and let

1
n 2(N+1) \ N+1
st — 2i=10;
N+1 n+m _2(N+1) ’
dim1 O

1

- ZZL:_:L 0?(N+1) N+1
Oy = <“ : [3.1]

Zner O_2(N+1)

i=1 %

Then, for integer N = 1,2, ... and real s such that 0 < 5Xr+13 < 1, the following
inequality holds true

s(Ti g -, e)

Eexp ——
2 (i o2 )
1 s* (Z?:l Ui2k + (‘Uk E:::jﬂ Ui%)
exp{ = Z - X
2 1 k (Z;L:-ﬁ-lm U?(N+1)) N+T
oo k _ N+1
1 (Séjtrﬂ) 1 (35N+1)
exp {2 k;ﬂ - + 2T N1 X(IN+1) o, [3.2]

where x(N + 1) = (71)1\]%
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PROOF.— We will prove the lemma in the case when m > 0 and n > 0. In the case of

m = 0 or n = 0, the proof is analogous.

Let 7 be a number such that 7 > 202 fori = 1,2, ..., n. Then, from the equality

Eexp{QjQ} =(1 —u)_% ,

?

which holds true for all v < 1, it follows the equality

el (e £

i=n—+1
2072 —3 ndm 202 3
() IL(e)
" T . r
=1 1=n+1
Therefore,
n+m 2
2 20
lnf——Zln< U)— Zln( )
1=n—+1
() n n+m
12 DI
2 krk ‘
1= 1=n—+1
It follows from the last inequality, then
1 N Qk n 1 N 2k n+m
_ 2k k 2k
rmen {33 RS S Bt 3 o
k=1 =1 k=1 1=n-+1
Loon 28 QR g I 28R R,
xexp{5 >, Tzd ol +5d —pr— > o
k=N+1 i=1 k=1 i=n+1
n+m
—= Z ln( )}
1=n+1

Since for all z > 0 and all odd integer N, the inequality holds true

N k
S DT (14 a) <

[3.3]

[3.4]

[3.5]
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and for all z > 0 and all even integer N holds true the inequality

N
3 (-1 ’f“x —In(l+2) <0, [3.6]
k=1

then from [3.4]-[3.6] follows that

n 1 N 2k n+m
I< exp{ Z e Z 2k 4 5 Z m(—l)k Z U?k}
k=1

1=n-+1

1 2k n+m 02(N+1)2N+1
X exp k Z Z Z W X(N + 1) . [3.7]

N+1 =1 =n+1

If in [3.7] we put

92 m—+n ( ) ﬁ
2(N+1
EHOEL I

i=1

where s is an arbitrary number such that 0 < s and 563, < 1, then we will have the
inequality

n+m

s(Le- % &)
Eexp{ =1 1=n—+1 1 }

9 n+m 0_2(N+1)>

/\
ing

n n+m
Lo (S o '8 o)
S expd - Z =1 ’L—Ti
24 nEm oven ) N
k ( > o )

n n+m

| & sk ST o2k ) s+ 2;10 2(N+1)

i—1 i=n
X exp{ = L += N+1 }.[3.8]
{2 k:EN:-&-I ("*m 2(N+1)> w2 (N +1) nim G2+ M )

El > o; i

i=1
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Since for £ > N + 1, we have

n O_ZQk; n 0_7(2]6
l; — (st k z; < (st k
n4m N’il n ( N+1) n Nil - ( N+1) ’
< 3 af(N“)) (Z O_iQ(N+1))
i=1 i=1
then from [3.8] follows the statement of the lemma. O

LEMMA 3.2.— Let ? be an d-dimensional Gaussian random vector with E? =0
and covariance B = Cov & . Let A = |la;;]|¢;_, be a real-valued symmetric matrix.
Assume that S is an orthogonal matrix that transforms the matrix B*/2AB'/2 to the
diagonal one A = diag(\;){_,, which means STB'/2ABY/2S = A. If not all
A,k = 1,2,...,d are equal to zero, then for all N = 1,2,... and all s such that
0 < s73,, < 1, where

1 1
+ N+1L — N+T
. (W) R (N)
N+1 ™ d ’ N+1 — d ’
Zi:l |)‘11|N+1 Zi:l |)‘i|Nle

and where >~ is sum over all negative \; while Z+ is sum over all positive \;, the
following inequality holds true

- =
Eexp s £14¢

F (S )
cend 1y S (ST I+ (—1DF T )
< expq 5 y =

k=1 k (Zi:l |)‘i|N+1)

0 K _ N+1

1 (SVJJ\FIH) (57N+1)

xexp{Qk_zN:H ot 5N 1 D) X(N +1) 3, [3.9]

where X (N + 1) is defined in [3.2]. In the case —1 < syy,; < 0, the following
inequality holds true

B d 5 ETAE
exp - T
2 d N+1
(Zi:l |>‘i‘N+1)
1 LIl (7 Il + (DR )
<exp{ = &

TS (S )™
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)N+1

— k
X exp {; i (|S|7N+1) + (|5|7j-1\}+1

(N + 1)} . [3.10]
Mol k 2(N +1)

- — —
PROOF.— Let detB >_>0 and let ¢ = ST(B'/2)=1 ¢ . The vector ( is a Gaussian
random vector with E ( = 0 and

Cov{ = ST(B'2)"'Cov € (BY/2) 715 = §T(B'/2) ' B(B'/2) 15 = I,

where I is the identity matrix. Therefore, the components (;,7 = 1,2,...,d of
the vector are independent centered Gaussgm random varlables with
variance E(¢? = 1. Moreover, since ¢ _  BU2g¢ ¢, then

ETAE = CTSTBYV2ABY?2SC = (TAC = 2L, (2Ay. Therefore, the
statement of the lemma in the case 0 < sﬁ\r, 1 < 1 follows from lemma 3.1. In the
case —1 < syy 1 < 0, the statement of the lemma also follows from lemma 3.1, the
signs of \; change by substituting —s instead of s.

C_>onsider now the case where det B = 0 (that is the matrix B! does not exist).
Let 6 bea d-gmensional centered Gaussian vector that does not depend on ¢ , and
s_u)ch that Cov 6 = I; let € be an arbitrary positive number. Put £ . = £ +¢ 6 . Since
¢ cis a Gaussian centered vector with covariance B = Cov £ . = B + £21, then
det B, > 0. Therefore, for 5  inequalities [3.9] and [3.10] hold true with the matrlx
A. and STBI/2AB1/QS6 = A. = diag(\{)¢_,.Since \{ — A; and ?5 — § as
€ — 0 in mean square then the statement of the lemma follows from inequalities [3.9]
and [3.10] for E < and the Fatou lemma. O

COROLLARY 3.1.— Suppose that the assumptions of lemma 3.2 are satisfied for all s
such that 0 < 57; < land —1 < sy, < 0. Then, the following inequality holds true

ETAE —BETAE

T2 (< L% s, [3.11]
(Var ETAL )

Eexp

Sl

where

L(svy,875) =

Moreover
., 4 d d d
Var €746 =3 """ " ayjon (B&G& BEE + BGG BGE), [3.12]

where a;; are the elements of the matrix A.
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PROOF.— Consider the case s > 0. In this case, the proof is similar. Let us put in
inequality [3.9] N = 1.If 0 < sv5~ < 1, then we will have the inequality

—>TA—>
E exp féifl
(z )’
d 00 kK N\2
1 C N 1
< exp . 521:1 . exp{2 Z (S’Ykz) + (S’Yj) }
d 2\ 2 —
(Zi:l )‘i) k=2
Since
o Kk
1 sy 1 sy
Dyt LW §
k=2

then from the last inequality, we have

Eexp{ - §TA§ _Zlf)\
(i)’

DO |

+ ~\2
< 1exp{—‘% ) } [3.13]
I 2 4
1 — 57,

Since ?TA? = Z}TA? = 22:1 C? Ay, then
5 d d
ESTAE :EZQ@A,FZA,C [3.14]
k=1 k=1
and
Var Z}

d

r > G = Z)\2Var ¢ :2Z>\2 [3.15]
k=1 k=1

Inequality [3.11] follows from [3.13]-[3.15]. Let us prove equality [3.12]. Since

d d d d
Var ?TA? => 3 Y (BGgsbiaian — BGE BG&agan)

i=1 j=1 k=1 I=1
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then equality [3.12] follows from the Isserlis formula:
E&i&6e& = E&i EGE + E&idk EEGG + BGG EEG k. 0

It is not a simple problem in many cases to find the values 'y;' and -y, . For this
reason, we will give some estimates that do not depend on these parameters.

COROLLARY 3.2.— Assume that the assumptions of lemma 3.2 are satisfied for all s
such that |s| < 1, the following inequality holds true

?TA? BETAE
(Var ? )1/2

PROOF.— Since (75)? + (75 )% = 1, thenfor 0 < s < 1

IN

(1—|s])" 2 exp {;} . [3.16]

S
Eexp({ —

+ 2/~ 1T)\2 2
_ _ 5. s2(y s
Lsrgosrg) = (1= o) 2o { -T2 - ZOE o {221

< (1—s)"Y%exp {—;} .

Therefore, in the case 0 < s < 1 inequality [3.16] follows from inequality [3.11].
In the case —1 < s < 0, the proof is the same as in the previous case. U

COROLLARY 3.3.— Assume that the assumptions of lemma 3.2 are satisfied and let the
matrix A be positive semidefinite. Then, for any integer N > 0, the next inequalities
hold true for 0 < s < 1:

In(s) = Eexp{ £TA£—E£TA£}
2 (Sp((AB)N+1))™

1 & sk
<z exp{2 Z k} [3.17]
k=N+1

where Z; = 1 and for N > 1

N sk k
Z;:exp{éz Sp((AB)¥) : }

k=2 k (Sp((AB)N+1)) ¥

For —oo < s <0

|S|N+1

In(s) < Zy eXP{W

X(N + 1)}, [3.18]
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where Z; = land for N > 1

k
];exp{z Sp((4 ))},

k=2 k (Sp((AB)N+1))~

the value x(IV + 1) is determined in [3.2].

PROOF.— Under assumptions of this corollary, all \; are non-negative. Therefore, the
sum of negative items is equal to zero Y .~ = 0; that implies fy]J{[H =landvyy,, =0.
Moreover,

sH

7
k=1

S A = Sp(A¥) = Sp(STBY2(AB)* 1 ABY/2S) = Sp((AB)").

For these reasons, inequalities [3.17] and [3.18] follow directly from inequalities
[3.9] and [3.10]. O

COROLLARY 3.4.— Suppose that the assumptions of lemma 3.2 are satisfied and let
the matrix A be positive semidefinite. Then, for all s, 0 < s < 1, the following
inequality holds true

 Pra? et
V2 (Var ?TA?) 2

> = - =
§TAE —EgTAa}<(1_s)_1/2exp{_;}’

I,(s) =Eexp

:Eexp{

and for all s, —oo < s < 0 the inequality holds true

Ii(s) < eXp{S;}-

REMARK 3.1.— The assertions of lemma 3.2, as well as corollaries 3.1-3.4, may be
proved in the case where the matrix A is not symmetric. In this case, we can write

erag g (A

[NR VA

((Sp(AB)2))"/*

2

and use the inequalities with the symmetric matrix (A + A7) /2.

REMARK 3.2.- Let £,k = 1,2,...,m be centered jointly Gaussian random
vectors and let Ay be real-valued matrices of the corresponding dimension, and let
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ug,k = 1 ’_2’ .. .,_)m be arbitrary numbers. Then, for the random variable

n= Z:’;l u; € TA; € and for all s from |s| < 1, the following inequality holds true
s n—En 1 [s]

E — > < (1 - 2 —— . 3.19

e {55 B < ew {1} 3.19]

Inequality [3.19] follows from [3.16] since the random variable n may be
represented in the form n = (T A ¢, where ( is a Gaussian centered random vector

S = —
such that (T = (&7, €7T,..., €1) and the matrix A is
u1A1 0 0
A= 0 UQAQ 0
0 0 e U A,

A+AT

With the help of the symmetric matrix <5

lemma 3.2 and corollaries 3.1 and 3.3.

, we can obtain inequalities from

REMARK 3.3.— From inequalities [3.9]-[3.11] and [3.16]—-[3.18], with the help of the
Chebyshev inequality

P{n>a} <inf Bexp{sn}
s>0 exp{sx}

we can deduce inequalities for deviations such as
—p = —p = =
P{cTAE >a}, P{leTAE ~E¢TAL| >0}

For example, under the conditions of corollary 3.2 for all z > 0, the following
inequality holds true

T I S
p| AT BEUT
(Var ETA §)
ETA —E{TAT
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~ (1+av3)"” exp{_%}. [3.20]

In the same way, we can prove that for all z > 0, the following inequality holds

S T
S (ST N RPN T
(VargTAg) vz

From inequalities [3.20] and [3.21] it follows that for all x > 0, the next inequality
holds true

[€7A€ ~E€74%)
(Var ?@4?) e

P <9 (1 + x\/i)l/z exp {—\%} . 1322]

3.2. The space of square-Gaussian random variables and
square-Gaussian stochastic processes

In this section, we will give all necessary information concerning the space of
square-Gaussian random variables. We will use the definition of this space that was
introduced in [KOZ 98].

DEFINITION 3.1~ Let 2 = {&, t € T} be a family of jointly Gaussian random
variables, E& = 0 (for example let &, t € T be a Gaussian stochastic process).

The space SG=(1) is called the space of square-Gaussian random variables with
respect to =, if any element 1 from SG=({2) can be represented in the form

n=¢E"AE - EETAE, [3.23]

where 7 = (&1,&s,...,&,), & € Z, k = 1,...,n, Ais areal-valued matrix, or this
element 7 € SG=(12) is a mean square limit of a sequence of random variables of the
form [3.23]

1 =Llim., o0 (Eh AL, — EELAE,).
DEFINITION 3.2.— A stochastic process X = {X(t),t € T} is called

square-Gaussian if for any t € T random variable X (t) belongs to the space

SG=().
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LEMMA 3.3.— Let#y, 72, .. ., 7, be random variables from the space SG=({2). Then,

for all real s such that |s| < 1 and all real A, ..., A, the following inequality holds
true
S n —1/2 E
Eexp{ ———————= > <(1—s exp{—}7 [3.24]
{\/i(Var 77)1/2} <D 2

where n = Y"1 A

PROOF.— The assertion of lemma 3.3 follows from inequality [3.19] and the Fatou
lemma. 0

EXAMPLE 3.1.— Consider &, (¢), &2(1), ..., &n(t), t € T afamily of jointly Gaussian
centered stochastic processes and let A(¢) be a symmetric matrix. Then

X(t) =T ()AME) — BE()ADE(D),
where £7(t) = (&1(t), &2(1), . .., €a(t)) is a square-Gaussian stochastic process.
LEMMA 3.4~ Let a stochastic process X = {X(t), ¢ € T} belongs to SG=(Q).

Then, for all real s, |s| < 1,and allt € T, t; € T, ty € T, t; # to, the following
inequality holds true

sX(t) } . 15|
. - ’ Y 2
o { V2(VarX(t))!/2 < (1= |sf)7= exp{ 5 2 [3.25]
(X (t1) — X(t2)) } B 5|
. < (1—ls])"2exp{——=}. [326
exp{\/ﬁ(var(X(tl) — X(t)))V/2 ) ~ ( |s])” 2 exp{ 5 b [3.26]
PROOF.— Lemma 3.4 follows from lemma 3.3 and remark 3.2. m

REMARK 3.4.— For some stochastic process from the space SG=(2), inequality 3.25
may be obtained in more precise form. See, for example, inequalities [3.9]-[3.11],
[3.17] and [3.18].

3.3. The distribution of supremums of square-Gaussian stochastic
processes

Let (T, p) be a compact metric space with the metric pandlet X = {X(¢), t € T}
be a square-Gaussian stochastic processes.

REMARK 3.5.— All results from this and the following sections are true in the case
where p is a pseudometric. For any pseudometric p, the equality p(¢, s) = 0 does not
imply equality ¢ = s. This is the difference of a pseudometric from a metric. Note
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that in many cases stochastic processes are considered on a space (7', p), where p is a

pseudometric.  For  example, we may consider the pseudometric
p(t,s) = (Var (X(t) — X(s)))'/%, or p(t,s) = [|X(t) = X(s)||, where || - || is
some norm.

Let there exist a monotonically increasing continuous function o(h), h > 0,
o(h) — 0as h — 0 and such that the inequality holds true:

[N

sup (Var(X(t) — X(s)))
p(t,s)<h

< o(h). [3.27]

Note, that this property has the function

o(h) = sup (Var (X(t) - X(5)))"*,
p(t,s)<h

if the process X (¢) is continuous in mean square.

Let us also suppose that for some A~ > 1,AT > 1 and all s such that
—A~ < s < AT the following inequality holds true

Kl X(t) .
Eexp { ﬂ—(Var X(t))1/2 } < R(s), [3.28]

where R(s),—A~ < s < AT is a monotonically increasing for s > 0 and
monotonically decreasing for s < 0 continuous function such that R(0) = 1.

REMARK 3.6.— Inequality [3.28] makes sense only if Var X (¢) > 0. But since
Var X (t) = 0 implies X (¢) = 0, we will assume that in this case

X
(Var X(t))l/2 ;

REMARK 3.7.— It follows from lemma 3.4 (see inequality [3.25]) that at least one
function that satisfies inequality [3.28] exists. This function is

R(s) = (1 |s) ™2 exp {—'2'} |

We will use the following notations:

go = %g sug p(t,s), to = o(eo), [3.29]
ES
~0 = sup(D X ())"/?, [3.30]

teT
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Under N(u) we denote a metric massiveness of the space T with respect to the
metric p, it means that N (u) is the least number of closed balls of radius u covering
T. 0(=1)(h) is the inverse function to the function o (h).

LEMMA 3.5.— Let X(t) = {X(t),t € T'} be a separable square-Gaussian stochastic
process and the condition [3.28] holds true. Let 7(u) > 1,4 > 1 be an increasing
function such that r(u) — oo as u — oo and let the function r(exp{t}) be convex. If
the condition

to
/ r(N (o™ (u))du < oo, [3.31]
0

is satisfied, then for all M = 1,2, ... and p such that 0 < p < 1, and all u such that

1-— . AT 1

the following inequality holds true:

Bexp {usup X(0)

teT
- R(?ﬁﬂ%) o (1 B pM‘1U\/§to)_1/2 exp{_pM‘luﬂto} ’
- 1-p 1-p 2(1-p)
D) (1 /topM r(N(U(_l)(v))dv) 3.33]
topM Jo . ‘

Moreover, for all « such that

1-p) . [A” 1
O<u< 7 min %, topﬁ [334]

the following inequality holds true:

Eexp {—u tléqu; X(t)}

e I (R R e |
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1 top™
x (=1 ( i / r(N(U(_l)(v))dv). [3.35]
top™ Jo
PROOF.— Let g, = o(=V(top¥),k = 0,1,.... Denote by VL, the set of the centers

of closed balls of radii &) that forms a minimal covering of the space (T, p). It means
that V¢, is ex-net of the set T" with respect to the metric p. The number of points in
V., is equal to N(gx). The set V. = |J;—, V-, is a countable everywhere dense set
in (T, p). It follows from [3.27] and properties of the function o (u) that the process
X (t) is continuous in probability. For this reason, any countable everywhere dense in
(T, p) set (the set V' as well) may be a set of separability of the process. That is why

with probability 1,

sup | X (¢)] =sup | X (t)|. [3.36]
teT tev

Consider the mapping o, (t),n = 0,1,2,... of the set Vinto V_ : if t € V,
then a,(¢) is a point from the set V. such that p(t, a, (t)) < &,; if t € V., then
an(t) = t. If there exist many points from V,,, such that p(t, o, (t)) < &5, we choose
one of them and denote it by v, (¢). The following inequality holds true:

P {IX (1) = X(an(t)| > p"/?} <

n

Var (X(t) — X(an(t))) < o?(en) 3™ — top".

pn - p'IL pn

This inequality implies that

SR {IX() - X(an(®)] > "2} B 0" < ox.
n=1 n=1

It follows from the Borel-Cantelli lemma that for sufficiently large n with
probability 1 holds true the inequality | X (t) — X (v, (t))| < p™/2. This implies that
X(t) — X(an(t)) — 0 with probability 1 as n — oco. Since V is a countable set,
then X(¢) — X(an(t)) — O with probability 1 as n — oo for all t € V
simultaneously. Let ¢ be an arbitrary point from V. For any m > 1, denote
tm = Qm(t),tm—1 = Qm—1(tm)s tm-2 = @m—2(tm-1),...,t1 = a1(t2). Then, for
any M > 1, m > M the following relations hold true

m

X(t) = (X(t) = X(am(®) + Y (X(ts) = X(te—1)) + X (tar)
k=M+1
< max X(H)+ Y max(X(8) — X (a1 () + (X(2) - X(an (1))
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Since the last inequality holds true for all m > M, then the inequality holds

X(t) <lim inf( max X(t) + Z max (X (¢) — X (ag-1(%)))

m—oo \ teVe,, teVe,

= lim inf ( max X(t) + Z max (X (t) — X(ak_l(t)))> .

m—oo teVe,, vt teVe,

Since the right-hand side of the last inequality does not depend on ¢, then with
probability 1 the next inequality holds

sup X (¢t) < liminf{ max X(¢t) + max (X (t) — X (ap_1(t . [3.37]
sup X(0) < tim i mx X(0) O e (X0~ X ")

It follows from [3.36] and [3.37] and the Fatou lemma that for any v > 0 the
inequality holds

Bexp {usup X(0) { = Bexp {usup x(0)}

teT teV

m—o0 tGVsM

< Eexp {ulim inf < max X (t) + Z max (X (t) — X(ak_l(t)))> }
i .

g1iminfEexp{u<tglvm X(t) + zmj max(X(t)—X(ak_l(t)))>}. [3.38]

m— oo y syt

Let gz, k = M, M +1,... be a sequence such that ¢ > 1and ) -, qk_1 =1.
Then, from the Holder’s inequality we will get the inequality

E X(t — X(ap—1(t
exp{utlen‘gi ) +u Z max ( (ak 1()))}

k=M+1"

1/am
< (Eexp {un max X (¢ })
5]\/[

’ ﬁ <Eexp {qkutrgxa}x(X(t)_X(ak1(t)))})1/qk

k=M+1 Sk
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< (N(ep))"/ o (max (Eexp {unX(t)})l/qM>

teVey,

X ﬁ 1 (N(ek)> " (trg‘f}x (E exp{qku(X(t) - X(akl(t)))}> ) [3.39]

€k

Let
_ s
Q) = (1= o) e { B}
It follows from [3.26] that for
0 < qeuv/2 (Var (X (t) — X (w_1(t))/? < 1
the following inequality holds:

Eexp {gru(X(t) — X(ar-1(t)))} <
Q (apuv/2 (Var (X (1) = X (a1 (1)) /?).
It follows from [3.27] that
(Var (X (t) — X(ar—1())))"? < o(ex—1) = top* .
For this reason, from [3.41] follows that under the condition
aruy/2top" Tt < 1
the inequality holds true:
Eexp {guu(X (t) — X(ax-1(1)))} < Qaxuv/2top" ).
It follows from [3.28] that under the condition
auV/2 (Var X (1)'/? < A+
the inequality

Eexp {quuX(t)} < R (un\/i (Var X(t))l/Q)

[3.40]

[3.41]

[3.42]

[3.43]

[3.44]

[3.45]
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holds true. Since (Var X (t))l/ 2 < 7o, then from [3.44] and [3.45] follows that under
the condition

quuv2yy < AT [3.46]

the inequality holds true:

Eexp {qquX(t)} <R (un\@vO) . [3.47]

That is why from [3.38], [3.39], [3.43] and [3.47] it follows that for all u, which
satisfy inequalities [3.42] and [3.46] holds true the inequality

Boxp {usup X(0) |

teT

< lim inf [ﬁ (N ()7 (R (unx/ﬁ%))ﬁ ﬁ (Q(Qku\/ﬁtopk_l)ylk}

m—oo
k=M k=M+1

— T e (R (revza)) ™ TI (@avaart—) "™ 348
k=M k=M+1

Let us take g, = p™ =1 /p*~'(1 —p),k = M, M +1,... For these g, inequality

[3.42] holds true when u < # and inequality [3.46] holds true when u <

AT (1 —p)/V27. If we take g, = pM—1/pF= (1 — p),k = M, M +1,... in[3.48],
then for all u that satisfy [3.32], the following inequality holds

B {ump X0

(M) o) )

— kljw (N(er)) <R (?f;‘;))l_p (Q <W>>p. "
Let us estimate

IT V(e /o

k=M
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Taking into consideration that the function r(exp{t}) is convex, we will have the
inequality

00 (1—p)pk—1

H (N(€k))1/qk _ H (N( (—1)(t0pk))) AT

k=M M

k=
T<exp{2pl M pk— Y —p)lnN(a(_l)(topk))}>>
k=M

(
<D (i ' (v (N(U(_l)(topk))»)
(%

ENERY

topk

< r(=1)

r (N(a(_l)(u))) du>

topk'H

o (L[ (-1)
= /O r (N(a (u))) du | . [3.50]
From [3.49] and [3.50] follows inequality [3.33]. Inequality [3.34] may be proved
similarly. (]

The next theorem follows from lemma 3.5.

THEOREM 3.1.— Let X () = {X(t),t € T} be separable square-Gaussian stochastic
process and the conditions of lemma 3.5 are satisfied.

Then, for all integer M =1,2,...,p, 0 <p < 1, and v from

l—p . (1 1
O<u< \/§ Hun{%’tole}’ [351]

the inequality

P {sup | X (t)| > x} < W(p,x), [3.52]
teT
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is satisfied, where
1-p
uv/270
W(p,z) =2 (R( : )) - Alp)
—-Pp
pMtuy/2tg\ —P/2 pMun/2ty
X (1—7) exp{—i—ux},
l—p 2(1-p)
the function R(u) = (1 — \s\)71/2 exp{—%‘}, and
oL [ (-1)
(-1 -1
A(p) =r P /0 r(N(e'="(v)))dv | .
PROOF.— The assertion of the theorem follows from lemma 3.5, remark 3.7 as A~ =
AT =1. O

COROLLARY 3.5— Let X(¢)

{X(t),t € T} be a separable square Gaussian

random process, 7 (u) > 1,u > 1 is moronically increasing function such that

function 7 (exp {t}) is convex. If the next integral exists

/Oto r (N (a(_l) (u))) du,

then for all x > 0

P {sup|X )] >=x

teT
. B . -
= 20é2f<1{r( Y (ﬁ o (N (o 1)(’/)))d1/)

1
Var(-p)) 2 zip) _ _o*0-p)?
(- 2pm) Yot - i
where
U = max (Yo, t0) + V2z(1 — p).

PROOF.— Under condition of theorem 3.1, weput M = A~ = At =1,

R(s)= (1 |s|)* exp{—'j'}.
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Let t9 > ~yo. Since the function R (s) is increasing as 0 < s < 1, then

I=p M-1\ "%
uV2% _ uV2tep™ Tl 2
O§u<%min<£ 1 ) |:(R( 1—p0>) (]_ lo—p )

70 topM—1
M
up \/§t0
X ex — —
¢ p{ 2(1-p) umH

oeesze |(R(222))" " (- ) )
X (exp {—2“(\1/3% })p exp {—uz}}
< inf0<u<\1/%7p {(R (%))1—1’ (R (ul%?;o))pexp {Uz}}
= to

_1
< infogu<l—7p |:(1 — %ﬁo) 2 exp {—;(\1/2?) } exp{—um}] .

inf

p
< inf

V2tg

After finding the minimum of right-hand side, we have

1— _Pp
. ux/ifyo P u\@topM_1 2
inf Rl —— 1—-—
O§u<%min(%,wﬁ) 1-p 1-p

up™ /2t
X exp T ux

i V- N[ sy
- to + v2x(1 — p) V2 (to +v2z(1 *P))
ol 22(1 — p)?
Xep{ to(to+x/§:c(1—p))}'

The same assertion can be obtained in the case 5 < p.

Thereby, the corollary follows from theorem 3.1. U
3.4. The estimations of distribution for supremum of square-Gaussian
stochastic processes in the space [0, 7]¢

Consider now the space T = [0, 7]%, d > 1, with a metric p(t, s) = max [ti—sil.
717

Let X = {X(¢), t € T} be square-Gaussian stochastic process.
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Let the function o(h), h > 0 be monotonically increasing, continuous and such
that inequality [3.27] is satisfied. In the case when o(h) = C - h*, « € (0, 1], where
C > 0, the constants £¢ and t( are equal to

T T\
€0 = grgiggp(m) =3 to=oale)= C<2> :

The next theorem about distribution of supremum of square-Gaussian stochastic
processes follows from theorem 3.1.

THEOREM 3.2.— Let X(¢),t € [0,7]% be separable square-Gaussian stochastic
process and the condition

sup (Var(X(t)— X(s))? <a(h)=C-h*, ac(0,1],C>0

p(t,s)<h

holds true. If for integer M > 1 and any z > 0

2 > Y20Md max{1; ((T)“cl> Y [3.53]
a 2 Yo

then the tail of distribution can be estimated as

P{ilelIT) | X ()| > x} < gldg HERe exp{—\[%%}
fd/a /
x (m)m (1 n ;;%)1 : [3.54]

where 7o = sup(VarX (¢))z.
teT

PROOF.— Since o(h) = C - h*, then (1) (h) = (%)l/a :

The metric massiveness on [0, T]¢ with metric p(t, s) = ax, |t; — s;| is bounded
_z_
as
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Consider the function r(u) = u® —1, 3 € (0, <) that satisfies the conditions of
@ 1/
theorem 3.1. Since 0 < p < l and tg = C(g) , then % (pzv%) > 1. Therefore,

under the condition 0 < u < top™ the inequality

NV (w)) < (T(C> 1/a> d

u

holds. Since the inverse function of 7(u) is equal to (=) (u) = (u + 1)'/#, then the
value A(p) can be estimated in such a way:

Alp) = (ﬁ /OMM [(% (%)W + 1) —1]du + 1)1/[3
(o [ ()0

d @ /B _—Md/a
G v

Il
N

Find the minimal value of the functional A(p) with respect to 3

. a N1/B g 1 18 _ dja
fo(— L)Y i (—— VP — ed/a
Bel(%,%)(ozfdﬂ) ﬁn—fb(l—dﬂ/a) ¢

Then, from inequality [3.52] of theorem 3.1, we have

2 1-p
W < e (0E)
—-p

X (1 — M)ig exp{—pMui\/it0 — ux} [3.55]

1—p 2(1-p)
Let us recall that the function R(s) is monotonically increasing and is equal to

R(s) = (1 - [s)) ™2 exp{ - 11},

If top™ ~1 < 7y, then from [3.55] it follows that

W(p,z) < 21+ded/°‘p*Md/o‘R( exp{—uz}.

Uﬁ% )
L—p
The minimum in w on the right-hand side of the last inequality is attained at

1

Umin = — — T o where z =

H
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Moreover, at the point ,,;, the condition [3.51] holds true.

Substituting u.,,;, into the input inequality, we obtain
_ z(1—p) 2z(1 — p)\ /2
Wi(p,z) < 21+ded/ap Md/« exp {} (1 + 7) )
\/570 \/570
Since 0 < p < 1, then

_ z(1—p) 2x \1/2
W(p, z) < 21+ded/op Md/a axp {—} (1 + ) )
\/570 \/5’70

The minimum of the right-hand side of the inequality with respect top € (0,1) is
attained in

~ V2yMd
P=a

From this, it follows that
V2yoMd
T>—
«

and it is true under the condition of the theorem. Thus,

Md
Plsup|X ()| > x b <2ltded/o ox {_x+}
{t6¥| 0l }_ P V27 @
Md 2 1/2
) O )
V2o Md V270
M—1

From condition [3.53] it follows that tgp < 0. The theorem is proved. U

In the case when the space T is equal to T = [0, T'], the next corollary holds true.

COROLLARY 3.6.— Let X(t),t € [0,T], be separable square-Gaussian stochastic
processes and

sup (Var(X(t) — X(s)))? <o(h)=C-h*,  ac(0,1],C > 0.
p(t,s)<h

Suppose that for integer M > 1 and z > 0

T > @max{l; <(T)aC L ) o },

2’ T
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then the following estimator holds true

M+1 T
P{sup | X (t)] > x} <4e = exp{— }
teT | V270

oz M/a 22 \1/2
() U+ 5)
V2 M V270

where 7o = sup (VarX(t)).
t€[0,T)

Consider now the case when

c
oh)=————, a>0 and c¢>0.
"= e+ D)o
Then
c
tQZO'(Eo):

(In(e> + %))O‘ '

THEOREM 3.3~ Let X(¢),t € [0,T]¢ be separable square-Gaussian stochastic
processes and

1 Cc
sup (Var(X(t) — X(s)))2 <o(h) = ———————, a>1,¢>0.
plt.s)<h (In(e* + 7))
If for integer M > 1andxz > 0
M+«
2yoMdIn(e* + 2 aOT=1
T > V20 n(e 7) max{l; (62) }, [3.56]
a—1 (yoIn(e> + %))

then
x M 2z 1/2
P{sup X (1)) >x} SKa_dexp{— +Kéw -ajMM} <1+ ) ,[3.57]
teT | ' V270 . V270
where
da
Koq=2D7,

« 2 ﬁ
)

M _
K= ) (TR
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[N

T
D =max{—,e *}, Yo = sup(VarX (t))z.
2 teT

PROOF.— To prove this assertion, we will use the results of theorem 3.1. By definition
of o(u), it follows that

oV (u) = (exp{(c/u)l/ }—e ) , 0<u<o7’"
Hence,

T)(u) + 1)d - (g(exp{(C/U)l/“} —e”) + 1>d-

N(a(_l)(u)) < (20_(1

(In(e*+2)"

a

Remind that -% > top™, since p € (0,1) and >lasa>0.

o

Consider the function

r(u) = (Inu)?, B € [1,a), u>1,
for which all conditions of theorem 3.1 hold. Then

Y (u) = exp{z!/?}.

For u € (0,top™), the relations are satisfied

(—1) T 1/a a d
r(N(e D @) < ( (Flexp{(e/u)/o} —em) +1)
< (D expfd(c/u)/})

< (dlnD + d(c/u)l/a>ﬂ

(£y5/e (dlnD(topM>l/a + d)ﬁ

<
u C
c\ Bl
(u) Zni(to) - dP, [3.58]

where
T top™ \1/a 8
D=max(e™*,3),  Zu(to) = (mD- ()" 4 1),

From [3.58] it follows that

achB/e

1
B(topM)fﬁ/aZM(to)dﬁ

top

o —

fora > 5 > 1.

w [ e ) <
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Hence,1 < < «

A(p) < exp { (aaﬁ)1//3(tOpM)—1/acl/a<ZM(t0))1//3d}

:exp{(afﬁ)w(dlnz)+d(t0;M)”a)}. [3.59]

Find the minimum of A(p) over 3. Since the function f(8) = (L)l/ 7 s

increasing , when 3 € [1, «), then min f(3) = f(1) = %5. Hence, B

A(p) < exp {oj.é_dl (lnD 4 (tO;M)l/a) } .

We assume that ¢,p™ ~1 < 4. Similarly to theorem 3.2, we obtain the inequality

W(p,z) < 2exp {Ofé—dl (lnD + (tO;M)l/a) } R(@) exp{—uzx}.

To minimize right-hand side over u, we get

W <200 {5 0+ ) ) -

2z )1/2

X (1 +
V270

[3.60]

Let us find the minimum of right-hand side [3.60] over p € (0, 1). The minimum
is attained at the point

_ (\/iyoncl/a>ﬁ B (\@%Mdln(e“ + %))ﬁ_ [3.61]

(o — 1)xt(1]/a ; (a =1z
Therefore, for x from [3.56] the relationship

P{jgg | X (t)] > x}

cron 2 s+ 2) (50}

Mdv2vo In(e® + 2)\ = 1/2
X exp {4 — x + v ( V29 In(e +T)) + (1+ 27 )
\/5’70 \/570 (Oé - 1)37 \/5’)’0
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holds true, when o > 1, and for such integer M > 1, that tOpM -1 < Yo, p is from
[3.61] and D = max(e~“, L.

We have supposed that topM -1 < 7o. And it follows from [3.56] and [3.61]. The
proof of the theorem is complete. (]

In the particular case when T = [0, T'], the next corollary is carried out.

COROLLARY 3.7— Let X(t),t € [0,T], be separable square-Gaussian stochastic
processes for which

p(ilj)pSh(Var(X(t) —X(9))z <oa(h)= M, a>0,c>0.

If for z > 0 and integer M > 1

M4«

2voM In(e® + 2 a(M—1)
> \/>'70 n(e® + T) max{l; (62> }’ a>1,
a—1 (voln(ex + %))e
then
T M 2 \1/2
P{supXt >:17}§Ka7lexp{ +Ké\/f .xM+a}(1+> ,
teT' 2 V270 it V270

where

Ko =2D57,

In(e® + 2 mia
K = (M +a) <(a—1T)> (V2o M)~ s,

T
D =max{—,e"“}, Yo = sup(VarX(t))%.
2 teT

3.5. Accuracy and reliability of simulation of Gaussian stochastic
processes with respect to the output process of some system
Consider the space T = [0,7]4, d > 1, with metric p(t,s) = ax, [t: — s,

where ¢, s are vectors from T. Let £ = {£(t),t € T} be centered Gaussian stochastic
process and

§1) = &ufuld), [3.62]

n=0
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where the functions f,(t), » > 0 are continuous and such that for all t € T

o0

D ) < oo,

n=0
Enym = 0,1,2,..., are independent Gaussian random variables,

E¢, =0, E¢2 = 1. Since

B (1) = 3 £2(1) < oo,
n=0

then the series > &, f,(t) converges in probability (see, for example, [LOE 60]).
n=0

Consider the following situation: Let 3 be some system (filter, device) which is
intended for transformation of signals (functions) f,,(¢). The function that has to be
transformed is called the input function on system; the transformed function is called
the output function or reaction on input function. Under g, (t) we will define output
function. More information about filters can be found in [GIK 04].

REMARK 3.8.— In particular case, g,(t) = z, - fn(t). It means that transformation
does not change the shape of signal.

Another important situation is when g, (t) = f,(¢).

&)
If input process on the system X is £(t) = Y. &, fn(¢), then output process is
n=0

n(t) = > &.9n(t). Suppose that for all ¢t € T, the series Y. g2(t) converges. It is
n=0 n=0

sufficient condition for convergence in probability of the series n(t) = > &,gn(t).
n=0

DEFINITION 3.3.— The process En(t) is called the model of the process £(t), t € T
if

N
En(t) = kafk(t), teT.
k=0

Let us define the difference between the process and the model under

EN@) =) —En(t) = D &fu(t), teT.

k=N+1



Simulation of Gaussian Stochastic Processes 135

In the same way, 7 (t) can be defined:
()= Y &or(t), teT.
k=N+1
We will investigate conditions under which the model £y () approximates &(t)
with given accuracy and reliability in Banach space C([0, T')?) taking into account the

process 7(t). For this purpose, the relationship £2(t) + n?(¢) can be analyzed. If this
case is generalized, we can consider a semipositive quadratic form

X(z,y)=a-2>+2c-z-y+b-y>?
where a, b, ¢ are constants such that a > 0, ab — ¢ > 0.

For convenience, under X () we will define a quadratic form that is defined on
the processes En (t), nn (t) :

Xn(t) = X(En(t),nn(t) = a- (En(8)? +2¢- En () -nn (1) +b- (v (1)),
Stochastic process X y (t) is equal to

oo

Xn()= Y D Gadrald), [3.63]

k=N+1n=N+1

where

Evidently, the function ¢y, (t) is symmetric with respect to k& and n. Hence,

Denote

Xn(t)=Xn(t) — EXN(D).

DEFINITION 3.4.— The model &y (t) approximates stochastic process &(t) on input of
the system, taking into account output process, with given reliability 1 — v, v € (0,1)
and accuracy § > 0 in Banach space C(T), if

teT

P {supXN(t)| > 6} <.
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Note that X (t) —EXn(t) = Xn(t), t € [0,T]%, is a square-Gaussian stochastic
process.

REMARK 3.9.— In definition 3.4, the probability
P {sup | XN ()| > 6} <v
teT
can be considered. But since
P {supXN<t>| > 5} <P {sup|XN<t>| > 6—sup|EXN<t>|},
teT teT teT

then all assertions can be easily transformed in this case.

The next additional lemma is proved.

LEMMA 3.6.— Letthe series >  ¢7 (t) be convergent for any ¢ € T. Define
kn=N+1

Akn(t7 5) = ¢kn(t) - ¢kn(5)

Then, for the processes X x(t), X (t) the following relationships hold true:

EXn(t Z Grr(t

k=N+1

VarXy(t) = 2 Z Z 63, (1) [3.65]

k=N+1n=N+1

Var(Xy () — =2 Z Z A2 (t,s), [3.66]

k=N+1n=N+1

where the functions ¢, (t) are from [3.64].

PROOF.— From [3.63], it follows that

o0

XN(t): Z Z ¢kn(t)€k§na

k=N+1n=N+1

&k, k > 0, are zero-mean independent Gaussian random variables with variance 1.
Then

EXn(t Z Grr(t

k=N+1
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Now find E(X n(t))2.

Z Z Z Z rn (t)Prrnr () EEEn&r Enr

k=N+1n=N+1k'=N+1n'=N+1

Use the Isserlis’ formula for Gaussian random variables

Egkfngk’gn’ = Egkanfk’fn’ + Efk&k’Egngn’ + Egkfn'Egk’gn-

From the equality above and the symmetry ¢y, (¢) follows that

Z Z (B1k ()P (£) + 207, (1)) -

k=N+1n=N+1

The relationship [3.65] is obtained from Var X y(t) = Var(Xy(t)).

Let us find EX y (¢) X n(s):

EXyOXn()= D> D (drk(®)dnn(s) + 20kn () prn(s)) -

k=N+1n=N+1

Then

Var(Xx(t) — Xn(s)) = VarXy(t) + VarXy(s)
that yields [3.66]. The lemma is proved. (]

Denote Sgy, = sup |¢rn(t)], then
teT

sup(VarX y (t) %§< Z Z s,m> . [3.67]

teT k=N—+1n=N+1

The following theorem holds true.

THEOREM 3.4.— Let £(t),t € [0,T]%, be separable Gaussian stochastic process from
[3.62] such that

sup  |Prn(t) — drn(s)| < dinh”, a € (0,1], [3.68]
p(t.s)<h
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and
2 Z Z dkn = ) o0,
k=N+1n=N+1

where ¢y, (t) are from [3.64].

B N
The model £ (t) = > & fx(t) approximates a separable Gaussian process &(t),
k=0

taking into account the o_utput process, with given accuracy 6 > 0 and reliability
1—v,ve(0,1),if for N > 1 the conditions are fulfilled

V2(N)Md o ((T\a C(N) 77
5>omax{1,<(2) WN)) 1

(67

21+de‘(Ml—1)d exp{_ J }

ad Md/a 28 1/2
Vo) wa) O )<

(ﬁ%(N Md V27y0(N

where M > 1 is an arbitrary integer number, vo(N) = (2 > >ost |-
k=N+1n=N+1

PROOF.— Since the process X v (t) is square-Gaussian, then the results of theorem 3.2
can be used. From [3.68] and [3.66] follows that

[N

sup (Var(X(t) — X(s)))? = sup (2 > (¢kn(t)—¢kn(8))2>

p(t,s)<h p(t,s)<h k=N+1n=N+1

1

(55w

k=N+1n=N+1
= C(N)h™ = on(h), a€(0,1].

Equation [3.67] implies that

sup(Var Xy (t) < Z Z dz ) = (N).

teT k=N+1n=N+1

If we substitute the obtained relationships in inequalities of theorem 3.2, the
theorem will be proved. i
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In particular case T = [0, T'], the following corollary holds true.

COROLLARY 3.8.— Let £(t),t € [0,T] be a separable Gaussian stochastic process
and

sup M)kn(t) - ¢kn(5)| < dknha7 o€ (07 1]3
[t—s|<h

holds true. Suppose that
2 > Y di,=C*(N) <o,
k=N+1n=N+1
where ¢, (t) are from [3.64].
Then, the model & (¢) approximates separable Gaussian process &(t), taking into

account the output process, with given accuracy 6 > 0 and reliability 1 —v, v € (0, 1),
if for NV the next inequalities are satisfied

o C(N)\ ™
5>Wmax{1;((€) 70%) L

M1 1) ad M/a 26 1/2
1o )eXp{_\/ﬁ'yO(N)}(\/ﬁ'yo(N)M) (1+m> <v,

1

(&) o0 2
where M > 1 is an arbitrary integer number, vo(N) = (2 > Y s3] .
k=N+1n=N+1

THEOREM 3.5.— Let £(t),t € [0,T]¢ be such separable Gaussian random process
that

sup prn(t) — drn(s)| < Gin a>1, [3.69]

p(t,s)<h (ln(ea + %))a’

and

2 i i d2, = c2(N) < oo,

k=N+1n=N+1
where ¢y, (t) is defined in [3.64].

The model &y (t) approximates separable Gaussian process £(t), taking into
account the output process, with given accuracy § > 0 and reliability
1—v, v e (0,1),if for N the next inequalities are satisfied

N V27y0(N)MdIn(e® + 2) ¢(N) ))Jw“n}’ wol

1) 1;
a1 IIlaX{ ) (('YO(N) ln(ea + %
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1) M 20 1/2
Kyaqexpd ———— + KM ~6M+a} 14+ —— <v,
’”’ p{ Vo) e ( \/%O(N)>

where
do
Ka,d =2D%a-1 s

dIn(e® + 2

K= 01+ o) ()T (Vaa o

D =max{Z, e}, M > 1is an arbitrary number,
1
o0 o0 2
2
(3 3 4
k=N+1n=N+1

PROOF.— Since the process X (t) is square-Gaussian, then for X (#) we can use
the result of theorem 3.3. From conditions [3.69] and [3.66] it follows that

[NIE

sup (Var(X(t) — X(s)))2 = sup ( Z Z (Prn(t ¢kn(s))2>

p(t,s)<h p(t,s)<h E=N+1n=N+1

- 1
(22 Zd)meu,g»a

k=N+1n=N+1

IN

c(N
N (ln(ea( +),1))a =ow(h), o>l

The assertion [3.67] yields

sup(VarX y () % ( Z Z s,m> =7 (N).
teT k=N+1n=N+1

The theorem will be proved if the founded values will be substituted in the
inequalities of theorem 3.3. O

In the case when d = 1, the following result is obtained.

COROLLARY 3.9.— Let&(t),t € [0,T] be a separable Gaussian random process for
which

dkn

sup |¢kn( ) d)kn( )‘ > 1

L
p(t,s)<h (In(e™ + 7))
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and
2 Z Z d, = c*(N) < oo,
k=N+1n=N+1
where ¢, (t) is defined in [3.64].
The model &y (t) approximates separable Gaussian process £(t), taking into

account the output process, with given accuracy § > 0 and reliability
1—v, v e (0,1),if for N the next inequalities are satisfied

VR N)M (e +F) (V) N
(S> a—1 m. {17((70(]\7)111(6&4’ 2))a> }7 >1,

Ko {~ 0

26 1/2
+Ky.w@} P L
! ( \/§V0(N))

where D = max{Z,e~®}, M > 1 is an arbitrary integer,

Ko =2D57,

In(e® + 2)

ﬁ“ M
SN (Eans,

KM, = <M+a>(

1

o= (23 Y )

k=N+1n=N+1

EXAMPLE 3.2— Let & = {£(t),t € [0,T]} be centered Gaussian process that can
be represented in the form [3.62], where the functions f,,(t), n > 0 are continuously

differentiable and for all t € [0, 7] >_ (f/(t))> < ccoand Y. |f!(t)| < oo.
n=0 n=0

Consider the case where the output process is equal to n(t) = £'(t),¢ € [0,T].

There exists the derivative of stochastic process £'(t) = Y f!(t)&, in mean square.
n=0

The difference between the process and the model is

En(t) = &) —En(t) = > &fult), teT

k=N+1
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and the process 7y (t) is equal to
() = Y &fi(t), teT.
k=N+1

Let us construct a semipositive quadratic form Xy (¢), which is defined on the
processes £ (£), n (1)

Xn(t) = X(En(),nn (1) = a- (En(t)* +2¢- En(t) -nn(t) +b- (nn(2)).
The process X y (t) can be represented in the form

oo

Xn(t)= D Y. G&adralt), [3.70]

k=N+1n=N+1

where

Grn(t) = afe () fn(t) + c(fu(®) f () + [ () () + 0S50 f(E). [3.71]

Then, corollaries 3.8 and 3.9 can be used for stochastic process [3.70], which
gives the conditions under which the model approximates separable Gaussian process,
taking into account its derivative, with given accuracy and reliability. It is shown in
the following theorem.

THEOREM 3.6.— Let £(t),t € [0,T] be such separable Gaussian stochastic process
that

sup  [drn(t) — drn(s)| < dinh®, a € (0,1], [3.72]

jt—s|<h

and
2 > Y di,=C*(N) <o,
k=N+1n=N+1
where ¢y, (t) are from [3.71].
The model &y (t) approximates separable Gaussian process &(t), taking into

account the output process, with given accuracy 6 > 0 and reliability
1—wv, v e (0,1),if for N the next inequalities are satisfied

(&%

VINM (T O(N) \
5>omax{1,((2) %(N)) L
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M1 1) ad M/ 26 1/2
el ) Ot ) <Y

o0 o0 2
where M > 1 is an arbitrary integer number, vo(N) = (2 > DR
k=N+1n=N+1

THEOREM 3.7.— Let£(t),t € [0, T] be separable Gaussian random process such that

Sup | Bn(t) — don(s)] < ——2kn

— o a>1, [3.73]
plt,5)<h (In(e® + 4))*

and
2 Z Z d2, = c2(N) < oo,
k=N+1n=N+1

where ¢, (t) is defined in [3.71].

The model &y (t) approximates separable Gaussian process &(t), taking into
account output process, with given accuracy § > 0 and reliability 1 — v, v € (0, 1), if
for N the next inequalities are satisfied

- V270 (N)M In(e” + %)

¢(N) >?M>
1) 1; , > 1,
a_1 max{ (wo(N) (e + 2))o boa

Koz exp {_ Voo (N)

20 1/2
+K§4-5M”ia} 1+—=2 V" <y,
! ( \/i’Yo(N))

where D = max{%, e~*}, M > 1is an arbitrary integer number,

Ko =2D57,

n(e® 2 ﬁ M
K = 0r+ o) (METD)T (aaanee,

|

’YO(N) = (2 Z Z Sin) .

k=N+1n=N+1
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3.6. Model construction of stationary Gaussian stochastic process with
discrete spectrum with respect to output process

Consider the space T = [0,7] with a metric p(t,s) = |t — s|. Let {(t), t € T

be a stationary Gaussian stochastic process with discrete spectrum, meaning that the
process can be represented in the form

) = Z(gkbk cos A\t + My sin Agt), [3.74]
k=0

where £, 7, are jointly independent Gaussian random variables,
Efk:Enk:Efk’m:O, k:0,1,2...,l:0,1,2...,
and

E&& =Enm =0 as k#1, E&=Enp =1

Suggest that the coefficients by, > 0, > b7 < oo, Ax are such numbers that
k=0
0 < Ak < Ag41, and A\ — oo as k — oo. Since

E&(t) = ) b < o,
n=0

then the series [3.74] converges in probability (see e.g. [LOE 60]).

The random process in the form [3.74] is a particular case of the processes that
were investigated in section 3.5.

Assume that on some system X the process £(¢) is entered and the output process
of this system is obtained as

n(t) = Z 2k - (Ekbr cos At + by sin Agt).
k=0

o0 o0
Suppose that the series kz 2202, kz 2;b? are convergent.
-0 -0

DEFINITION 3.5.— The process fNN(t) is called the model of stochastic process

£@), teTif

N
§~N(t) = Z(fkbk cos A\it + ngby sin )\kt), teT.
k=0
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Under &y (t) denote the difference between the process and the model

oo

Ev(t) =E() —En(t) = D (Ekbrcos At + by sin Aet), ¢ € T.
k=N+1

Similarly, we can define 7y (¢):

oo

nn(t) = Z 2k (Eby cos At + by sin Agt), t € T.
k=N+1

We will investigate the conditions under which the model §~ ~ (t) approximates the
process &(t) with given accuracy and reliability in Banach space C/([0, T']) with respect
to the output process 7(t).

As in section 3.5 we consider the semipositive quadratic form Xy (¢), defined on
the processes {n (t) i nn ().

Xn(t) =a-(En()?* +2c-En(t) nn(t) +b- (nn(t))*,

where the numbers a, bc are such that a > 0, ab — ¢ > 0. The process Xy (t) can
be represented as

o0

Xn()= > > Bul&& - ci(t) +mem - ci(t) + & - (1)

k=N+1I1=N+1

+nk& - iy (1)), [3.75]
where

By = bkbl(a + C(Zk + Zl) + bzkzl),

cpy(t) = cos At cos \it, 2, (t) = sin At sin \t,

i (t) = cos Ayt sin \it, i (t) = sin Ayt cos \it.

REMARK 3.10.— Note that the coefficients By, c};l (t), i = 1,2, are symmetric with

respect to k and [, meaning that By, = By, ci,(t) = i (t), i = 1,2, and ¢}, (t) =
4

¢y, (1)
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PROVE AN AUXILIARY LEMMA.—

LEMMA 3.7.— Let ¢)(u),u > 0 be a continuous, monotonically increasing function,
¥(0) = 0, such that the function 7 is non-decreaasing as u > ug, where the
constant ug > 0. Then, for all w > 0 and v > 0, the following inequalities holds true

sin & < ¥lutuo)

o S Bty [3.76]

PROOF.— Inequality [3.76] is obvious when u > wv. Hence, it is enough to prove
[3.76] only in the case u < v.

Since the function ( ) is non-decreasing as z > ug, then

]sin3| <Ue u+ ug < T/J(UJruo)'
v v = v+tuy — Y(v+ u)

Lemma is completely proved. (]

LEMMA 3.8.— Let ¢)(u),u > 0 be a function such that all conditions of lemma 3.7
are fulfilled. Assume that t)(u) — oo as u — o0o. Suppose that the series

S b2zi?( M), i = 0,1,2, converge. Then, the following relationships holds for
k=0

the process Xy (t) :

EXy(t Z Bk, [3.77]

k=N+1
VarX y (t Z Z (B)?, [3.78]
k=N+11=N+1
a Y
E(Xn(t) — Xn(s)? = Var(Xn(t) — Xn(s)) < | — 22— | , [3.79]
w(w + UO)

where

(Ay)* =32 Z Z <23kk3m/) o)¢(ﬁ+uo)

2
k=N+11=N+1

HBCE + ) + 05+ o))
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PROOF.— From [3.75] and from relation (cj, (t))? + (2, (t))? = 1, follows [3.77].

To prove [3.78] and [3.81], let us use the Isserlis’ formula

E&1628384 = E§16E 38y + E1§E 8 + ESH164E s,

where &;, ¢ = 1,2, 3,4 are Gaussian random variables.

Then, using remark 3.10, we obtain:

EXn®)* = > > <Bkk3u(0ik(t)'(lzlz(f)+Cﬁk(t)'C?z(t)

k=N+1Ii=N+1

+ ehilt) - ch(t) + () - ch(®))
+2(Bi)? (e () + (1) + (chu(0))* + <cil<t>>2)>.

It is easy to check
e (t) - el () + i) - () + e (t) - (1) + R (t) - e (t)
= (e (1)” + (cka(1)® + (R (1)* + (cra(t)* = 1.
Therefore,

E(Xy(t)? = i i (BkkBlz+2(Bkl)2>-

k=N+1I1=N+1
From the above equality and from [3.77] follows [3.78].
Consider now Ay (t,s) = Xn(t) — Xn(s). Let us define
At s) = cu(t) = ciu(s),  i=1,2,3,4.

Then,

o0 o0

An(ts)= D D Bru(&&- At s)+mm - Afi(t, s)

k=N+11=N+1
+£knl ’ Ail(tv S) + ﬂk& : Ail(t’ s)) :

Note that EApn(¢,s) = E(Xn(t) — Xn(s)) = 0.
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Similarly to the process X (t), we have

(AN t 8 Z Z (BkkBll (Allck(t’S)Alll(t78) +Aik(t?S)Al2l(t7s)

k=N+1Il=N+1

+ Ablt $)AF (1 5) + AL (1 )AL (L, 5))

2(Bu)? ((Aht))* + (Aki(t,5))*
+ (AR () + (A, s>>2)) . [3.801

Estimate now the differences Afcl (t,s), i = 1,2,3,4. We will use the inequality
from lemma 3.7:

sin | < Plutuo)
v| T (v +uo)
We get:
|AL(t,8)] = | cos Mgt cos A\t — cos A\gs cos \s|

< | cos Agt — cos A\ s| + | cos A\gt — cos Ay s|

<2 ( sin 7/\16@27 ) ‘ + ’sin 7)”(]527 ) ’)

2 Ak
< m (1/1( 5 +ug) + (= +U0))

In the same way, A};l (t,s), i = 2,3,4 can be estimated. Hence,

2 Ak
Aa(t.9) = 5 (90 +u) 40y +u) ), =123
If the obtained estimations will be substituted into [3.80], we have [3.81]. O

THEOREM 3.8.— Let &£(¢) be separable Gaussian stochastic process with discrete
spectrum [3.74];

o0
Zbiz,i)\zo‘<oo, 1=0,1,2, a€(0,1].

if for integer M > land z > 0

- Wlnax{l; <Voft%N) <121)Q>M11}7
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then for the random process Xy (t) = Xy (t)—EXx(t) the estimation large deviation
probability holds true

gt} 51 g5
ax Mo 2z 2
()0 )

where

-’)’O(N):<2 i i (Bkl)2> ; [3.81]

k=N+11=N+1

=

AS = <252@ ST @BrkBudAl + (Br)*( g+A7)2)> . [3.82]

k=N+1Ii=N+1

PROOF.— The theorem follows from corollary 3.6. Note that the function
P(u) =u®, a € (0, 1] satisfies all conditions of lemma 3.7 as ug = 0.

A stochastic process X (t) —EX y (t) is really a Square-Gaussian process, where
Xn(t) is defined in [3.75]. If we put ¥(u) = u®, a € (0,1], up = 0, then [3.81]
yields the estimation:

su ar - S % Ai?v
o (Var(Xn () = Xn() < o,

Hence,
on(h) = A%h*, «a € (0,1],
where Ay is from [3.82].

From corollary 3.6 7o = 7o(N) = sup (VarXy(t))2. It follows from relation
t€[0,T)
[3.78] that:

VarXy(t) = VarXy(t) =2 > Y (Bu)* = (0(N))*.
k=N+11=N+1

The next corollary follows from theorem 3.8 and definition 3.4.
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COROLLARY 3.10.— Let

oo
Zbkzk)\h <oo, 1=0,1,2, «a€(0,1].
k=0

The model &y(t) approximates separable Gaussian process £(t), taking into

account the output process, with given accuracy § > 0 and reliability
1—v,ve(0,1),if for N > 1 the conditions are fulfilled:

oo el (38 (5)))

M1 1) ad M/ 26 1/2
1o )eXp{_\/iq/O(N)}(\/ﬁ%(N)M) (1+m> <v,

where M > 1 is an arbitrary integer number, (V) is from [3.81].
The following theorem holds true.

THEOREM 3.9~ Let £(t) be separable Gaussian stochastic process with discrete
spectrum [3.74];

Zbkzk (M) <00, i=0,1,2, a>1.

If for integer M > landz > 0, @ > 1,

ﬁVO(N)Mln(ea + %) { < Al ) m}
> maxq 1; . 7
a-1 Yo(NV)(In(e™ + %))«

then for stochastic process X x(t) = Xy (t) — EXx(t) the inequality comes true

X M
sup [ Xy >:c} < K, eXp{—nLKi” xM+}
P {sup | X () s T K

20 1/2
x(14+—=2 )",
( \/ﬁvo(N))
where D = max{Z, e}, ~o(N)isfrom [3.81], Ko = 2D,

a—1

KM = (M + o) (M) " (Vo))
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(AE)2 =32 Z Z <2BkkB” In® (— +e )]n(gl + ea)

k=N+1I1=N+1
A A
+(Bkl)2(1na(3’“ +e®) + 111(51 + ea))2> .

PROOF.— The theorem follows from corollary 3.6. Note that the function ¢ (u) =
In®(u 4 1), a > 0 satisfies all conditions of lemma 3.7 as ug = e* — 1.

It follows from [3.81] that:
(Var(Xx(t) ~ Xx(s))? < on(h) = —28
sup (Var - )z <o = —"
lt—s|<h o N N ¥(3 + uo)

As a function ¢ (u) can be obtained, the function ¥(u) = In“(u 4+ 1), a > 1,
with constant ug = e® — 1. This function satisfies all conditions of lemma 3.7. Hence,

Ay
h)=——"——, > 1.
UN( ) lI]OL(%—‘reO‘) «
From [3.78] it follows that:
VarXy(t) = VarXy(t) = 2 Z Z (Bi)? = (70(N))2.
k=N+11=N+1

The theorem will be complete if the obtained values will be substituted in
corollary 3.7. (]

From theorem 3.9 and definition 3.4 follows the following corollary.

COROLLARY 3.11.— Let

Zbkzklnza ) < oo, i=0,1,2, ac(0,1].

The model &y (t) approximates separable Gaussian process with discrete spectrum
&(t), taking into account the output process, with given accuracy ¢ > 0 and reliability
1—v,ve(0,1),if for N > 1 the conditions are fulfilled:

M+o

5> VIR ) £ ( ) I

T

1) M 26 1/2
K, —+K(JXW-5M+Q} 1+ ——— < v,
! exp{ V270 (N) 5 ( \/570(1\7)) )
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where o« > 1, Ko 1, D, Ay and Kgffl are defined in theorem 3.9, M > 1 is an
arbitrary integer number, o (V) is from [3.81].

EXAMPLE 3.3.— Let&(¢), t € T = [0, T be a stationary Gaussian stochastic process

oo}
with discrete spectrum [3.74]. Suppose that the series Y b2 A} converges.
k=0

Consider the case where the output process is an derivative of the input
process n(t) = ¢&'(t),t € [0,7]. The derivative of stochastic process

o0
E'(t) = > bpAp(—E&k sin Agt + nx cos Agt) exists in mean square.
k=0

Let us write the difference of the input process and the model from definition 3.5:
Evt) =E) —En(t) = Y bp(Gecos Akt +mesinMgt), teT
E=N+1
Similarly, we can define 1y (t) as
nn(t) = Z b Ak (=& sin At + np cos A\pt), te€ T.

k=N-+1
Construct a semiadditive quadratic form Xy (¢) with respect to:
Xn(t) = X(En(t),nn(t) = a- (Ex(8) +2¢- En () -nn(t) + - (v (1)),
Stochastic process Xy (t) can be given as
o0 (o)
Xn() = Y > b (S&icky(t) + Eemcii(8) + me&ichi (1) + memciy (1))
k=N+11=N+1

where

cpy(t) = acos Mgt cos \it — c(A; cos At sin A\t + A cos At sin A\gt)
+ bAR A sin Mgt sin \jt,

cil (t) = acos Agtsin \it + c(A; cos At cos \jt — A sin Agt sin Ajt)
— DA\ sin At cos A\jt,
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cil (t) = asin Agt cos \it — (A sin Agt sin \jt — Ay, cos Agt cos Ajt)
— DA\ cos A\t sin \jt,

cp(t) = asin Mgt sin A\t + c(A; sin gt cos \it + A cos At sin \jt)
4+ bArA; cos A\t cos Ajt.

REMARK 3.11.— Note that the function ¢, (t), i = 1,4 is symmetric with respect to
kandl, ci,(t) = ci.(t), i = 1,4 and ¢}, (t) = ci.(t).
Denote By, = bkbg(a +c(Ag + )\l> + b)\k/\l).

LEMMA 3.9.— Let the function ¢)(u), w > 0 satisfies the conditions of lemma 3.7,
and ¢(u) — oo as u — 0.

Suggest that the series > b2 A21)?(\;,) converges.
k=0

Then, the following relationships holds for stochastic process X n (¢):

EXy(t)= Y bi(a+0bX}), [3.83]
k=N+1
VarX y(t Z Z 4By By + 8(B)®
k=N-+1I=N+1
— bgbi(a+bAR)(a +bAT)) = (v(N))?, [3.84]
2 Ay 2

where

2 =32 Z Z <QBk/cBlz¢ +U0)¢(%+U0)

k=N+1Il=N+1

B+ )+ 6 +w)?).

PROOF.— The proof of the lemma is the same as for lemma 3.8. (]
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Note that the values A% in lemmas 3.9 and 3.8 coincide.

The approximation theorems for Gaussian stochastic process with discrete
spectrum also hold true.

THEOREM 3.10.— Let Y b2A7"%* <00, a € (0,1].
k=0

The model §~ ~ (t) approximates separable Gaussian process with discrete spectrum
&(t), taking into account the derivative of the process, with given accuracy 6 > 0 and
reliability 1 — v, v € (0, 1), if for N > 1 the conditions are fulfilled:

oo (55(2))

(M+1)

1 ad M/a 26 1/2
de” = exp{iﬂ’Yo(N)}(\@’Yo(N)M> (1+m> < v,

where fl?\, is from [3.82], M > 1 is an arbitrary integer number, o (V) is defined in
[3.84].

EXAMPLE 3.4.— Consider a Gaussian stationary process with discrete spectrum from
[3.74]. Suppose that

where s > 2,5. Consider a particular case when o = 1. Evidently, the series in
theorem 3.10 will be convergent if 2s — 4 > 1. We consider now semi-positive
quadratic form X (¢) defined on the processes & (t) and nx () as

Xn(t) = (En(0))* + (En (1))

In this case, the value By; is equal to

Bkl:ﬁ(lﬂ-k”.
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o0 o0
Let us estimate now the series >, Y. 7=, wherem > landp > 1 are
k=N+11=N+1
some numbers:

S Y g X S [

k=N+11= N+1 k=N+1Il=N+1

1
/ / dudv
N N vMupP

1 1
= D N [3.86]

IN

By [3.86], we obtain that

oo

1 2 1
B
k:ZNH( k) < (25 — 1)2N(2s-1)2 + (25 — 2)2N(25-2)2 + (25 — 3)2N(25-3)2

and

> » W 5o
kS g C)NB 1 T (25 —3)NB B
k=N+1

Then, the quantity o (/N) from [3.84] can be estimated as:

<70<N>>23< ) Bkk> s S (B

k=N+1 k=N+1I1I=N+1

_ 1 oL N2 2
— N4s—2 2s—1 25s—3

+8 ! +2N2+ Al
(2s—1)2 2s—2 (2s—3)2))°
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It is easy to show that AO‘N from [3.82] in the case o = 1 is transformed in

a2 4 N N® 2 N2
(A%)" = N4s—2 ((25—2 + 23—4> + (25 —1)(2s — 3)

2N* NS 1
T s —2)2s—4) T (25—3)(25—5) | (25 —2)°
2N*? N6
T s -2 T2 4)2>

Consider the case when the values from theorem 3.10 are 7' = 1 and M = 2.
Then, the inequalities of theorem 3.10 will be rewritten as

§ > 2v27(N) max{l; 2721(%;\7)}

and

3 ) ) 2 26 1/2
de exp{—\/}yo(N)}(%/}yo(N)) (l—l—m) <.

Assume that s = 3. The values of NV dependent on accuracy ¢ and reliability 1 — v
are found in environment for statistical computing R and are shown in Table 3.1.

v =0.1{r = 0.05|r = 0.01
6=0.1 6 7 7
6 =0.06 7 8 8
6=0.01] 13 13 14

Table 3.1. The result of the simulation of stationary Gaussian process
with discrete spectrum taking into account the derivative of the process

THEOREM 3.11.— Let 3 b2 A2In*(\;) < 00, a > 1.
k=0

The model &y (t) approximates separable Gaussian process with discrete spectrum
&(t), taking into account the derivative of the process, with given accuracy § > 0 and
reliability 1 — v, v € (0, 1), if for N > 1 the conditions are fulfilled

M+o

o> D) ma"{h (wv)( - 2))@)%}7

a—1 In(e> + %
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1) M 26 1/2
K,1ex ——&—KOJCVI-éMM} 14+ — < v,
5 p{ V270(N) ! ( \/5’70(‘7\7))

where v > 1, Ko 1, D, A% and K2, are defined in theorem 3.9, M > 1 is an
arbitrary integer number, o (V) is from [3.84].

-2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.1. The sample path of the model of Gaussian stationary
process with discrete spectrum taking into account the derivative of the
process with accuracy 0.01 and reliability 0.99 in space C([0, 1])

3.7. Simulation of Gaussian stochastic fields

Let (T, p) be a compact metric space with the metric p, where T = [0, 7]¢ and
pt,s) = ax, |t; — si|, where ¢, s are vectors from T. Let £ = {£(t),t € T} be a
3

centered Gaussian random field that can be represented in the form

§t) = &nfalt), [3.87]
n=1
where f,(t), n > 1 are continuous functions and &,, n = 1,2, ... are independent

Gaussian random variables such that E&;, = 0, Efi = 1. We also suppose that the
following series converges for all ¢ € T

S B fa(t)’ =D £2(t) < 0. [3.88]

n=1
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From [3.88] it follows that the series [3.87] converges with probability one for
every t € T (see, for example, [LOE 60]).

Suppose the continuous derivatives %, 1=1,d,teT, n=1,2,...exist.
o0
For convenience, define éx (1) = Y. &, fn(t), N =1,2,...,avectort € [0, T]<.
n=N

Consider a positive semidefinite quadratic form

d
X (t) = (1) + Z(afgt@)Q,N > 1. [3.89]
i=1 v
Consider
DY & (fk Z afk _ ) Z ka&%l [3.90]
k=N I=N ti k=N I=N
where
P = +Zaf’“ 6fl' : [3.91]

Suppose Z Z #%,(t) < oo. Show now that under some conditions [3.89] is

equal to [3. 90] and thls series converges uniformly for £ € T with probability 1. The
theorem follows from [BUL 00].

THEOREM 3.12.— Let there exist the continuous derivatives %ﬁ, 1 <i<dand

the series > > ¢%,(t) converges for all ¢ € T. Suppose,
k=N I=N

sup |ri(t) — dra(s)| < cmo(h), Y ew < oo,

lt—s|<h k=1

where o(h), h > 0 is a continuous non-decreasing function such that o(h) — 0 as
h — 0, for which

o

1/2
In g(_l)(s)’ de < o0,
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holds true. Then, the series Z Z ok (t)ExE converges uniformly as ¢t € T with
k=N I=N
probability 1 and

d 2 [e'e) fe'e)
Xl =&+ (%52 ) = 3 Y- @out,

where ¢y (t) are from [3.91].

Let us give some definitions.

~ N
DEFINITION 3.6.— A field n(t) = 3. &nfn(t), t € [0,T)4 is called a model of the
field £(t) from [3.87]. -

DEFINITION 3.7.— The model & (t) approximates £(t) with given reliability 1 — v,
v € (0,1) and accuracy § > 0 in Banach space C[lo ] if the next inequality holds

P {sul;) | XNnt1(t) — EXNi1(t)] > 5} <v
te

where
=635

Xni1(t) = X(t) — X(t).

We want to construct a model £y (t) of the Gaussian field £(¢) such that &y (t)
approximates &(¢) with given reliability and accuracy.

Then, the next lemma is similar to lemma 3.6.

LEMMA 3.10.— For Xn(t), N =1,..., t € [0,T]¢, the following relationships hold
true

Var(XN(t) — XN(S)) =2 i i(¢kl(t) - ¢kl(5))27 [392]

where ¢ (t) is from [3.91].
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THEOREM 3.13.— Let {(t) = {£(t),t € T} be a centered Gaussian separable
3E(t) ;
,i=1,d.

stochastic process and there exist continuous derivatives
Assume that
oo oo
sup |gr(t) — dr(s)| S dpe- R, 2 Y > diy=C? <o, [3.93]
p(t,s)<h k=N+11=N+1

where o € (0;1], a constant C' > 0 and ¢y;(t) are from [3.91]. The model &y (t)
approximates separable Gaussian field £ (¢) with given reliability 1 — v, v € (0,1) and
accuracy 6 > 0 if for @ € (0,1] and integer M > 1 the following inequalities hold
true:

5> Y2 s (5)"E) ™,

5 Md/a 25 \1/2
ol+dgd/2, P @ ) ( ) <,

)
i eXp{_\/%o}(\/ivon +fTvo

where v = sup(VarXy,1)"/2.

teT

PROOF.— From condition [3.93] it follows that theorem 3.2 holds true. Hence,
oo [ee]

Xni(t) = £?V+1( )+ Z (d&\’“(t)) = Y S &3, (t) and this series

k=N+1I1=N+1
converge uniformly as ¢ E T From [3.92] and [3.93] it follows:

s 0 1/2
sup (Var(Xny41(t) — Xn41(s))) 2= (2 sup Z (Pra(t) — ¢kl(5))2>

p(t,s)<h p(t,s)<h k,l=N+1

0o o] 1/2
(22 X @) e == o

k=N+1I1l=N+1

Now the proof of the theorem follows from theorem 3.2. U

Using theorems 3.3 and 3.12, the following theorem is obtained.

THEOREM 3.14.— Let £(t) = {&(t),t € T} be a centered Gaussian separable
stochastic process and there exist continuous derivatives ag(t) ,i=1,d.

Assume that

sup |¢m<t>—¢kz<s>|s%, 23 S = <o,

p(t,s)<h (In(e> + 3 E=N411=N+1
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where o > 1, a constant ¢ > 0 and ¢y (t) is from [3.91]. The model gN(t)
approximates separable Gaussian field £(¢) with given reliability 1 — v, v € (0,1)
and accuracy § > 0 if for & > 1 and integer M > 1, the following inequalities hold
true:

\/i'yonln(ea +
>

a—1

2 ) . T
Tvd max{l; <2> }, a>1,
(voIn(e™ + %))

sl () (20 )

) ) Md\/27, In(e* + %) wra 25 \1/2
X exp{ — + 1+ <v,
{ V2% V2% ( (@—1)8 ) ( \@70)

where D = max{TT‘/E, e=}, vo = sup(VarX 1 (t))"/2.
teT

3.7.1. Simulation of Gaussian fields on spheres

Consider now the Gaussian field on unit sphere S; € R%, d > 3. Let us give some
well-known designations; (7,01, ...,04—2, P) are spherical coordinates of the point
xz, where 0 < 6; < m, 0 < P < 27 and in our case r = 1. Then, the coordinates of
the point z can be rewritten as

r; =sinfysinfs---sinf;_jcosb;, i=1,...,d—2,
Tg_1 =sinfysinfs - -sinfy_3sinfy_ocosP,

rq =sinf;sinfs - --sinfy_3sinfy_osin P.

In this section, we will use spherical coordinates. In this case, the sphere Sy is
transformed in [0, 7]4~2 x [0,27] and the metric p(z,2') = | dnax |6; — 05 is
considered, where for convenience we denote 6;_1 = P. Consider the full system
of orthogonal spherical harmonics. Then, for them the following theorem is fulfilled.
THEOREM 3.15.— [BAT 53] Let my, . .., my—2 be such integer numbers that

m=mg>m1>...>mg2 >0,

then the spherical harmonic polynomials:

Y(mk,9k7 + P) = Y(m,ml, N 7md,2,91, .. .,Hd,g,P) =
d—3
k

. . pd=2 &
= etima—2P H(sm Opy1)" Ot 2 2 (cos Orrr)  [3.94]
k=0
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make up the full system of linearly independent harmonic polynomials of the power
of mon Sy.

Let us number the harmonics from theorem 3.15 and denote them by

St (01,...,04_2,P), 1 =1,..., h(m,d)), where m is a power of polynomials and

h(m,d) = (2m + d — Q)W

is the number of linearly independent harmonics of the power of m.

Let C¥ (z), v # 0 be the Gegenbauer polynomials that are defined by such
productive function

(1—2at+t)™" =Y Ch(x)t™.
m=0

DEFINITION 3.8.— A stochastic field {(z) on sphere Sy is called isotropic in wide
sense if

E¢{(71)&(z2) = B(cos0)

depends only on the angular distance 0 between x1 and x-.

Then, the correlation function of isotropic stochastic field can be represented in
the form [YAD 83]

B(cos ) = + > memTh(m,d), [3.95]

o0
where b, >0 > bnh(m,d) < 0o, wq is a surface area of the sphere Sy,
m=0

wla,

2
r(g)’

and the process can be represented in the form of the series

Wq =

oo h(m,d)

@)=Y Y & VbmSh(2), [3.96]

m=0 [=1
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where the sequence of random variables ¢/, is such that E¢!,, = 0, E¢!, 1 b = §m 5l1
(m=0,1...;1=1,...,h(m,d)).

For Gegenbauer polynomials, we will use explicit representation [KOZ 76]:

/' (cos 6) Z B l— l k cos[(l 2k)0], [3.97]

where (A)y = XA +1)---(A+k—1).

Consider a quadratic semipositive form:
d—2 2 2
9¢(x) 0¢(x)
_ 2
X(z) = &(z) +§_:1( 50, ) + ( )

Suggest that all conditions of theorem 3.12 for £(x) from [3.96] and for respective
X (x) are satisfied, then

00 oo h(m,d)h(m',d)

=22 2 X fww (@)

m=0m’'=0 I[=1 '=1

where
¢mm’ (SE) =V bmbm’
d
X (sﬁn (z)SL, +

i=1

—2 98! (x) OSY, (x) G aS! (x)
00; 00! oP  OP’

) . [3.98]

oo h(m,d) h(m’,d)
We assume that Z >y ®2,..,(x) converges uniformly as x € S,;.
=1 1

m=0m’'=0 =1
o h(m,d)
Let us denote &n(x) = Z Z & Vb, St(r)  and
L2 0evw)) | (oenie
Xn(z) = En(@)? + X (8‘\;’”) + ((,J;’Px) , N = 0,1,... Similarly to
i=1 ‘
lemma 3.10, the following relationships can be obtained for Xy (x):

o0 h(m d

m=N [=1
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0o oo h(m,d) h(m’,d)
VarXN(t) =2 Z Z Z Z d)znm’ (I)v
m=Nm/=N [=1 I'=1

oo h(m,d) h(m',d)

Var(Xy(z) — Xn(z')) = Z DY
X (fm

Nm'=N I=1 U=1

m (2) = G (7)) [3.99]
Estimate now the difference:

|¢mm’($) - (bmm’ (-/L‘/)‘ S V bmbm’

x {ISin(fv)IISi;f () = S (2)] + |Sh ()15, (x) = Sh (2")]

0S4 | 0Sh(z) _ OSu(x')

asl Uo(x)  ASY,(x)
+Z| ae - |+ 156,128, 06;

09;

N as! (z) [ ast (x)  ASY,(a") I+ |asj;b,(z') ||5S£n, () 9S8! (2) |
oP oP 0P oP op  op |

[3.100]

Theorem 3.15 allows us to use the exact representation of S, (z) for estimation of
[3.100]. At first, we estimate the Gegenbauer polynomial in [3.97]. We have:

m + -k
!Cmsﬂmkfl ? (COS 9’”’1)‘

Mk —MEk41

>

=0

(mk+1 + % - g)i(mk—i-l + % - g)mk—m,k+1—i

z'(mk — MEg+1 — Z)‘

IN

(o + 452 — § — 1) + 252 = 1y

2’L 2mk—mk+1—i

2m 4 d — 4\ T
< (m+ 1)("”) .

4



Simulation of Gaussian Stochastic Processes 165

Then, from [3.94] it follows that

d—3

2m 4 d — 4\ TR om+d—4\"
|Sm<x>_H<m+1>( - ) <(m+1) < 1 > :
k=0
for all { = T, h(m, d). Denote L(m) = (m + 1)*~2 (W)
Estimate now:
2 d—4\"
sup8h() = St (0] < (m + 1272 (2R
plz,x’)<h 4
‘ d—3 A d—3
X etima-2P H (sin 0k+1)mk+l — gFima—zP H (sin %ﬂ)mw1 [3.101]
k=0 k=0

We use the following obvious inequality:

[TTai =TTl <> lai = bl [ [max{lasl, o1} < lai =i, [3.102]
i=0 i=0 i=0 i i=0

if |a;| < 1and|b;| < 1.

For m;4+1 > 1, we get
0it1
|(sin 0;11)™ — (sin@ )™+ = mi+1\/ (sint)™i+1 "1 dsint|
b1
0it1
< mi+1|/ dsint| < m|sin;q —sin, | < 2'"*mh®, [3.103]
9;«}»1

where p(z,2’) = | Jnax |6; — 0i] < hand o € (0,1]

Substituting [3.102] and [3.103] into [3.101], we obtain

T
w

(oa) 1S5 (x) = Spa ()] < L(m) Y |(sin ;1) ™+ — (sin 6] 1)+ |
plz,x’")<h

Il
o

i
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x | [ max{(sin 0; 1)+, (sin 6],,)™ 1} < 2'*m(d — 2) L(m)h* := K (m)h,
ki

where K (m) = 2'=%m(d — 2)L(m) = 2'~*m(d — 2)(m + 1)472 (szdzl)m.

Find now the estimations for derivatives of S!, (). Since Gegenbauer polynomials

d—2 k
Meg+1+~5-—3 . . .
1 (cos 41) are trigonometric polynomials of the power of 1y, — 41,

then for them Bernstein inequality holds true;

ka+1+%_§ 0 !
Sup ‘( M =M1 (COS k+1)> ’
0<0k 1 <27

mi g+ 45—
< (mi—mip)  sup (O (cosdy )
0<0k41<27

< ka+l+%_§ 9
<mCp,, 1, 2 2 (cosb1)m.

Then, from [3.94] the following inequalities can be obtained:

98}, (x) B do(2m+d—4\"

7

oSt (z)  0S! (')
m _ m < a.
| 20, 0 | <2mK(m)h

Note that | 2555 | = |m, ,||S! (x)] < mL(m) and

oSL (x) 95 («’

| 3P 5p7 )| < 2mK(m)h®, a € (0,1].

The estimation for [3.100] follows from inequalities above. Hence,

[Drmm () = Do ()] < Vb (1 + (4d — 6)mm/)
x (L(m)K(m') + L(m")K (m))h®

< 217 (d = 2)v/bynb (' +m) (1 + (4d — 6)mm’) L(m) L(m’)h*,

where « € (0,1], L(m) = (m + 1)d72 <2m+4d—4> .
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Using the representation [3.99], we get the following inequality for « € (0, 1],

sup (Var(Xy(z) — XN(:E’)))l/2 < Ayh® =o(h), N=0,1,2...,
p(z,x’)<h
where
AR =2872d - 2)” Y b b (1, d) (!, d) (m + m”)?
m=N m/=N
x (1 + (4d — 6)mm’)>L*(m)L*(m’). [3.104]

We suggest that the series Y. b,,h(m,d)m*L%(m) < co.

m=0

So, the next theorems are proved.

THEOREM 3.16.— Let () be Gaussian separable isotropic field on sphere Sy. If for
all integers M > landy > 0

" AN<\5’YOM(d* 1))M—1

< 7o,
ya
and
V2yoM(d — 1) 2
> Y2 1, 4 Na/M
y o max{L (o))

then the following inequality holds true:

P {sup | Xv(x) ~ BXn ()| > y} < (v~ 1e/)"

(d-1) M(d—-1)/a /
Xexp{g%ﬂd& I}WO%D) 1 (Hj;;O)”,

where Ay is defined in [3.104] and o = sup (VarXy(z))/2.
zESq

PROOF.— Recall that for spherical coordinates the sphere S; is transformed

to [0,7]972[0,2r7] = T € R ! and we consider the metric
plz,z') = | Jnax |6; — 0%|. Then, the following inequality for the number of closed
_1‘_ -

balls of radius u, which covers Sy, holds true:

s 22T
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Note that ¢ = infiersup ey p(t,s) = 7 and ty = o(eg). We proved o(h) =
Anh®, «a€(0,1], Ay isfrom [3.104]. Hence, the result of theorem 3.13 can be
used as for d — 1 dimensional space, which proves the theorem. (]

From theorem 3.16 follows the next theorem.

THEOREM 3.17.— Let all conditions of the previous theorem be satisfied. The model
£n(z) approximates the Gaussian separable isotropic field £(x) on Sy with given
reliability 1 — v, v € (0, 1) and accuracy ¢ > 0 if for a € (0, 1] and integer M > 1
the following inequalities hold true:

V2o M (d — 1)\ M1
WMNH(%) < o,
«Q
2voM (d — 1
5> V2 M(d—1) max{1, ( Yo/ My
« d—1

t (VAT e MG

s M(d=1)/a L 1/2
x (\@WOM(d—l)) ( + \/570) <V




4

The Construction of the Model of
Gaussian Stationary Processes

This chapter offers two approaches to construct the models of Gaussian stationary
stochastic processes. These results can be found in the works of [ANT 02a] and
[KOZ 12]. The methods of model construction are generalized in the case of
random fields. Similar statements are discussed in Tegza’s studies
[TEG 07, TEG 08, TEG 11].

The proposed methods of modeling can be applied in different areas of science
and technology, particularly in radio, physics and meteorology. The models can be
interpreted as a set of the signals with limited energy, harmonic signals and signals
with limited duration.

Let {2, B, P} be a probabilistic space.

Let X = {X(¢), t € R} be a real-valued Gaussian stationary centered second-
order stochastic process with covariance function:

B(r)=EX(t+71)-X(t) = /cos)n‘dF()\)7
0

where F'(\) is a spectral function. Assume that the function F'(\) is continuous.

We assume that the process X (¢) is separable and almost sure sample continuous
on any interval [0,7]. All the necessary and sufficient conditions for sample
continuous separable stationary Gaussian processes on a compact can be found in
[FER 75].
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Let us consider the close to the necessary sufficient conditions of sample continuity
of Gaussian stationary separable random processes.

THEOREM 4.1.— [HUN 51] Let X = {X(¢),0 < t < T} be a separable Gaussian
stationary real-valued stochastic process. It will be sample continuous if the following
relationship holds true

/1111+A VAR () < oo, [4.1]
0

where F'(\) is a spectral function, & > 0.

Note that the statement and the proof of this theorem in a weaker form (under
condition £ > 2) is contained in [CRA 67].

The process X can be represented as:

= /cos Atdny (A +/sm Atdna (A [4.2]
0 0

where 71(A) and 72(\) are such independent centered Gaussian processes with
independent increments that

Emi(A2) —mi(M))2 = F(A) — F(\1), M <Ag, i=1,2.

Consider the partition of the set [0,00] A = {Ao, ..., Aa41} such that Ay = 0,
A < >\k+1, )\A{+1 = 00, then

M Akt M kL
X(t)=> / cos Xt (A) + ) / sin Atdna (N). [4.3]
k=0 e k=0 X

Let us consider a process

M

Xa(t) =) (1 cos (it + nia sin (xt),
k=0

where (j, are independent for any k, and are defined on [Ag, A;11] with cumulative
distribution function

F(\) — F(A\g)
F(Aeg1) = F(A)

F,(\) = P{Cx < A} =
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Ak41 Ak41

Putne = [ dpn(N),me = [ dna(N)
A A

The process X (¢) is called a model of the Gaussian random process X (¢). And it
is clear that a different selection of the number M provides different levels of accuracy
and reliability for the computer-simulated models of the process.

There are some models that will be investigated in the following sections. Let us
consider these models and their properties.

1) As a model for Gaussian random process X (t), a random process

Mz

Xa (t) (nkl Ccos th + Nio sin th) [4.4]
k=0
Ak41 Ak41
is studied, where g1 = [ dmi(A), ke = [ dn2(N); mi1s Mima, Gk are independent
kk /\k
random variables for any I, m and k, A = {Ag, A\1,..., A1} 1is a division of the

set [0, 00], where \g = 0, A\ < Agp+1, Am+1 = 00, 7k1, Nk2 are Gaussian random
variables such that Eng; = Enge = 0, En,%l = En,%2 =F(M\k11)—F() = bi, Cr
are random variables that take values on the segments [Ag, Ax+1], and if bﬁ > (0, then

F(A) = F(\)
F(Aey1) = F(Ar)

Fe(A) = P{G <A} =

If b7 = 0, then 71 = 0, 2 = 0, () = 0 with probability of 1.
It is easy to check that the model is zero-mean random process:
M
EX(t Z M1 €08 Ct + Mka sin (xt)
k=0

M
(Eng1E cos (it + EngoEsin (t) =
0

b
Il

The covariance function of the process X, (t) coincides with the covariance
function of stochastic process X (¢)

EXA(t+ 7)Xa(t)

M
=E (Z N1 €08 C(t + 7) + Nra sin G (¢t + 7')))
k=0
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M
X < (Mk1 cos Gt + Mio sin Ckﬂ)

k=0

M-

[Enpy E cos (i (t + 7) cos Gt 4+ EniyEsin G, (t + 7) sin (it ]

k=0
M Ak41
=> biEcosGer = bj / cos ATdFj,(\)
k=0 k=0 X
k
= /cos ATdF (M) = r(7), [4.5]
0

(Eni1-nj1 =0, Enia -mjo =0, i # j, Enpiqre =0, k=0,--- , M).

But X (¢) is not Gaussian process. Our goal is to identify how the process X4 (¢)
is closed to Gaussian process X (t).

Consider the model X (¢) and put

Akt Ak+1
k1 = / dm(N), e = / dna(N).
Ak Ak

Let na(t) = X (t) — Xa(t). Then

M AR M ER
na(t) = Z / cos Atdn (A Z / sin Atdna ()
k=0 5 k=0 5
M Ak41 M Ak41
- / cos Gt (A) =) / sin Grtdn (A);
k=0 5 k=0 5
M Ak41
= Z / (cos At — cos (t)dn (A)
k=0 \ x.
Ak41

+ / (sin At — sin (t)dna(N) | . [4.6]

Ak
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LEMMA 4.1.— The following relationships hold true:

A 2m—+1
k41
E / (cos At — cos Cxt)dni () =0,
Ak
Py 2m—+1
E / (sin At — sin (xt)dna (M) =0,
Ak
Py 2m
E / (cos At — cos (it)dn () < Zkm,s
Ak
Abt1 2m
E / (sin At — sin th)d’rlz ()\) < anu
Ak
Akt1 \ 2 m 9 |
t — !
where Zy,, = 4" Ay, E sinM dF(\) , Aoy = (2m) .
2 2mm)
Ak

PROOF.- Since for zero-mean Gaussian random variable £, we have

E¢ = 0, E€? = 02, E€%% = Aopo®, k = 1,2,..., Ay, = (2k — 1)1 = CRL
and random variable (i does not depend on 7;(\), then it follows from Fubini theorem
that:

Mest 2m
E / (cos At — cos (it)dn (A)
Ak
Mot 2m
= EE; / (cos At — cos (t)dn (A)
Ak
At m
< Ay E / | cos At — cos Cit|?dF(\)
Ak
Aot ) m
< Ay E 25sin t(c’“; N sin t(c’“; N ar

Ak
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Ak41 \ 9
Uk =) dFN) | = Zim,

< AgE 2sin

Ak

where E¢;, denotes conditional mathematical expectation with respect to (.

Similarly, the second inequality is obtained:

A 2m
k+1
E / (sin At — sin (xt)dn2 ()
Ak
Akt1 N N 9 m
t(A — t
< Ao, E / 2sin A=), cos (Ck;— ) dF()\)
Ak
Ak41 ) 9 m
< Ao, E / 2sin @ dF(X) = Zim-
Ak
THEOREM 4.2.— Random process 74 (t) is sub-Gaussian.
PROOF.— Show that
)\k+1 )\k+1
Xk1 = / (cos At — cos (xt)dni(N) 0G Xr2 = / (sin At — sin (g t)dna(N)
>\k )\k
are sub-Gaussian random variables. It follows from lemma 4.1 that
Aot 1 2m ﬁ
E / (cos At — cos (t)dn (A)
Ak
_1
m 2m

Akt+1 [/ Ak41

< /gmA,,, / /(sint(u;)\))2dF(u) dF,(\)

Ak Ak
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Ak+1 2m

= B m dF()\)
m / (F()\k+1) F()‘k)) F(/\k+1>_F<)\k)

IN

Ak

< /4 Dy (F(As1) = F(M)?

and
Aot om 1/2m
E / (sin At — sin (i t)dna(N)
Ak
Akt1 [/ Akt N 9 m
< R/4mAg,, / / (sin t(u;)) dF (u)
Ak Ak
dF(\) )n
F(Aet1) — F(Ax)
< /A Aoy, (F(Ak11) — F(OR))2 .
Then,
1 2m ﬁ
O1(Xki) = sup A Exj;
m2>1 2m
2™m) (2m)! m ™
=5 4™ F (), —F
sup |4 S (F () = FO)

Nl

=2(F(Apt1) — F(Ag))? <oo, i=1,2
From the well-known theorem about the necessary and sufficient conditions of a
sub-Gaussian random variable [BUL 00] follows that x %1 and Y2 are sub-Gaussian

centered random variables. That is, for any ¢ € T, the value 7, (¢) is a sub-Gaussian

random variable. Since 7, (¢) is a boundary sum of sub-Gaussian random variables,
then this process is sub-Gaussian. O

THEOREM 4.3.— For sub-Gaussian process 15 (t), the next inequality is satisfied

Nl

1

m) o=t

[NIE

sin

£\ 2
t(Ck 2_ Ck) [4.7]

) <4 Zbksup<

m>1
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where b2 = F(Ag41) — F(\g), ¢} are random variables that are not dependent on
and have the same distributions as (k.

PROOF.— It follows from lemma 4.1 that

Xk+1 )\k+1
72 /(cos)\t—cos(jkt)dm()\) < e? /(cos/\t—cokat)dm(/\)
Ak Ak
1
Ak+1 ) 9 M\ ™
t _
< supbi | E / 2sinL dFy (M)
m>1 ; 2
k
1
Py Ah1 , \ ) m m
= sup 4b? sin (“2_ ) dEy(N) | dFp(u) | = IL.
m>1 5 3
Similarly
kk+1 Alc+1
T sin At — sin (xt < sin At — sin (.t
| e singean () | < €3 ([ (sine = sinGutdn ()
Ak Ak
Ak41 [ Ak41 \ 9 m o
t —
< sup 4b7 sin% dF,(\) | dFp(u) | = I
mzl Ak Ak
Then
)‘k+1 )\k+1
72 cos At — cos (t)dni (A) + sin A\t — sin (it)dns (A
( n "
Ak Ak
/\k+1 >\k+1 2
< |7 /(cosAt—cos(kt)dnl()\) +7 /(sin)\t—sinckt)dng()\)
)\k AIc

< AL
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Since the items of the series in [4.6] for different k are independent, then last
inequality and lemma 1.7 yield

M
T2 (a(t) <4 I,
k=0

1
-
(NI

1
M %\ [2m\ m
<4 Z sup b7 | E|sin (G — G)
k=0 m>1 2
O
2) A stochastic process
M
Xa(t) = (k1 cos At + 1z sin Art) [4.8]
k=0

will be used as a model of the Gaussian stationary random process, where 7,1, 7,2, Ck
are independent random variables for any [, m and k, Dy = {M\o, A\1,..., Ap41}isa
division of the set [0,A], A € Ry, where A\g = 0, A\p < Agt1, Aarp1 = A (A can
be equal to 00), M1, Nk2 are Gaussian random variables such that Eng; = Enge = 0,
En?, = Eni, = F(Ag+1) — F(\g) = b2, (g is any point of the segment [\, Agy1].

3) A similar approach will be used to build the models of homogeneous random
field.

Let {Y (t_) te T} be a centered, homogeneous, continuous in mean square
random field, {R" I (I’} is a measurable space and ® (-) is a finite measure. For
the covariance function B (7) of random field, the next representation holds true

B(T) = /cos (X, F) do (X) ,

n
R}
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where ® (X), X € R", is the measure that ® (R’_f_) = B(0). By Karhunen theorem

homogeneous, centered field Y (t_) can be represented as
Y (f) = / cos (X, F) A (X) n / sin (X, F) dZs (X) [4.9]
R% RY

where Z; (S) and Z3 (S), S € 4l are uncorrelated random measures that are
subordinated to ®. It means that EZ; (S1) Z; (S2) = ®(S1NS2), 51,52 € 4,
i=1,2,(-,)is a scalar product.

For the model of this random field, the sum Y (t_)

f’(f): NZ COS( )\1,...,)\n”))Zl(A(il,...,in))

01500000 =0

n Z bm( )Jf,...,Aff))ZQ(A(il,...,z'n)) [4.10]

B1yenyin =0

will be taken, where X (AY,..., i) are the points of some partition Dyn:
Air,..oyin) = {[AFATTY) oo [N N ) | N < N
A;«’,—,{r‘rl —A’:;Ln = N, Ae R+, N € N7 m = 1,7’L, i7n = l,N— 1}

of domain [0, A]", A € R.

4) The model construction of inhomogeneous Gaussian fields.

Let {Q2, B, P} be a standard probability space {Y(f) te T}7 T C R™centered,
Gaussian, continuous in mean square random field. Then, its covariance function
B (t, §) is continuous on T x T.

Consider the Fredholm integral equation

f)—A/ (£.3) ¢ (3) ds. [4.11]

It is known that the set of eigenvalues )y, of this equation for continuous and non-
negative definite kernel is at most countable set, eigen functions ¢y, (f) are continuous
and eigenvalues A are non-negative [VLA 67]. Let us consider the eigenvalues
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Ak, B = 1,2, ... 1in ascending order: 0 < A; < Ao < ... < A, < oL We
assume that corresponding eigen functions are orthonormalized, i.e.

| o@a@as={ 520

The covariance function has the following representation

[4.12]

where the series on the right side is uniformly convergent as s € T, and Z /\i i
convergent [VLA 67]. B
Then, the field Y (t_) admits the representation

[4.13]

awm

0-% 5

where & ~ N (0,1), E€x& = 0k, 0k is Kronecker symbol, i.e. £ are independent
and the series in [4.13] converges in mean square (it is follows from Karhunen
theorem).

As amodel of this field, a stochastic process

P03

will be accepted.
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The Modeling of Gaussian Stationary
Random Processes with a Certain
Accuracy and Reliability

In this chapter, the accuracy and reliability of the models of stationary Gaussian
random processes are studied in spaces L, ([0,7]), p > 1; in Orlicz spaces and in
the space of continuous functions C'([0, 7). The properties of models of stationary
Gaussian processes in a uniform metric, applying the theory of Sub,,(£2) spaces, are
investigated. A generalized model of Gaussian stationary processes is also considered.

5.1. Reliability and accuracy in L,(T), p > 1 of the models for Gaussian
stationary random processes

In section 5.1.1, the theorems on approximation of a model to the Gaussian random
process in space L1([0,T]), L,([0,7]), 1 < p < 2 where a given accuracy and
reliability are proved. These issues are discussed in [ANT 02b].

In section 5.1.2, the theorems are considered on estimates of the “tails” of norm
distributions of random processes under different conditions in the space L,(T),
where T is some parametric set, p > 1. These statements are applied to investigate
the partition selection of the set [0, oo] such that there exists a Gaussian process that
is approximated by the model with some accuracy and reliability in the space
L,([0,T]) when p > 1. These results can be found in [ANT 02a, TEG 04a].

Note that obtained estimates in section 5.1.2 for 1 < p < 2 are worse than
estimates from section 5.1.1.
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In section 5.1.3, a theorem on model approximation of Gaussian random processes
with a given accuracy and reliability of Orlicz space Ly (2) is presented. These issues
are discussed in [ANT 02a].

5.1.1. The accuracy of modeling stationary Gaussian processes in
Lp([O,T]), 1<p<2

Let X = {X(¢),t € T} be a Gaussian stationary real centered continuous in a
mean square random process, where T is some parametric set. The definitions of this
process and its model X 4 (¢) are described in sections 4.2 and 4.4, respectively.

DEFINITION 5.1.— Random process Xa(t) approximates the process X (t) with
reliability (1 — 8), 0 < S < 1 and accuracy 6 > 0 in L,([0,T)), if there exists a
partition of A such that

1
P

T
PUL [ msorar) 5 <.
0

where na(t) = X (t) — Xa(t)

THEOREM 5.1.— The model X, (t) approximates Gaussian random process X (¢)
with reliability (1 — 5), 0 < 8 < 1 and accuracy § > 0 in L;([0,T7), if for the
partition A

4 b2 s E ( sin —~ kK at< [ ——— ] . 5.1
[1(Bnem (D)) ) ws () - o

PROOF.— From corollary 1.2 and theorem 4.2 follows that for all U > 0

2
2

T
Bep {0 [0t p <2608 | [ (Bae)? a
0 0

From [1.20], we have

T -2
2

T
P /|77A(t)|dt>5 < 2exp —% /(BA(t))%dt
0 0

Then, by definition 5.1, the next inequality is satisfied

—2
2

T
zepd -3 | [Bantar) <o
0
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If in the above inequality we determine fOT (Ba (t))% dt, where B, (t) is described
in [4.7], then condition [5.1] is obtained. O

THEOREM 5.2.— The model X, (t) approximates Gaussian random process X (¥)
with reliability (1 — 8), 0 < 8 < 1 and accuracy § > 0in L,([0,T]), 1 < p < 2if
for the partition of A

T

/(BA(t))% dt < 67,
0
and

T
/ (Ba(1))* dt < Z(p, ), [5.2]
0

where B (t) is described in [4.7], Z(p, §) is a root of the equation

p 1/2 p
e

PROOF.— From [1.19] and theorem 4.3 follows that forall 0 < s < 1

Eexp ;/meczt- /T|BA<t>|€dt -1 ga—swexp{@p)s}.
0 0

2p

[5.4]

T
From [1.21] and [5.4], we have that for [ (B, (t))%dt < 67
0

1
P

T
P /|77A(t)\pdt =5
0

-1 -1

T T T
P /|nA(t)\pdt~ /\BA(t)\%dt > 6P /|BA(t)|%dt
0 0 0

. o !

2 P 2
o2 /\BA(T)Pdt +1-2
p 4 p

IN
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1 o f
X exp{} cexp{ —— /|BA(t)\%dt
b p
0

The left side of [5.3] is increasing as Z < ¢P with respect to Z. Then

-1

1
P

T
P /|77A(t)\pdt > 5% <8
0

It means that [5.2] is satisfied. [l

EXAMPLE 5.1.— In theorem 4.3 evaluating the integrand expression, we obtain

M—-1 n 2
ra(0) < 4 (Z (3) Puss = AP (PO - FOW) +

k=0

N

+F(+00) — F(A))

Let |>\k'+1 — )\k‘ = %, then

1
2

Tl () < 4 ((QA;[) ") + F(too) - F(A)) , (551

Let§ = 0.01, 5 = 0.01, p = 2. Then, it follows from theorem 5.2 that % exp{%—
g—i} = 3, whence it appears z = 8.04 x 1075; [5.2] yields

/T16 <(2/§\Z>27 F(A) + F(400) — F(A)>
0

16 (;L <2§4> F(A) + T(F(400) F(A)))

Lety=1,T =1, F(\) = 1 — e~ . Then, from [5.2] and the last equality, we
have

4 /A2
3 <) (1—e ™) +16e ™ <804 x 10°°
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1

M Al —e )z
T (6 x 1076 — 12e—A)2

With the graphical editor SciDaVis, the approximate minimum of this function is
found in A (see Figure 5.1): M (16.75) = 7,233.

8500 —

8000

7 500 —

14 15 16 17 18 19 20
A
a1
Figure 5.1. Graph of function M(A) = —20—<"M2

: T
(6:10=6—-12e—4)2

Using computer-simulated Gaussian random variables 71, 1x2 and variables (j
(in the process X (t)), the model of Gaussian stationary random process is obtained
with accuracy 0.01 and reliability 0.99 in space L2 ([0, 1]) (see Figure 5.2).

EXAMPLE 5.2.- Lety = 1,T =1, F(A) = § — grigy: F(+00) = 5.

Then, from [5.2], we obtain

_ -9 3
s A 1—(1+A) )
~3\6x 1076 —3(1+A)*°

With the graphical editor SciDaVis, we shall find the minimum of this function in
A. Figure 5.3 shows which minimum of function equals M (3.67) = 562, building a
model X (t) of Gaussian process X (t) as M = 562 (see Figure 5.4).
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%3

N
|
.
—
0
3
.

X (t)
o
|
=

-2 4 | . | J
-4 ! .. ®le )
-6 4 ) ’
-8 4
-10- T T T T T T T T T T T
0,0 0,2 0,4 0,6 0,8 1,0
t

Figure 5.2. The model of Gaussian random process
in space L. ([0, 1]), with spectral density f(\) = e~ *

EXAMPLE 5.3~ Lety=1,T=1,F(A)=1n ffeAA-

Then, from [5.2], we obtain

In -2¢ 2
M>A < Ltes A )
6 x 1076 + 12In 15

With the graphical editor SciDaVis, we shall find the minimum of this function in
A. Figure 5.5 shows which minimum of function equals M (16.78) = 6,022, building
amodel X (t) of Gaussian process X (t) as M = 6022 (see Figure 5.6).
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500

Figure 5.3. Graph of function M (A) = 4 (

1
1—(14A)~° 2
6:10-6—2(1+A)~9

Figure 5.4. The model of Gaussian random process in space L2([0,1])

with spectral density f(\) = W
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7000 —

6 000 —

In 28 !
Figure 5.5. Graph of function M (A) = A (”eAA) /2

.10—6
6-1076+121In <75

5.1.2. The accuracy of modeling stationary Gaussian processes
LP([OaT]) atp Z 1

Let X = {X(¢),t € T} be Gaussian stationary real centered continuous in a mean
square random process, where T is some parametric set. The definition of this process
and its model X4 (¢) are described in section 5.4.

Let {T, A, u} be a measurable space, u(T) < oo, 7(t) = 7(X (¥)).

LEMMA 5.1.— Let [ (7(¢))" du(t) < oo, p > 1. Then, X € L,(T) with probability
T
1.

PROOF.— The proof of the lemma follows from lemma 1.3 because of

: /(T(X(t)))pdp(t) < .

E/IX(t)\pdu(t) = /E|X(t)lpdu(t) <9 (g)

So, [|X(t)[Pdu(t) < co with probability one. O
T
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B o
0,0 0,2 0,4 0.6 0.8 1,0

Figure 5.6. The model of Gaussian random processes in space
L2([0, 1]) with spectral density f(\) = —2

1+er

LEMMA 5.2.— Forall s > p > 1, € > 0, the relationship

P{IXIz, >} <27 ()7 [ ¢0) aut) - (um)” (5.61

T

holds true.
PROOF.— By the Tchebychev’s inequality

E[lX]l7,
ES

P{|X|z, >¢e} <

)
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BIx|;, = ( [Ixoran ) <e( [ |X(t>|”d(%) (u(T))
T T

1k

<u( [ixora(L0) ) wmyi = [EXO ddo-Gr)i .
T T

Then, from lemma 1.3 follows that

PIXIs, >} <72 (2)" [ oy dn - (uempi .
T 0

- T the

8=

PROPOSITION 5.1.— Let 7 = sup7(t) < oc. Then, for all ¢ > p2 (u(T))
teT
following inequality holds

9

2
P{|X|, >¢} < Qexp{}.

2
277 - (u(T))’
PROOF.— By [5.6] forall e > 0, s > p, we have
P{X|z, >} <2s%a®,
1
where a = % Consider s = a~2e~!. It is a minimum point of the right-hand
side of last inequality.

1
Then, for s = ﬁ > p, that is for e > (u(T))? p%T, we have

1

P{||IX|z, > e} < 2(a%) =7 awr

1 g2
= 2exp{—2a2e} = QeXp{—W}.

O

PROPOSITION 5.2.— Let T = [0,7], T > 0, u(-) be Lebesgue measure and 7(t) <
t¥b for some v > 0, b > 0. Then, for ¢ > p%T”Jr%b the inequality

2 2 -1
P{X||Lp>6}<26xp{— c }( e +1> [5.7]

or2vtipe J \ 725 p2

holds.
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g bsTus+1
and [5.6], we obtain

T
PROOF.— From theorem’s conditions / S Ze7 Vel
0

s\ bs TVt | .1 T 5b
P{|X <2*5(7) —  Tv Tl — [ ———
Xz, > e} <2 e vs+1 st 1 Vee

2 . 1 .
If we take s = ZET, then as s > p, thatis as ¢ > p%T”P b we obtain
TP b2

- e

2 T T2u+%b2 TV+%b 2V+% ;

P{|X|r, >e} <2 672 212 T B b2 2 iz,
i TZVJFZ b2 VE2 + T2V+Eb2 \/ég

e? -1 e?
=2 (VTQH%Q + 1> exp {_2T2”+§b2 } .

U

THEOREM 5.3.— Let in model X4 (¢) the partition of A be such that

T(na(t)) < T(A,T),
where 7(A, T') = (Ba(t))? is defined in [4.7],

]
TAT) < =, (5.8]
pETE
5
(A T) < ; [5.9]

1
1 2\ 2
Tw (2111 3)

then the model approximates Gaussian process X (¢) with reliability 1 — 3,0 < 5 < 1
and accuracy 6 > 01in L,([0,77), p > 1.

PROOF.— This assertion follows from proposition 5.1.

Really, if 0 > p% T 7(A, T) (this is the condition [5.8]), then from proposition 5.1
and definition 5.1 we have

52
P {{lna(®)llz, >5}<2exp{ 27’2(/\T)}<ﬁ

And last inequality is satisfied when the condition [5.9] holds. (]
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THEOREM 5.4.— Let in the model X4 (¢) the partition of A be such that
T(na(t)) < Y715, v >0

(another form of condition [4.7])

o 0

A< —T— 715 TA
p%TV"’_E

< T T
T3 (yp)*

where yg is a root of the equation 2 exp { —%} (vys + 1)~' = B. Then, the model

approximates Gaussian process X (¢) with reliability (1 —£),0 < 8 < 1 and accuracy

d > 0in space L,([0,T1]), p > 1.
PROOF.— This theorem follows from proposition 5.2. Really, let 7o be such that § >
p%T”+%TA. Then
o )
>

P = S
T° ey p2 PTA

A function f(ys) = 2exp{—%} (vys + 1)"" decreases as ys > 1. Thus,
statement 5.2 implies the estimate

5? 5’ -
< — .
P{lna@®)llz, >0} < 2exp T ”T2u+%7§ R

when > Yg. ([

)
2v+2
T PTY

EXAMPLE 5.4.— Let the spectral function F'()\) of the process X (¢) be such that
F(400) = 1, F(+00) = F(A) < 555, 0 < v < 1, A > 0. Using theorem 4.2, we
have

(a(t) <4 I,
k=0

where

3

Ak41 / Akt1
tu—A)

sin

I, = sup 4bi
m>1
Ak Ak

bi = F(\pi1) — F(Ag).
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Fork=0,...,M —1:

m
Ak41 [ Ak41

27|y — v|2Y

I < sup 4b? / / Pl =™ im) | ar)
m>1 47

- Ak Ak

1
<A sup (BIG — GEP™) ™ = A0 Mg — Al
m>1

Fork =M
1
4 oo oo m
Iy < sup — / / dF (u) dF(v) <4 (F(400) — F(Am)) -
m= bl\n/} M M
Hence,
T2 (na (1))

M-1
<4 (Z AN A1 — M2 (F(Apg1) — F(O)) + 4 (F(4-00) — F()\M))> .
k=0

Let [Aji1 — Ak = 34, then
A\
P2a(0) < 2776 (3) 7 FOur) + 16 (F(+50) ~ Fowr)

AT\ Ly
<1 1 v
< 6<2M> + 167,77,

AuT 2 1 2

Find the minimum of the function 7(A, T') with respect to a = )\2]\;}:
T 2y 1 %
= 4 _— —_
Y <2M> “tal
, TN 1\ [/ T\ 1
Y ((2M) a+a> <2M) a? ’

2M\"7 . . ..
a= T is a point of minimum.
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So, )\?\} = (%)7 Then

oM\ [/ T \* T\" T
- — — — 4o | ——
() () +(awr) | =2 ()

Suppose, for example, in theorem 5.3, 21n % > p. Then

1
2 2

T(A,T) =4

1) )
T < T < T
T% (21n %)2 pzT?
T \? 1)
42 | —
f(QM) B z 2\7
T» (21115)

T3 2\*
A= T% (2ln> < M7,
622 B

T 2\ 7
M>2i 1 " <21nﬁ)

6~

Hence, the model X (¢) approximates the process X (¢) with reliability 1 — 3,
0 < 8 < 1, and accuracy 6 > 0 in space L, ([0, 7)), if Ay = vV2M 2T~ % and

T :
M>2%_1T 5 <21n;)

5

EXAMPLE 5.5.— Let for the function F()) the condition [ A?YdF(X) < oo for
some 0 < v < 1 holds and F'(4+00) = 1. Then, by theorem 4.3

M
T2 (t) <4) I,
k=0

3

m

Ak41 [/ Akt1 ) 9
I, = sup 4b7 sin % dFR(N\) | dFj(u)

m>1

Ak Ak

Ifk=0,...,M — 1, then

1
I < 417”27()% Su>p1 (E|Ck _ CZ|2"/m) "< 417Wt27bz|)\k+1 _ )\k|2"/7
mZ=
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where (j, ¢ are independent random variables with the same cumulative distribution

function (cdf) Fy(\) = %

If £ = M, then

1
m
oo m
2

A) dF(u) | dF())

oo t2’Y m
/4—7|u— N2VdF(u) | dF(N\)

M

m

4

< sup
m>1 pm
M

o0

Iy < sup /
m>1 b’”

M

m

7 /Oo|u—)\M|27dF(u) dF())

M

m

12417

< sup 5
m>1 bm
M

o)
2l / = Ang[2dF(w),
Am

T2 (na(t))
M—-1
<A D AT Ay — AT 41 7t27/\)\ AP dF(N)
k=0 s
=477 | max |>\k+1f>\k|27F(>\M)+/|)\7AM\27dF()\)
0<k<M-1
AMm
16¢27 AM 2 7
< = A= Ay [PYdF (M
< ((Gr) + [ = awparoy
A
Therefore,
T(’?A(t)) < t’YTA ’
where
2 3 ©0
TA:i A V+J~(AM) y j(AM):/M—APmF(A).
27 M ’

A
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)

Suppose, for example, yg > p in theorem 5.6. Then, 1A < ———
777 (yp)2

92752 . o
M2 —e— — J(Anr)
167275y

1

N ) L
= A4 TPy (2%52 - J(AM)lﬁngyﬂ) -

Thus, the model X4 (¢) approximates the process X () with reliability 1 — 3, 0 <
B < 1 and accuracy 0 > 0 in space L,([0,T]), if

M > A27 T 7y 27 (406% — J(Aa) 16727+ yg) =57,
where 4 is a root of the equation
Y _
QGXP{—jﬂ} (s+1)7' =5, 0<y<1.

EXAMPLE 5.6.— From [5.5] and theorem 5.3 follows that

4 ((ﬁ]\i) F(A) + F(400) — F(A)) < Ti(;jn?g);’

where

2 3
M > 2T+ ( 2F(A)In 5 )

0% — 3217 In 3 (F(+00) — F(A))

Let the spectral density be equal to f(A) = exp(—A), it means that F'(\) =
1—e . LetT =1, =0.01, 3 = 0.01. Then, we have

2(1 — ¢1)1n 200 )é

M > 2A
0.0001 — 32¢=41n 200
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A minimum of this function on A is approximately equal to M (16.55) ~ 11,422
(see Figure 5.7). Thus, choosing the minimum breakdown on the level of
M = 11,422, we can computer simulate the model X (¢) of Gaussian process X (¢)
with spectral function F'(\) = 1 — e~ (see Figure 5.8).

EXAMPLE 5.7.— Let the spectral density be equal to f(\) = m such that
F(A) =5 — g F(+00) = §.Let T = 1,5 = 0.01, 3 = 0.01. Then, we have

8(1— -9 :
M A (1 (;;r A)~?) In 200
0.0001 — 22(1 4+ A)=91n 200

1
Figure 5.7. Graph of function M (A) = 2A (w) :

0.0001—32e—A 1n 200

A minimum of this function on A is approximately equal to M (3.56) = 876 (see
Figure 5.9).

Thus, choosing the minimum breakdown on the level of M = 876, we can
computer simulate the model X (¢) of Gaussian process X (¢) with spectral function
F(A) = § — gy F(+00) = § (see Figure 5.10).
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10 —

X(t)
o N
L1

Figure 5.8. The model of Gaussian random processes in space
L,([0,1]), p > 1 with spectral density f(\) = e™*

1
%(17(1’+A)_9)ln200 2
0.0001— 32 (14+A) =9 In 200

Figure 5.9. Graph of function M (A) = A (
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X(t)
o
|

Figure 5.10. The model of Gaussian random processes in space
L,([0,1]), p > 1 with spectral density f(\)

_ 1
B CEDYE

EXAMPLE 5.8.— Let the spectral density be equal to f(\) = 175, such that F'(A) =

In 2%, F(+00) = In2. Let T = 1,8 = 0.01, 8 = 0.01. Then, we have

1
81In -2¢2 10 200 2
M Z A 1+eh -
0.0001 + 3210200 In 12

A minimum of this function on A is approximately equal to M (16.58) = 9,509
(see Figure 5.11).

Thus, choosing the minimum breakdown on the level of M = 9,509, we can
computer simulate the model X (¢) of Gaussian process X (¢) with spectral function

F(A) = In 22 (see Figure 5.12).

5.1.3. The accuracy of modeling Gaussian stationary random processes
in norms of Orlicz spaces

Let X = {X(¢),t € T} be Gaussian centered stationary real continuous in the
mean square random process, where T is some parametric set. The definitions and
properties of this process and its model X 5 (¢) are described in section 5.4.



200 Simulation of Stochastic Processes with Given Accuracy and Reliability

1,2e+04 —

1,15e+04

1,1e+04 —

1,05e+04 -

N[=

8in 22

1n 200
Figure 5.11. Graph of function M > A < Lied )
0.00014+321n 200 In —&—+

A
14eh

Figure 5.12. The model of Gaussian random processes in space
L,([0,1]), p > 1 with spectral density f(\) = —L

14+er
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DEFINITION 5.2.— A random process X, (t) approximates process X (t) with
reliability 1 — 3,0 < 8 < 1 and accuracy 6 > 0 in the Orlicz space Ly (), if there
exists a partition of A, that the next inequality

P X(t) = Xa()llLy, > 6} <8
is fulfilled.

THEOREM 5.5.— [KOZ 88] Let U = {U(z),z € R} be C-function such that the
function Gy (t) = exp {(U Dt —1)) } is convex for ¢ > 1. Then, with probability
1 X € Ly(T) and for all € such that

e > max(u(T),1) - 7 <2 + (U<1>(1))_2>é

we have

LA O B el (Al )
PUIX Iy > e} < Ve e { - S (5.10]

where (7)) = max(pu(T),1).
THEOREM 5.6.— Let the partition of A in the model X (¢) be such that inequality

T(na(t)) < 7(A,T)
holds, where 7(A, T) is defined in [4.7].

(A, T) < g T [5.11]
T (24 (UED)7)
SUCD(1)
AT <) 5.12
e ) o

where z(3) > 1 is aroot of the equation /ex -exp {——} = Bwith T = maz (T, 1).
Then, the model approximates Gaussian process X () with reliability 1 — 5,0 < 8 <
1 and accuracy 6 > 0 in Orlicz space Ly ([0, T]), where C' -function U satisfies the
conditions of theorem 5.5 (11(-) is Lebesgue measure).

PROOF.— The statement of this theorem follows from theorem 5.5. Indeed, let

7(A,T) be such that § > T - 7(A, T) - (2+ (U<—1>(1))’2)§ (condition [5.11]).
Then

U > <2+ (U<1>(1))_2>é ,
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SUCD(1) - b)

= > > 1.
T-r(AT) a1y (2+ (Wv) ™)

1
2

The function f(z) = y/exexp {—w—;} decreases as x > 1, f(1) = 1. Thus, from
[5.10] it follows that

(=1) 2077(=1) (1))2
POl >0} < Ve UL Xp{_m} s

. .. 6U(’1)(1) . . .
holds if the condition T D) > x(f) is satisfied, that is [5.12]. O

5.2. The accuracy and reliability of the model stationary random
processes in the uniform metric

In section 5.2.1, the estimates of supremum norm for sub-Gaussian random
processes with bounded spectrum are obtained. Then, they will be used in the
investigation of selection conditions of the partition [0, A] (on which a spectral
function is defined) such that there exists Gaussian process for the model of a random
process that is approximated by the model with desired accuracy and reliability.
These issues are considered in [TEG 01].

In section 5.2.2, the norms of sub-Gaussian processes are estimated. Using the
theory of L, (£2)-processes and preliminary estimates, the conditions on partition A of
the set [0, oo] are found such that for model there exists a Gaussian random process,
which is approached with desired accuracy and reliability in uniform metric.

5.2.1. The accuracy of simulation of stationary Gaussian processes with
bounded spectrum
Let X(t) be a Gaussian centered stationary real continuous in mean square

stochastic process with bounded spectrum, it means that the covariance function has
the form:

A
r(r)=EX({t+71)X() = /COS AtdF(N),
0

where F'(\) is continuous spectral function of the process.
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DEFINITION 5.3.— A random process X (t) approximates Gaussian process X (t)
with the reliability of 1 — 3, 0 < § < 1 and accuracy 6 > 0 in the space C([0,T)), if
there exists such partition of A, that inequality

P{ sup_ X (1) — Xa(t)] > a} <p

0<t<T

holds.

The process X () has such representation

A A
= /cos Atdny (A +/sm Atdna (A
0 0

where 77 () and 72(\) are independent centered Gaussian random processes that
E(nZ(Ag) — 771'()\1))2 = F()\Q) — F()\l) as A < Ag,i=1,2.

As a model of random process, we can take

M
=) [1 €08 Gt + k2 sin Gt
k=0

where the components are described in section 5.4.

For arbitrary t, s € [0, T'], we consider the difference

M [ e
na(t) — na(s) = Z / (cos A\t — cos (it — cos As + cos (is)dn1 ()
k=0 | X,
Ak+1
+ / (sin At — sin (xt — sin As + sin (. 8)dna(A) |
Ak

where the process 7 (t) is defined in [4.6]. The following lemma holds true.

LEMMA 5.3.- Form =0,1,...

Akt1 2m—+1

E / (cos At — cos (xt — cos As + cos (is)dny () =0,

Ak
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2m—+1

Ak+1
E ( / (sin At — sin (xt — sin As + sin CkS)dT]Q()\)) =0,
Ak
Akt1 2m
E ( / (cos At — cos (it — cos As + cos Cks)dm()\)) < Vim,
Ak
Akt1 2m
E ( / (sin At — sin (¢t — sin As + sin Cks)dng()\)) < Vim,
Ak
where
Ak+1 5
Vi = 42" Ay, E ( / ( sin S G) t)El —G) |, ‘sin 74’“(52_ D ’
Ak

X

sin —(”S)Ef’“ ) D dF(A)) L Ay, = 2

Toomyp!”

PROOF.—

|cos At — cos (it — cos As + cos (i |

= |2sin Als =) sin Als +¢) — 2sin Cls —1) sin (g S ‘
2 2 B)
_ |2sin 26+ (sin As—1) G Sls = t))
2 2 D)
= |4sin )\(S; ) sin (s — t)El)‘ — k) cos (s = t)i)‘ + C)
4 ogsin B o BEOA=G) (s HH(A+G)
2 4 1
<4 ( sin (s = t)i)\ ) + [sin Ck(sz_ t) ‘ - |sin (t+ S)Efk ) D 7
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| sin At — sin (it — sin As + sin (g s

At =) - COS At + ) — 2sin Gl = 5) - COS Gt +5)
2 2 2

At + s) sin At —s) _sin Cr(t—9)

2 2 2

(k(tQ— s) < At + s) gk(t2+ s)) ‘

2sin

=2

COS

+ sin

coS — COoS
2

cos At + ) sin (t—s)(A—Cr) cos (t—s)(A+ k)
2 4 4

G(t—s) . (G=AN(t+s) . (G+A)(+s)

—+ sin sin sin

2 4 4
(s

=4

i DO =G| | Gt 9)

4 5 Sin

4

+ 'sin

G+ 9G o))

Since for centered Gaussian random variable &, we have E£ = 0, E§2 = o*,

E€H = 0, B2 = Agpo®*, k =1,2,..., Ay, = S8 then

2m

Ak41
E / (cos At — cos As — cos (it + cos (is)dn ()
Ak
Ait1 m
< Ay E / (cos Mt — cos As — cos (gt + cos (p8) dF(N)
Ak
Ak+1 N
< 42mA2mE / ( sin (Sit)( 7Q€) + ‘Sil’l Qf(St)‘
4 2
Ak
2 m
«fon (G de)
Similarly, for the sinuses:
2m

Ak41
E / (sin At — sin As — sin (-t + sin (. s)dna ()

Ak
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Ak41

t—s)(A— t—
g 42mA2mE SiIl ( 8)( Ck?) + SiIl Ck?( S)
4 2
Ak
t -V "
o (226 dm))
4 0
For the process 7, (t) at [0, 7] find the estimates of oy = sup 7(na(¢)) and
0<t<T
o(h) = sup T(nA(t) = na(s)):
|t—s|<h
Estimate 0. From lemma 1.7, it follows that
2 (na (1))
M >\k+1 Ak+1
< Z 72 / (cos At — cos (xt)dni (A) + / (sin At — sin (xt)dna ()
k=0 X X
M Ak+1 Akt1 2
< Z T / (cos At — cos (t)dm (N) | +7 / (sin At — sin (g t)dna(N)
k=0 X X
Ak41
Since the random values X1 = [ (cosAt — cos(xt)dni()), and
Ak
Ak41
Xk2 = [ (sin At —sin(xt)dna(X) are such that their odd moments equal zero, then

Ak
by of the corresponding theorem about the necessary and sufficient conditions for the

existence of a sub-Gaussian random variable [BUL 00], we will have

1 2m )
T(Xri) < O1(Xki) = sup {A EX%T} ,i=1,2.
m>1 2m

From lemma 4.1, we have

m
Ak+1 [/ Ak41

Ex;7" < 4™ Aoy,
Ak Ak

tu=N) " dF(\) | dFy(u)

sin

Ak41 [/ Ak41

t2 7A2
< AT Ay b2 / / %dﬂfu) dFy(u)

Ak Ak
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1 m
< 4mA2mt2m4Tn|/\k+1 = MeP™ (F (A1) = F(Ow))

= 12" Do [ A1 — Me*™ (F(Akg1) — F()™.
Then,

=
T(Xki) < sup [ Aes1 — A (F(Aks1) — F(Ae)™] "
m>1

= t{Aks1 — Akl (FAkgn) — F())?.

So,
M M
a(t) < 4) 72 (k) < 47D g1 — M P(F k) = F(Ow)).
k=0 k=0

Namely,

M 2
T(na(t)) <2t (Z At = AP (F ) — F(M))) :

k=0

So,

[N

M
o9 < 2T <Z Aes1 — Ml (F(Apg1) — F(M))) = by.

k=0

If we take A\ 11 — A\ = ﬁ then

[

by — 272 f:(F(A V= FOw) | =2 (pa))
i k+1 k ==l .

k=0
Estimate o (h). Consider the value
Ak41

W1 = / (cos A\t — cos (it — cos As + cos (is)dn (A),
Ak

Ak41
Wra = / (sin At — sin (xt — sin As + sin (. $)dn2 ().

Ak
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As in estimation of 7(7, (t)), the inequality
M

M
T2 (na(t) — Z (wr1) + 7% (wi2)) Z Hwk1) + OF (w2))

k=0 k=0

1
is obtained, where ©1 (wx;) = sup (%E 1%;”) - Thus, by lemma 5.3
m>1

T2 (na(t) — na(s))

M Ak41 [/ Ak+1 A
§43Zsup / / (sin(s JA—w)
k=0 ™M1 4
- Ak Ak
2 m o
- —u)(t
+ [sin u(52 ) sin A =w)it+s) ) dFO\)) dFy,(u)

Akt1 [/ Akt1

M s — ]|\ — u
< 43 E sup bim / / <4
m>1

k=0 "= e i
9 m 1
—t A —ul(t
Plells =0 A uCEDN yp 0y) dRw)
2 4
Ak41 / Akl
|>\ - U|

< 43]s —t|? Zsup b2m/
k=0 ™21
1

m

2 m
x (1+ “"j”) dFk()\)> dF (u)
M
t
<Als =) b Akrr — Akl (1 + W) :

Ifweput \pyr1 — Ay = M, then we get

(1 (t) = a(s) <2|s_t|<zbzAAﬂ( A(t;S)))

<2t —s|(1 +AT)% (F(N)

[N
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o(h) < 2h(1 + AT)%(F(A))%. [5.13]

THEOREM 5.7.— Let the model X4 (t) with a partition A be such that under § >
81(eq) the relationship

1 - 2
2exp{—2€% (5— 851(80)) }S/B

holds, where g = sup 7(na(t)) = 00, na(t) = X (t) — Xa(2),
0<t<T

. 17 TA(1 + AT)
I(gp) < ﬂo/\/ln <E]W\/F(/\)+1>d€ < o0.

Then, the model approximates Gaussian random process X (¢) with the reliability
1—-3,0< B < 1andaccuracy § > 0 in space C'([0, 7).

PROOF.— This theorem follows from entropy characteristics [BUL 00]. Indeed, at § >
81(eq) for sub-Gaussian process 7, () the inequality [TEG 01].

1 - 2
P{ sup |na(t)] >5} §2exp{—2 (5— 851(80)> }
0<t<T 2¢e;

holds, where

I(go) = %Z@de— \}507\/111 <M+1)ds< 00,

H () is metric entropy of a compact set [0, T,

o(h) = ‘:u‘r;h T(a(t) — na(s))-

From the previous estimates for o(h), we have
Mh
20/F(A)(1 + AT)’

o=Y(h) =

then

I(g0) = \}5/\/111 (TA(;\_;TA)\/F(A) + 1>d<€7
0
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which can be made as small as it needs by choosing A and M. It would be such a
partition A that the condition (by definition 5.3)

2exp {—Qig(a _ \/85I~(60))2} <3

is fulfilled.

EXAMPLE 5.9.— At first, we estimate the integral I(g,) in theorem 5.7

IN

T(co) \}5/\/111 (W\/F(A)Jrl)ds
0

M

1 [ [TAQ+AT) _[2TA(1 + AT)/F(A)e
ﬂo/\/EM\/F(A)de = \/ 2.

Now you can find a partition of [0, A], by which we construct a model X (t)
Gaussian process X (¢). From theorem 5.7 at § > 81(¢y),

M > @ F(A)(1+TA) [5.14]

be correct ratio

1 2TA(1+ AT)\/F(A)eg
_ _ <
2 exp 52 0 J 8(5\/ T <p

QGXP{‘JMG— IGﬁAw(A)(HAT))i) <

M _\/25M<1+AT>1> 2
TA\SF(A)  VTA \ F(A) )~ B

‘We obtain

2

M > DAVEW) VéF(A) (2(1 +AT)T + \/4\/1 +AT + 2@) [5.15]
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Under given conditions [5.14], we can conclude that for all

M> @ 2(1+ AT)% +\/4m+2m>

2

the model X A(t) approximates Gaussian process X () of reliability 1 — 5 and
accuracy § > 0 in space C([0,T]).

DLetT = 1,6 = 0.01, 8 = 0.01, F(A) = 1 — e, Then, for A = 2.01, it
is performed M = 7,429. Model X, (t) of Gaussian process will be as follows (see
Figure 5.13).

10 4
5 of
ot
L o .
. :} <
0 - }n . L
— o
~ . o8 "
> ] ° '\ " &! ] .
e o .. > “
-5 4 oo . ®
-10 -
T T T T T T T
0,0 0,2 0.4 0,6 0,8 1,0
t

Figure 5.13. Model of Gaussian random processes in space
C([0, 1)) with spectral density f(\) = e

) LetT =1, =0.01,8=0.01, F(A) = %(1— (14+A)~9). Then, for A = 2.01
we have that M = 2,661. The model X (¢) of Gaussian process will be as follows
(see Figure 5.14).

3)Let T = 1,8 = 0.01, F(A) = In 2. Then, at A = 2.01 have that M =

6,013. Model X4 (¢) of Gaussian process will be as follows (see Figure 5.15).
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X(t)

Figure 5.14. Model of Gaussian random process in space
C([0, 1]) with spectral density f(\)

_ 1
- (1+xM)10

10

— P8 be

X(t)

Figure 5.15. Model of Gaussian random process in space
C([0, 1]) with spectral density f(\) = —2

1+er
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5.2.2. Application of L,({)-processes theory in simulation of Gaussian
stationary random processes

Consider L, (€2)-processes in Orlicz space of random variables generated by the
function U(z) = |z|?, € R, p > 2. Random process in this space is called L, ()-
process. The norm is defined as

IX®)lle = 1X®)]z, = (BIX(®))7 .

Let X = {X(t),t € T} be Gaussian stationary centered continuous in mean
square random process with covariance function

EX(t+7)X(t) = r(r) = / cos A\rdF (M),

The representation of Gaussian random process X (¢) and its model X () are
described in section 5.4.

Consider sub-Gaussian process 75 (t) = X(t) — Xa(¢). It is defined by the
expression [4.6]. Further, we will need the following assertion.

LEMMA 5.4.— [MAC 88] Let ||¢]|, = (E[¢[?)7, 1 < p < 00, & € L, is a sequence
of independent random variables with E&; = 0, ¢ = 1, co. Then

n n
I al? <, (Z |si||ip) ,
i=1 i=1
where

LEMMA 5.5~ If f APAF(AN) < oo, p > 2, then for sub-Gaussian random process
0

nA(t) the inequality

11 A\ 2—4 7 v
[na(t)|z, <2CEAFT (J\}V’) F(Aar) 4 4by, ¥ /uPdF(u) [5.16]

holds.
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PROOF.— From lemma 5.4 follows that

Ina (),
M Akt Akt 2
<, Z / (cos At — cos Cit)dnr (X)) + / (sin At — sin (gt)dna(N)
k=0 || ¥, 5 L
M || Aet 2 Ak41 2
<2GC, Z / (cos At — cos (pt)dnm (M| + / (sin At — sin (xt)dna2 ()
k=0 X, ; 5 .
P P

From Fubini’s theorem and lemma 4.1, we have

3

Akt1 N1 P
/(cosAt—cokat)dnl(A) =|E /(cos)\t—cosgkt)dm(A)
Ak L, Ak
Akt1 P\ #
= | EE., /(cos)\t—cos(kt)dm()\)
Ak
P 2
Akt 1 2\ P
= E,,E /(cos/\t—cosg“kt)QdF(/\)
Ak
b 2
Akt ) 2\ ”
<A |E /%mw dF () = Yip,
Ak
where

~ 1 7 +2
A :7/ tPe™ = dt.
p="s= | It
— 00
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Similarly
Akt 2 Akt1 p %
/ (sin At —sin (xt)dn2(N)|| = | E / (sin At — sin Cxt)dn2 ()
Ak L, Ak
b 2
Ak+1 2\ ?
< | AE / (sin At — sin (xt)2dF ()
Ak
b 2
Ak41 9 2\ *
2 t
<Al |E / 2sin (ng ) dF()\) = Yip,
Ak
b 2
Akt N 7\ P
2 G —
Yip < 4A50% | E sin % dFy(\)
Ak
v 2
Ak41 / Akl ) 9 2 P
2 tu —
= 4N} b3 sin % dE,(\) | dFg(u)
A Ak
2
Ak41 Ak41 N P
~ t —
<AAp; sin % dFy(N)dFy(u)
Ak Ak
2
Ak41 Ak41 P
X2 tPlu — AP X722 2
< 4Ap by, / —op AFE(NdEk(u) | = Apbit” (B10[")7
Ak Ak
where 6 is such random variable that 6 = 61 — g2, Ox1,0;2 are independent
identically distributed random variables with cdf
F(\) —F(\
F(A1) = F(Ar)
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If Kk < M , then

2
P

Ak41 Ak41
(E[0k|")r = ( / / |u—>\|dek(>\)dFk(u)) < Akg1 — Al

YD VX
If Kk = M , then
:
(B0 P)7 < //|)\—u|deM )dFs (u
M AM
o 5
< //|)\+u|deM YdF s (u )
M AM

IN

M AM M AM

=2 (ZudeM(u))p b4 (]Oude )

M

Ina(t)l1Z, < 4Cp Y Yip
k=0

i'@\ux

Then
k=0

2 M-l _4 by
= 4C,Aj t? bl k1 — Ael® + 463\/1 ? (/ uPdF(u)

A
If we take [Agy1 — Ag| = ﬁ then

2 ~2 o Am 2 2-4
@3, = 16,5577 | (3) Foun + 4 | [ war

(/ [ varuiro ) C/ [ waruovar

)
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LEMMA 5.6.— If f APAF (X)) < 0o, p > 2, then the following inequality carries out
0

1
2

Ima ()~ (), < 20§ AFls — 1 [()}”) (1 4+ AT ()

273
2-4 7 '
+16b,, * / uPdF (u) . [5.17]
M
PROOF.— From lemma 5.4, we have
() = na(s)|];
LP
M Akt ?
<2C, Z (cos At — cos (.t — cos As + cos Cxs)dni ()
k=0 X L
Ak41 2
+ / (sin At — sin (it — sin As + sin (. $)dn2 () ;
Ak Lp
From Fubini’s theorem and lemma 5.3 follows
2

Ak+1

(cos At — cos (it — cos As + cos (s)dn1 (M)

Ak L,
ki1 P\ »
=|E / (cos At — cos (t — cos As + cos (s)dn ()
Ak
Negi B\ 7
= ﬁpE / (cos Mt — cos (it — cos As + cos (p8)2dF(N)
Ak
Ak+1
<16 | A,E / <Sin(8t)i>\Ck)

Ak
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A similar estimate for sine:

Ak41
(sin At — sin (gt — sin As + sin (. $)dna2(N)

Ak Lp

<16 (ﬁpE <7l< Sinw

Ak

(s —)Ck
2

=+ |sin . ‘sin (G =N+ )

4

M
Then, |1 (t) — WA(S)HZL <4C, S Wiy,
i k=0
If k < M , then
Ak+1 \
~ 2 _¢ _
Wi, < 164787 <E ( [ (=800
Ak

2 £\ 7
+ Sin% : SmW> dFk(/\)> )
)\k+1 /\k+1 | | | ‘
~2 s—t-[A-wu
<16Apbi</ (/ (4
Ak Ak
2 B ’
+u|32—t| |u—)\L(s+t)> dFk()\)> dFk(u))

(S|

Ak41 / Akl 5
— APB2|s —1]? / (/ A — uf? <1+(S+2t)“) dFk(/\)) dFy(u)

e e

(sG] | (G- NE+ ) [\ 0o
+ [sin 3 1L fsin = 1 > dF()\)) ) = Wip.

3
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~2 s+t)A 2
R Y (R

<A b2 |S—If|2 [Ak+1 — )\k|2(1+)\MT)2.

If £ = M , then
WMpS
2 . ) A ) 2\
< 16A2 b3, E(/( n 8= ) +‘sin (s _;)C’“> dFM(A)>

2
P

(NS

<2 T (ls—t] |r— —tlu\?
< 16A702, ( ('S |4‘ ul |y ls 2'”) dFy(\) | dFa(w)

~ 2
< Apbiyls — t|2

3\8

M

<Nb 2 ls —t? //3u+)\)deM YdF (u )

M AM

=

~ 2
< ApVAls —t]? // (3u)? dFn (N)dF s (u)

M AM

+ (j 7AdeM(>\)dFM(u)) ;

M AM

SIS

— AT, |5 — 12 /uPdFM(u)

M
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Then, we obtain
2
2 9_4 !
Warp = 16A5b5, 7 |s — ]2 / uPdF (u)

M

Then,
s M-1
Ina(t) = nals)l2, <ACAF s —t]? (Z b Ak — Akl*(1+ A T)?
k=0
o »
94
+16b,, " / uPdF (u)
M
So,
na(®) = na(s)lz, < Lls =t
where
o, M1
L= <4CPA;; (Z bi|)\k+1 - )\klz(l + AMT‘)2
k=0

3
ol=

+16b, * / uPdF (u)

M

Note that when [A\g1 — Ag| = ’\—A‘}If, then

1 2 4 3 7\
L <2CiAs (?ﬁj) (1+ AT F () + 166° 7 / WP dF ()
[5.18]

O
THEOREM 5.8.— If in the model X (¢) the partition A are such that the following
inequalities hold:

/)\de()\) <o, p>2 [5.19]
0
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1 p
(p+ 1)Ptt P TL\? 1-1

i P <
woy \p_1\z ) % e =5

where L is defined in [5.18]. Then, the model approximates Gaussian random process
X (t) with reliability 1 — 5,0 < 8 < 1 and accuracy ¢ > 0 in uniform metric.

PROOF.— In section 5.4, it is shown that the corresponding process X (¢) and its model
are separable processes. And since

/1111+A NEAE(A /)\de )y <oo, p>2
0 0

then from theorem 4.1, a separable random process 7, (¢) is continuous with
probability 1.

If condition [5.19] is satisfied, then from lemma 5.5 it follows that the process
na(t) is L, (€2)-process (because of sup ||na ()|, < o0).
0<t<T

Then, the entropy characteristics for L, (£2)-process yields the inequality:

P{ s )]> 0} < B

0<t<T - or’
where
02¢eo
~ 1 1
B,= inf (E P) inf ——— N7»
P ogl?gT( A1) +ogol<1 6(1—0) / (e)de,

g0 = sup |[Ina(t)llz,.
0<t<T
Since [TEG 01] N(¢) = m +1,0(h) = ‘ su‘p lma(t) —na(s)|z,-
t—s|<h
In our case o(h) = hL, where L is defined in [5.18],

h 1
(=1) _ P\p —
o) =7, f (Ena@))r =0,
Then

A VAR
P
By= inf —— [ (2241) 4d
(s ) / (25+> c
0

. 1 TL v 11 1
< R N P —+
= oé%f<1 0(1 —0) ( 2 > (2020) 1-1 2020

p
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1
TL P 1-1 P
— 2 p——+2
<2> (80) p_1+ €0

61" v
< inf ——
- ogf}f<1 0(1—-0)

1 1
+1)s TL\» 1
_ @ p) : <p€1 (2) (220)! rlf+26o>7

1)p+ TL\ # .
P{sup na()] > 6y < P ( p () <2a-o>1—p+2go>
0<t<T

p

(po)p p—1\ 2

From [5.16] and [5.18] follows that we can take such \;; and M, that g and L
will be made as small as it needs. Then, there exists a partition of A such that by
definition 5.3 inequality

+1 5 ) P
e (2 () e ena) <0

holds true. O

5.3. Application of Sub,(2) space theory to find the accuracy of
modeling for stationary Gaussian processes

In the previous section, we have proved that the model approximates Gaussian
o0
process under condition f ASdF()\) < oo, as € > 2. In this section, under more

restrictive conditions the gstimates are found that significantly improve estimates of
the previous section. The theory of spaces Sub,(£2) random variables is used. Note
also that new inequalities for norms of random variables with spaces Sub, (§2) are
obtained. These issues are considered in [KOZ 02].

Let X = {X(¢), t € R} be Gaussian stationary real centered in mean square
continuous random process. The model construction X (¢) of approximated process
is described in section 4.

The following statement is needed. This section will consider the spaces Sub,, (),
generated by the functions ¢, (z), p > 2

e asla] > 1
‘PP(I) = { |LL‘|2, aslz| < 1° [5.20]

Recall that for p = 2 space Sub,,(12) is called space of sub-Gaussian random
variables.
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Now prove the theorem that improves the appropriate theorem from [KOZ 85a].

THEOREM 5.9— Let & be a random variable such that E¢2¢+1 = 0 as
k=0,1,2,... ,and the condition
1
(E£2n) 2n

Se, (&) = sup(2n)% < o0

nzl ((2n)!) 2"
is fulfilled, then € Sub,,, () and inequality

1_ 1
Top < 227 S‘Fp (5)
holds true.

PROOF.- For all A > 0, we have

)\kE k > A\2nRg2n
n=1 :

0 2n 2n ﬁ n
SN =12 ((22%) Eziw)ﬁ (2m)?
00 )\ 2n
<1+ 1 o ()7
n=1 <(2n)p > ( )

Note that S,, = S, so

1
Let v be any number such that 0 < y < )\1 2 27. First, consider such A that

0 < |A] < Ay, namely |A] < QPT” Then

2 2
/\S> (1-~2)"1=1+ <>\S> [5.21]
2
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Since
2 b
WS MS o §<72) -
2p4/1 =72 2v,/1—72 /1—72 1—v

then as 0 < |A| < A1 from [5.20] and [5.21], it follows that the inequality

S
S(\) < —_— 5.22
( )exp{(pp <2Pm>} [ ]

holds. Consider now the case |A\| > A;. Denote under n) such integer that 1 < ny <
p p
1 (m) andny +1 > % (#) . There exists n because of

2 vy
1 M p>l ﬁ p:1
2\ v 2\ v '
Put
na )\S 2n 0o )\S 2n
Al(/\) = ( 1 ) s AQ(A) = < T >
nz::l (2n)» n:%\:-i-l (2n)»
Forn < njy
|)\|S> 1 <|AS>” .
— | (2n) < [ — 2n)" .
(%) s < (B5) o
So,

2
—|1- <A|S > . [5.23]
(2(nx +1))7

[AlS

2(n,\+1) .
(2(na+1))P

(IA15)»

; 1 (s\? a1
Since ny +1 > 3\ o , then > o it means that v >

Hence, [5.23] yields

2(nx+1) 4 2 AS\?
AN S H— g ST S S <Y s () v
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p
(since (%) > 2). So, under |\| > Ay the following relationship holds

SA) =1+ (%)pv_,_zle (= e ) );)2"
<1+ gﬁl ((22)74)" . exp{(ms) } .

IS Pl IS b
o {( ) i} <on{(8) |
272 y22p

Since 22 > 25 > 1 then from [5.24] and [5.20], it follows that
v22p y22p

S(A) < exp {wp ( A'?) } [5.25]
v2

as |[A| > Aq.

[5.22] and [5.25] imply

NS 1 1
S(A) < exp {90 ( Py ogiyngff max Y E = =
= exp {cpp (|)\|52%_ﬁ>} .

O
LEMMA 5.7~ Let £ be some random variable, « > 0, b > 0, S > 0, then the
inequality
S\ * S a
E[¢]% <b® () exp{ }Eexp{|§| } [5.26]
«
is fulfilled.

PROOF.— Asx >0

2w

e‘g). Put x = Iib‘, then

azvenf(£)) e

(It follows from max L = (£)
z>0 € @
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If we take the mathematical expectation of the right-hand and left-hand sides of
above inequality, we get [5.26]. (]

LEMMA 58— Asu>0,v>0,a>1,0<vy <«

a—1 y
’sin Ul o In(e®*! + u) .
v In(ex=1 +v)

PROOF.— If u > v, then inequality is trivial. Let u < v, since a function f(u) =

ln(e“‘*l—i-u)

” monotonically decreases as u > 0, then

a—1 vy
u <|u|<<ln(e +u)) ’

’sin —

vl = |Jv] T \Un(e*"1 +v)
Really,
oy (e )" St — (e !+ w)”
') = =
~yu (Ine* ! + u))ﬂ{_l — (e +u) (In(e*™! +u))” <0
N (el + u)u? -
since
g(u) = yu < (7 +u)(In(e* ! +u)) = r(u),
and ¢’ (u) = ;7' (u) = In(e® !t +u) + 1;7'(u) > 7 (0) = a > v = ¢ (u). O
COROLLARY 5.1.— An inequality
In(1 @
sing‘ < M [5.27]
v In(1+ |v])

holdsas 0 < o < 1.

PROOF.— If |u| > |v

, then the inequality is trivial. If |u| < |v], it is enough to prove
In(1
[5.27] as o = 1. So, since a function f(v) = M monotonically decreases with
v

respect to v > 0, then as |u| < |v|

| < ] ¢ (Lt )
vl = ol 7 (1 +[ol)
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Consider the random process 7, (¢) that is described in [4.6].

REMARK 5.1.— In theorem 4.2, it was proved that the stochastic process 7, is sub-
Gaussian that belongs to the space Sub,, (Q2), where 2 (z) = z?. From this follows
that 15 (t) € Sub,, (£2), where p > 2.

THEOREM 5.10.— Suppose that for some @ > 2 the condition

o0

/exp {(In(1+X)*}dF(N) < o0 [5.28]

0

is satisfied, then inequality

M
7o, (D) < Cazb d [5.29]

=0
holds, where p is such number that % + 1 = 1 (p_ %)

_2
Co=32-2""% (eq) “e3 b7 = F(\jt1) — F(\x), dy is the Luxembourg norm
of the random variable In(1 + 6;) in Orlicz space Ly(f2), where
U(z) = exp{|z|*} — 1, O M 011,012 are independent random variables
identically distributed with function of distribution Fj(\) = %, F(\)is
a spectral function of the process.

PROOF.— Since in 7, (¢) all items with different k& are independent, then it follows
that for p > 2

72, (A (1))
M At Ak41
< Z / cos At — cos Ct)dni (A) + / sin A\t — sin (i t)dn2(N)
k=0 X J
Ak41 )
< 22 Tgp / (cos At — cos (xt)dni (A [5.30]
Ak
Ak+1
+Tf,p / (sin At — sin Cxt)dn2 ()
Ak

By theorem 5.9 and [5.30], we have
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Ak41

M
7o, (A (1)) < 2- 2" Z Se, / (cos At — cos Crt)dn1(N)
k=0 5
k
Ak41
82, [ inxe—sinGoano) | - 31
Ak

From lemma 4.1 follows that (b2 = F(\r.41) — F(Ax))

- 2m
I, =E / (cos At — cos (xt)dn (A)
Ak
Net1 ) m
< 4" A B2E / <sin t@’“z_”) dF,(\)
Ak

Ak+1 [/ Ak+1 m

= 4" Ay, b2™ J J <sint(u2_>\)>2dFk(u) dFy(\)

Ak+1 Ap+1

= 4" Ny, bi™ / / <sint(u2/\))2mdFk(u)dFk()\)

Ak g

From corollary 5.1 follows that

) Ak41 Akt1 In (1 n ‘u;)‘|) 2m
I, < 4™As,, b7 _— 7 dFy(u)dFy (X
k> 2 Lk 1H(1+%) k() k()
Xe o Ak

4mA mem m

= %E(ln(l +60,)°™ . [5.32]
(ln(l + ;))

where ), is random variable that 6, = w, where 61,02 are independent

identically distributed random variables with function of distribution

_ _FPQ)-F(w)
Fie(A) = F(Akﬂ)—F(k)\k)'

From lemma 5.7 for any di, > 0, « > 2 follows inequality (S = 2m)

2m

E (In(1 + 6;,))*™ < d2™ (Qm) N exp {—Qm} E exp {(ln(l—i_ek))} . [5.33]
o o ag
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Since for a > 2 the function U(z) = exp {|z|*} — 1 is N-Orlicz function then
from the conditions of theorem follows that random variable In(1 + ;) belongs to

Orlicz space Ly (). Put di, = || In(1 4 6k) ||, then E exp {(mu;%} < 2. Thus,
k
foreachm = 1,2, ... of [5.33], the following inequality holds true

2

E (In(1 + 6;))*™ < 243™ (2;7) N exp {—2;7} : [5.34]

So, from [5.34] and [5.32] follows

4mA m[ﬂm 2 QTm 2
p < ——2mk_gg2m (m) exp {—m} : [5.35]
(ln(l + %)) « «

From [5.35] and definitions S, (), we have

Ak41 )
1) 2w
Se, / (cos At — cos (t)dn (A) | < sup(2m)% (Ix) .
N m>1 ((Qm)l)ﬁ
k

Q=

(0%

sup

(2m)7  2((2m)!) =7 \/bF27 dy (zm)
m>1 ((2m)))zm V2(m!)z In (1+ 1)

{ 1}
expq ——
a
ﬁbkdk2%+ﬁ+ém%+é
Sup — - T =
m>1 (m!)za In (14 1) o= exp {1}

[5.36]

1

From Stirling’s formula follows inequality (#) 2m < 1 e3+31, Moreover,
) m

[N

1
p «

(5.36] implies (1 + L — = 0) that

Ak41
Se, /(cos)\t—cosgkt)dm()\)
Ak
1 1 1 1 % 13 2\/5 1 13
< brd2pTatz [ — 21 = brd “ae2t
- ln(lJr%) W (ea) c ln(lJr%) edi(ea) e
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Similarly, we prove that

Aess 2m
E /(sin)\t—sin(kt)dm(/\)
Ak
At Akt 2m
<A™ Ay, b2 / / (sinM> dF,(NdFy () | = I,
PR ?
A1
Se, /(Sin)\t—sinckt)dng()\)
Ak
1 (Iy)ze 2 113
S O i S S e e

From [5.31] follows

_1 _2 26 1
72, (1) < 3221 o) Fell 3 HRaE o

O

THEOREM 5.11.— Suppose that for some o > 2, condition [5.28] is satisfied, then
the inequality

M
2 (A (t) = 1a(s)) < 2—Ca 3 bid
In <1+ = S‘> P
holds, where p = 22, G, = 64277 (ea) e, b2 = F(Ar1) — F(\), di is
the Luxembourg norm of random variable

_ In (14 Gr1—beal
In <1+|€’“1 9’“2|) +n (1+9’“1> ( . )
4 2 In (14 57)

in Orlicz space Ly (§2) , where U(z) = exp{|x|*} — 1, 01 and 0o are independent
FQA)—F(Ax)
FAp41)—F(x)”

identically distributed random variables with cdf F},(\) =

PROOF.— Denote
Akt1
We1 = / (cos At — cos (it — cos As + cos (x.s)dny (N),
Ak
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Ak41
Why = / (sin At — sin (xt — sin As + sin (. $)dn2 ().

Ak

From lemma 1.7 follows

M
(77A( Z { (wr1) + Tip(WkQ)} .

k=0

By theorem 5.9, we have

M

T2, (0 (0) = () <2215 37 (82, (m) + 5, (i) [5.37]
k=0
From lemma 5.3 follows that
Ik — E (wkl)Zm.
Ak+1
< 42 A, E / ( sin —(8 _ t)El)\ )
Ak
2 m
+ [sin Cels = #) ‘ - |sin (t+ 8)(G = M) ) dF(>\)>
2 4
Ak+1 Akt1 )
— 42mA2mbim / / ( sin (5 — t)i - U)
Ao Mk
2m
+ |sin u(52— t) ’ - |sin (t+ s)iu —) D dFk(U)dFk(/\)> . [5.38]

By corollary 5.1

Iy < 42Ny, bim

dFy (u)dFi(N) [5.39]
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B T ) (ln (1 + W)
(ln (1 + |s£t|)>
ln(l—l—%) ~ln(1—|—‘9"‘14;9’“"“)
In (1 + 57)

2m

+

where 6y, 0o are independent identically distributed random variables with cdf

F(x)—F(A .
Fk(x) = m,tws S [07T}

It follows from lemma 5.7 that for arbitrary di > 0,00 > 2

2m

4 O11— 6%
00— 0] I (14 %) (14 el
Elln{1+ n I : 1
n (1 + ﬁ)
2m
2m © 2 I
< dzm (m) exp{m}EeXp 1) s
@ a iz
where
0 011 — O]
|0k1 — Oka| In (1+%) In (14_%)
L=In{1+ I 1 |
4 In (1—|— ﬁ)

Since as e > 2 the function U () = exp {|z|*} — 1 is N-Orlicz function, then the
condition of the theorem implies that random variable L belongs to the Orlicz space
L, (). Putdy, = || L], then

LOL
Eexp{ = } <2
doc

Hence, for eachm = 1, 2, ... from [5.40] follows that

31 9k2|> In (1 -+ %) In (14 agtel)
_|_
4 In (1+ 55)

A 2m
< 2d™ <)
(0%

E|ln (1 +
2m

= 2
exp {m} . [541]
«
So, [5.39] and [5.41] imply

2N B2 (9m 2
I < 2m% ___op2m (m> exp {—m} . [5.42]
(0%

(m (1 + ﬁ))m
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Therefore, from [5.42] and definitions of .S, (e) follows that
Ak+1
Se, / (cos At — cos (it — cos As + cos (is)dn ()

o
g
D=
N
/N
N~
3 [ V)
312
N
L]
g
S
e
[\
Y-
Qs
>~
VR
S
N—
Q
]
o]
kel
—N
\
\
——

Q=

_ 2v/2bdy 25 = et
= sup - 1 1 1
m21 (ml)zm In (1 + W) Q> €Xp {E}

By Stirling’s formula, we have

1
I 1
_— < +
<m!> - \/me

[N
-

Then, using ]l) + é — % = 0, we obtain
Ak41
Se, / (cos At — cos (.t — cos As + cos C.s)dni ()
Ak
2v2 5 4+/2 . .
< V2 bpdp2r T2 (ea)_ée¥ = V2 bkdk(ea)_ée%
In (1 n %) In (1 + %)
[s—t] [s—t]
Similarly, we obtain
Ak41
Se, / (sin At — sin (xt — sin As + sin (. $)dnz2(N)
Ak
42 A
< Lbkdk(ea)_éeﬁ.
In (1 + —‘Sit‘)

From [5.37] follows that

M
1 _2 26 ~ 1
72 (na(t) = na(s)) < 642175 (ca) w e Y 03—
k=0

2 1
In (1 + |S_t|)
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REMARK 5.2.— The value di from theorem 5.10 can be evaluated in this way.
Consider in [5.33] E exp {(ln(l:%}. Let £ < M. Since
k

Ak41 Ak41 In (1 + |u—v|>

Ly = exp 5 2 dFy(u)dFy(v)

Ak Ak

m(r+ﬂ%;ﬁ)

< ex )
= exXp S

’\k+1**k)

ln(l 5
then Lk S 2, when S Z T

m(y+ﬁggﬂ)

(In2)=

. Thus, by the Luxembourg norm

dy <

As k = M from the theory of Orlicz spaces

Q=

INA
\8
\

(e}

[}

ko)
—N
R

=}
7N TN

=

+

<

|
>

g
N————
N———
Q
—

S5

2

S

Q=

A\
—
5
g
S
—
@D
%
!
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+ 7dFM(v) 7exp { (ln (1 + 2 _;M»a} dFa(v) “

AM AMm
[ele] . o 2 [e%e] . o
< 2/exp{(ln(1—|—u)) YdFy (u) = b?/exp{(ln(l—ku)) "} dF (u)
)\ju M>\1\/I
So,
2

M M-1 In (1 + /\k+127—/\k)

donidi < > by ;

k=0 k=0 (In2)=

LB 2/exp{(111(1—|—u))a}dF(u)
A

M
From the inequality above, condition [5.28] and a > 2 imply that the sum Y b2d3
k=0

can be made as small as it needs by selecting sufficiently large Ajs and sufficiently
small 0<1kgaﬁ 1()\k+1 — A). For example, when Ay = A, A1 — Mg = % at

M
k=0,1,...,M —1, > b2 < F(+00), then
k=0

M 2
Y o bidr < <W> F(+00)
k=0

o

+ 2/exp{(1n(1 +u))*} dF (u) (F(400) — F(A))z_
A

4
a

Similarly, we estimate the value cik from theorem 5.11. Consider in [5.40]

Ok1 10k1—Ok2l @
100161 1n(1+%)1n(1+ - )
<hl (1 + 1 ) + 1n(1+%)

Eexp =
dy
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Let k < M.
L, =
Mot Mt lu—vl\ | m(1+%) ( \ufv\) ¢
) ket Hexp ln(l—|— 1 )+1n(1+ﬁ)ln 1+ 1
S
Ak Ak
dfk(u)dfk(v)
A «
In(142kEL
In (1 n Ak*;‘*’“) o 2 )1y (1 + 7*’““4‘“)
< exp ln(H—ﬁ)
- S
f/k < 2 when
A
In (1 + A’““**k) Lm0 (1 + Ll*“)
g> 4 In(1+5%) 4

(In2)=

Thus, by the norm of Luxembourg

Akl
_ In (142641 _
In (1 + )"”1 )"C) + IE(H;T)) In (1 + 7)‘“2 )"“)

d :
¥ (In2)=

IN

When k = M, then we obtain

[ Jon{fn(+25)

dy <
M AM
o 1

LGS )N (1 + '“‘”') AFyr (u)dFy(v) )

In (1+ 55) 4 M M
< //exp{[ln(l—f—%)

M AM
In? (1+ %) °

+1n(1+%)

} dPh4(u)dfh4(U)>
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7 wy W2 (1+2)\" :
< b;[/eXp{Qn(l—’_Q)—'_ln(E—i:ng) }dF(u) .

AMm
So,
M
> bvidi
k=0
Osa—aw)) | (1 75) I
M-1 1n<1+ B ’“)4— ; 111(14—%)
< Z b2 1n(1+ﬁ)
= k 1
= (In2)=
2
o0 2 « a
9_4 u In (1+9)
+ by, 2/ex 11(1—1—7)—1—72 dF(u .
: p{< VRTICES )
AM
REMARK 5.3.— The norms can always be estimated more accurately by

approximating methods. The next corollary follows from last two theorems.

COROLLARY 5.2.— Suppose that for some o > 2, condition [5.28] is fulfilled, then
for separable process 74 (¢), which belongs to the space Sub,,, (€2), where

(u) = u?, Jul <1, 2«
P Z Ul Ju > 1, P T =2
inequalities
1
T, (M (1)) < mCA [5.43]
t

1
M 2
holds true, where Cy = (Ca > bidi) , Ca, b3, d2 is defined by formula [5.29],
k=0

and

1
TWp (77A(t) — ’I]A(S)) < LA, [544]

In (1+ﬁ)

1
2

~ M N ~ N
where Ly = <C’a kX_:O bidi) , Ca, b3, d2 is defined in theorem 5.11.



238  Simulation of Stochastic Processes with Given Accuracy and Reliability

THEOREM 5.12.— Suppose that for some v > 2 condition [5.28] is satisfied. Then, for

any 7> 1, A > O and § > 0 such that § < ,%Tmin(LA,nT), where kK = ln(fiig),
T
yr = ﬁ C\ is defined in [5.43], L from [5.44], an inequality
Eexp {/\ sup |7]A(t)} < 2@(/\,5), [5.45]
0<t<T
where

G(\,0) = exp {(pp (1/\1715) + 2/\B5} ,

1
Bs =055

a—2 2a
InT L, = 2o
()0 + 137 o) 7 22,

where ¢, (x) is defined in [5.20], p = 2.
PROOF.— The theorem follows from entropy characteristics and corollary 5.2. Indeed,

we put 7 = [0,T], p(t,s) = [t — s|, X(t) = na(t), (z) = ¢p(z). From corollary
5.2, we obtain that

B Ly B Ch
U<h)_ln(1+%)’ -

k=rp, oD (u) = (exp{LuA} — 1)1.

Itis clear that N'(¢) < L + 1, then

H(eY(w)) = In (N(a<*1>(u))) <In (Z (exp {LUA} - 1) + 1)
<1In (Texp{LuA} —(T - 1)) <In (Texp{ZAD ﬁ +InT.

[5.46]

Since évpr < K, then we can put 5 = 77, then from [5.46], we obtain

dyr

A 1
G(\,0) <exp 1 ¢p (1%:;) + 2\ =03 / Colu)du| » . [5.47]
0
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oyt
Since ar < 1, then
Ly

1—1
/ Co(u)du = / ( +lnT> du < L a (577«) P+ (lnT)lfi(S’yT.
Last equality, inequality [5.47] implies that
Eexp {)\ sup |77A(t)}
0<t<T

v (25) v [ (57 b+ i)

- )\’}/T 1 a27+2
—Zexp{cpp<1 5) +2)\(1—6)5 ((lnT) oyr+

O

COROLLARY 5.3.— Assume that the conditions of theorem 5.12 are satisfied, then for
anyT >0, >2Bs,0 > 0,0 < %‘; o< ’% an inequality

P s (01> e} < 2o {0 (220 -0) ] (5.451

0<t<T T

2
o5 (u), u > 0 is a Young—Fenchel transform of the function ¢,(u),

@y (u) = sup(uv — p,(v)).
v>0

1 e a—2 o— 2
hOldS, where B§ = m <(1IIT)2+Q26’7T + L 2o ((5’YT) 2“2 o _OZ ) , P = 272

PROOF.— From the Chebyshev inequality and [5.45] it follows that

A
P{ sup |na(t)] > 5} < 2exp {¢p (1 XT5> + 2)\35} -exp{—Ae}

0<t<T
M7 € —2Bs Ayt
-9 - 1-6)— .
exp{ (15 T ( ) Lpp<1§>)}

If in the right-hand side of this inequality infinimum
€ > 2Bs, we obtain [5.48].

1\%7(; is taken with respect to
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Find the exact form of the function ¢*(u):

[V
~| S,

U
@Z(u) = sup {uv — p(v)} = sup {uv — v2} =ug
v>0 lv|<1

D

1

e ot 1

eyt =supfuo =) = (4) 7 (1) Lot asus s,
v>1 p p

op(u) =u—1l,asv=1and2 <u <p.

So
2
uz, 0<u<?2
@;(u): u—l, 2_ sp
pP— _p_
——ur~t,u>p
prt 0

COROLLARY 5.4.— The model X, (t) approximates the process X () with given
accuracy € > Bs and reliability 1 — x, £ > 0 in uniform metric if for the partition A
the inequality

2exp{—<p;; (5_;35(1 - 5))} <k

holds, where B; = (7755 ((ln T)s §yp + L2 (6yr) = a2f2) ,p = 22
From corollary 5.3, we obtain the following statement.

COROLLARY 5.5.— Ifin [5.48] we put § = (M) m’ where

at2 a—2 20

Ala,T) = Ly (yr) =

a—2

we find, that for any

3a+2 3a+2
2a 2a
e > 2A(a,T) - max <<7T> , i 72)
Ly RT

the inequality

P{ sup I (d)] > }
0<t<T

26% (11 T) 55 %2 v+ Al T
€= =3 ((nT) 2w yr + A, T)

< 2exp[ ¢y (1—9)

YT
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= 2exp {go;; (5(1_5) 2(InT) % — Mmfp))}

T Y70 za

2a

c—¢ (2A(C¥7T) ) FatZ (2A(a, T)) 5297 Tt

=2expq ¢, - - —2(InT)=2e o
a+2 2
_ 9:%55 (2A(a, T)) 552 .
Zexp{go;; <€ c (24(a, 7)) 2(111T)2t2>}
T
holds true.

5.4. Generalized model of Gaussian stationary processes

In this section, the model of Gaussian stationary random process is constructed
such that the correlation function of the process does not coincide with the correlation
function of the model.

With high modeling accuracy, the estimates are worse than in previous cases. But
this method does not require the additional restrictions on spectral function of the
process. The estimates hold true only under constraints that ensure sample continuity
of the process with probability 1. The results of this section are described in [TEG 02].

Let X = {X(t),t € T} be Gaussian stationary real centered continuous in mean
square random process with covariance function

EX(t+71)X /cos ATdF (A
0

where F'(\) is continuous spectral function of the process.

Random process X () can be represented as

oo oo

X(t) = /cos Atdm (N) + /sin Atdna(X),

0 0

where 71 (\), n2()\) are defined in [4.2]

X(t) = Xa(t) + X*(1),

A
where X, (¢ f cos Atdny (X) + [ sin Atdna () with covariance function
0
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A
ra(r) = EXa(t+7) X (t) = / cos \rdF()),
0

= / cos Atdni (A) + / sin Atdng (A
A A
with covariance function
A ey = BXME 4 1) XA (1) = / cos ArdF()).
A

According to the model of X (¢), we take the model type
M

XN () =) (11 cos Gt + iz sin Git),
k=0

where A = {)\o,..., Ay} a partition of the set [0, A] that A\g = 0, A\p < Agt1,
Av = A, g1, Mi2, Cx are independent random variables such that Eng; = Engs = 0,

Eni, =Eniy = FOpy1) — FOO%) =063, k=1,..., M,

(i are random variables taking values on the segments |[Ag, Arp4+1] and have the
following distribution function

F(\) = F(\)

P{Ck < )\} = Fk()\) = F(}\kJrl) — F()\k)

Show now under which conditions the partition A should be chosen such that for
model X}/ there exists a centered Gaussian process X (t), that is approximated by the
model in the space C'([0,7]) with given accuracy and reliability.

Note that

na(t) = X3 (t) — Xa(t)

M Ak+1 >\k+1
= Z / (cos At — cos (t)dni (A) + / (sin At — sin (g t)dna (M)
k=0 | 5 X

[5.49]
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The main statements for sub-Gaussian process 7 () are given in section 5.4.
The following theorems are carried out.

THEOREM 5.13.— For sub-Gaussian random process nA(t), the inequality
In” (1 + %)
In” (1+ 2)

holds, where A = {Ag, A1, ...An}, Ao = 0, Ak < Apg1, A = A, F(A) are spectral
function.

T(na(t)) < 4 (F(A)?

PROOF.— From properties Sub(2)- space and lemma 4.1 follows

Ak+1 Akt1

72 / (cosAt — cos(pt)dn (N) | < ©32 / (cosAt — cosCit)dn ()
Ak Ak
At 1 2m m
< sup LE / (cosAt — cosCit)dm (N)
m>1 A2771 I

1
m m
Ak+1 [/ Ak+1 m

sup b / /(%mt(“;A)dek(A) dFy,(u)

m>1

IN

Ak Ak

Ak+1 Ap+1 | 'Y(l )\) om
+u —

v / / ST dE(dE,
rsnuzp1 k ( In” (1_’_%) k( ) k(u)

1
m

IN

Ak g

In?7 (1 + Mpg1 — M)
- In? (1 + %)

(F(Akr1) = F(Ar)) = L.

Similarly, we obtain:

Akt1 Ak41
72 / (sin Mt — sin Gxt)dn2 (M) | < ©3 / (sin At — sin (xt)dn2(N)
Ak Ak
Nt 1 2m %
< sup E / (sin A\t — sin (xt)dn2 ()
m>1 | Aam

Ak
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1
m m

Ak4+1 [/ Akt

tu—A)\"
< sup b7 2sin 5 ) dFR(N\) | dFj(u)
m=t Ak Ak
Akt1 Akt1 17(1 /\) 2m %
+u—
< sup 4b? // DUTUEA ) aR(dE
<ot [ [ () oo
M Ak

1n2’7(1 + )‘k?-‘rl — )\k)

- 12" (1 + %) (F(Ag+1) — F(A\x)) = I.

Akt1 Ak41
72 ( / (cos At — cos (xt)dni (N) + / (sin At — sin th)dnzo\))

Ak Ak
Met1 Mot 2
<\ / (cos At — cos Cpt)dm(N) | +7 / (sin A\t — sin Cxt)dn2(A)
e S
< 4I,. [5.50]

Since the summands of sums [5.49] for different k& are independent, then [5.50]
and lemma 1.7 imply

M
T (1) <4 I,
k=0

M 2

T(’I]A(t)) <9 <Z41n27(1 + )\k+1 - >\k) A (F()\kJrl) _ F()\k))>

2 2
P In™"(1+ %)

Ifweput \pyr1 — A\ = % then

D=

() <4m7 (143 ) (14 1) ()

, v > 0.

For any t,s € T
A (t) = na(s)

=0

M Ak41
= Z { / (cos At — cos (it — cos As + cos (is)dn1 (M)

Ak
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Ak41
+ / (sin At — sin (xt — sin As + sin (. $)dn2(A)

Ak

THEOREM 5.14.— The following inequality is fulfilled.

7 (na(t) —na(s))

t,s €10,7).

PROOF.— Denote
Akg1
Wr1 = / (cos At — cos (it — cos As + cos (xs)dny (N),
Ak
Nig1
Wro = / (sin At — sin (it — sin As + sin (. $)dn2 (A).
Ak

By lemma 1.7, we have

M M
P(a(t) = a(9) <23 (P (i) + 2 (wr2)) <23 (O wi) + OF (o)),
k=0 k=0

where

S

ki
m>1 ZXan

From lemma 5.3 follows that

At
72 / (cos At — cos (t — cos As + cos (js) dny (M)
Ak
PV
<16sup | E / (gin(St)(’\C’“) +
m>1 4

Ak
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>2dF()\)> m) ’

_|_

sin

(A= G)(t+5)
4

- |sin

MEE (1 — )

+A—u

< 1612 / / {1+ A —ul)
- kfnu>p1( In” (14 —£)

o [s—t|

Ck(S—t)’
2

In"(1+w) In"(1+4|X—u

(14 527) In (1 n %)

)) dF(N)dFy(u)

In”(1 4+ A1 — k) In"(14+ A1) In7(1+ Apgp1 — Ax)
16 +
In” (1 + ﬁ) In” (1 + ﬁ) In” (1 + SLH)

X (F(Ak41) = F(Ax))

2
2 (1 + A1 — A In7 (14 A
<16 (F(Mjg1) — F(\r) § "““2 ) (1 M) = Jp.
In*” (1+ ) n” (1+ %)

[s—t]
Similarly, we obtain

Akt1

T / (sin A\t — sin (gt — sin As + sin (x$) dn2(A)
Ak

m>1 4

Ak

3

+ [sin

S1

Ck(s—t)‘ .
2

M A )

+ A —u

< 1602 su // i Sl LA
o kmzpl ( hl’y(l + ﬁ)

Ak Ag

LAt 9)
4

20

2m

3=

In"(1+wu) In"(14|X—u|)

dFy(N)dEFy (u)
In”(1+ ﬁ) In (1 + sith)
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2
In?7(1 4+ Aep1 — A In? (14 A
< 16 (F(Akt1) — F(Ax)) i k+12 ¢) <1 + % = Ji.
1117(1—1—@) n (+T)

Then, 72 (na(t) — na(s)) < 4 éj:o J

Ifweput \pyr1 — Ay = then

]\/I’

LY (142 ( 1117(1+A)>
T —na(s)) < 8(F(A)) —~— M/ ——% | -
(1)~ ma(s)) < S(F(A)F == L )

[N

THEOREM 5.15.— If condition

o0

/11125(1 +u)dF(u) <oo, 0<e<1
0
holds, then

203

T(XA( ) — XA (s ) < m;

where Q = [1n®"(1 4+ \)dF(\),0 <~y < 1.
A
PROOF.—
M) = EXMt+ 1) XA (1) /COb/\TdF ,
A

E|[XA(t) — X2(s)[* = 2 (r2(0) — (¢ — s))
2 [(F(+) — F(A)) — [{cos At — s)dF()\)}

2 [ (1 —cosA(t—s)) dF(/\)

4

R )

.2 A(t—s) 1+/\)
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Then,

N

7 (XA (t) — XM(s)) < (E XA (t) - XA(5)|2)

1
o0 27 2 o0
_o / WD o] = /ln271+)\ dF()\)

2y 2 T (1L 2
1 hl (1"‘4‘2575‘) hl 1+ ‘t S‘ i

O

THEOREM 5.16.— If the random process XA/ (¢) has a partition A such that the
inequalities

/1n27(1+>\)dF(>\) <o0,0<y<1,
0

1 2
2exp{ 5 81 (aé— 8045[1(&)1)) }

5z ((1 —a)d —/8(1 - a)5f2(€02))2} <B [551]

+ 2exp {—
€02

as § > 8max (11(501),12(502)) holds, where 0 < o < 1,91 = sup 7(Xa(t) —

0<t<T
XM(t)), e02 = sup (XA (1)),
0<t<T

L - 8/F(A)In (14 &) (1 + m>
T
11(601):—2/ In Zexp .
0
T 3
_Z + 1)> dé‘,
I5(g02)
- 3
| - 2 [In®'(1+ N)dEF()) .
:—/ In | —exp A ——+41 de,
V2 4 € 4
0

then the model approximates Gaussian random process X (¢) in the space C([0,T)
with reliability 1 — 3, 0 < 8 < 1 and accuracy § > 0.
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PROOF.— From entropy characteristics [BUL 00], we have

P {0;% X(1) - XM (1) > 6}

< P{ sup | Xa(t) — XM (1) > a5} + P{ sup [XA(8)] > (1 - a)a}
0<t<T 0<t<T

1 2
< 2exp {—252 <a6 — 8a5]1(601)) } +
01

2
+2exp {—26(2)2 ((1 —a)y/8(1— a)612<€02>) } .
From theorem 5.14 follows that o1 (h) = sup 7(na(t) — na(s)) < %,
[t—s|<h n(147)
where
~ A In"(1+A)
G=8/FA)In" |1+ — 14+ ——5 |-
VE(A)In ( +M>< +1n7(1+%)>
o) =
exp { (%) } -1
Then

cor 1 3
L 1 Te G\ T+1 de
= — n|—ex — - =
/2 1Py e 4 ’

0

go1 = sup T7(na(t)) is defined in theorem 5.13.
0<t<T

From theorem 5.15 follows that o5(h) = sup (X(t) — XM (s)) < —29 __,

where Q = [ In®7(1 4 \)dF()\), then
A

cré_l)(h) =2 | exp <2<€Q> -1 ,

2=
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1
o\ L 2
2 v T
I5(202) \[ / — exp (g) -1 +1 de.

where

ez = sup T(XM(8) < sup (BIXA0)?)? = /F(to0) — F(A).
0<t<T 0<t<T

By definition 5.3, the model X3(t) approximates the process XA!(t) with
reliability of 1 — 3, 0 < < 1 and accuracy 6 > 0 in the space C([0,T]), i
condition [5.51] is fulfilled. D



6

Simulation of Cox Random Processes

In this chapter, we introduce random Cox processes and describe two algorithms
of their simulation with some given accuracy and reliability. The cases are considered
when an intensity of random Cox processes are generated by log Gaussian or square
Gaussian homogeneous and inhomogeneous processes, or fields are considered. The
results of this chapter are based on the works of [KOZ 06a, KOZ 07c, KOZ 11,
KOZ 07b, POG 07, POG 09, POG 11].

6.1. Random Cox processes

In this section, random Cox processes driven by random intensity are considered.
All necessary definitions and properties which will be used during their simulation are
described.

Let {T, B, 1} be a measurable space, u (T) < co.

DEFINITION 6.1.— [MOL 98] Let {Z (t) , t € T}, T C R not be a negative random

process. If {v (B), B € B} under fixed simple function Z (t) is Poisson process with

intensity function i (B) = [ Z(-,t)dt, then v (B) is said to be a random Cox process
B

driven by process Z (t) .

Let {Y (¢t), te T}, T C R be a homogeneous, Gaussian, mean square
continuous random process, EY () = 0, EY (t) xY (s) = B(t—s). If
Z (t) = exp{Y (t)}, then v (B) is said to be the log Gaussian Cox process or Cox
process driven by a log Gaussian process exp {Y (¢)}.If Z (t) = Y2 (t) , then v (B)
is said to be a square Gaussian Cox process or Cox process driven by a square
Gaussian process Y2 (¢) .

If T C R", then v (B) is said to be a random Cox process driven by the field.
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DEFINITION 6.2.— [FEL 70] Poisson point process N on {T,B} is said to be a point
process such that for all B, € B,k =1,m, m € N, B, N B; = 0 if i # j, random
variables N (By) , k = 1, m are independent and have Poisson distribution with mean
1 (Bk) .

By))'
PN (B =1y = PP ey )
Let &;, + = 1,2,... be independent random elements with the same distribution,

that for any set B € B, P {{; € B} = %.

Let © be a Poisson random variable, which does not depend on &;. Consider a
family of random elements &1, &s, ..., &o.

We denote II(B) by quantity of elements from &, &, ..., &g, which are
contained in B € 8.

THEOREM 6.1.— II(B), B € %5 is a Poisson ensemble with density function p (B) .
PROOF.— Let By, By, ..., B,, € B, BN B; = ( when i # j. Since joint

distribution of random variables II (B;), II(Bs), ..., II(B,,) given that © = n is
polynomial, it follows from the formula of total probability:

P{H(BI) = klan(BQ) = k2a~~7H(Bm) = km}

> P{I(B))=ki, 11 (By)=ks,..., 11 (Bp)=km/© =n} P {0 =n}
n=3 71, ki

- :;Z: T (Z!— ST k)l ﬁl (Z((%)))ki
< (1- W)Z “ e el
) n_zzl e S _(MZ(%;f_@f:m Sy
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O

Thereby, under fixed realization of the random process Y (t) log Gaussian Cox
processes v (B) is a Poisson ensemble. This result will be used during simulation of
Cox processes.

6.2. Simulation of log Gaussian Cox processes as a demand arrival
process in actuarial mathematics

In this section, a simulation of the Cox processes methods density, generated by
Log Gaussian process (u(B) = [exp{Y (t)}dt, {Y (t),t € T} is centered,
B

homogeneous, Gaussian), is described. This method can be used as a method of
simulation of demands arrival process in actuarial mathematics, since arrival of
demands [TEU 04] often may be considered as a log Gaussian Cox process. The
model is constructed on finite domain T = [0,7],T € R.

We construct a model of log Gaussian process in three steps. In the first step, we
simulate centered, homogeneous, Gaussian random process Y (t) . In the second step,

T ~
we simulate a Poisson random variable with density i (T) = [exp {Y (t)}, where
0

Y (¢) is model of Y (¢) . Consequently, we obtain a value of a 7 (T) . Under realization
of a process that generates density, it follows from theorem 6.1 that the log Gaussian
Cox process ¥ (T) is a Poisson ensemble. In the third step, we have to simulate 7 (T)
Jy exp{?(t)}dt

independent random variables with function density G (z) = Ty exp T }du
T ex’ u U

Since the model of continuous random variable with function density G (z) is
G (¢), where G () is inverse to G (-) function, ¢ is uniform on [0, 1] random
variable and the model of log Gaussian Cox process is constructed in such a way that
the difference between process and their model was as small as possible, we should

demand that 'G(*l) ¢) -GN (C)‘ for all ¢ is as small as possible. In other words,

the placement of each point of the log Gaussian Cox process must differ from their
small simulated analog.
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DEFINITION 6.3.— We say that the model of Cox process {v (B) ,B € B}, driven by
log Gaussian process exp{Y (t)} , approximates that process with accuracy o, 0 <
a < 1 and reliability 1 — v, 0 < vy < 1, if the following inequality holds true:

0<¢<1

P{ sup ‘G(’l) ¢) -G (C)‘ > a} <A.

LEMMA 6.1.— Let Y () be a homogeneous, centered, continuous in mean square,
Gaussian process with spectral function F' (\), a partition D of domain [0, A], A €
R is such that A1 — A\, = %, N € N. Then, for all p > 1 we have

T T _ B N
(E / QY (WY (1) gy, / =Y gy, )
0 0

1 1
2%\/1)1141\/’ P2 exp {vagB (0) — 2} ,
where the model is equal to

N_1 Akt1 Ak41
cos At / d& (N) + sin At / dn (N
k=0 X, el

and

Ant = (7; + Tt) V2F (A)% +2T/2(F (00) — F (A)),

where v; and vy are such positive numbers, that % + i =1.

PROOF.— By virtue of the general Minkowski inequality:

T T _ _ NI
<E/ eY(u)—Y(t>du_/ =T (1) g, )
0 0

T
/ Y(u ) _ Fw-v
0

It follows from inequality |e® — e¥| < |2 — y| e™a*(®:¥) and the H6lder inequality
that

)% du. [6.1]

El|ey@-v® _ Yw-vov|
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<B(|Y -y @) -V @+7 () ems@yO5m-rn)

1
pui\ w1
)"

~ ~ 1
(Ee””2 max(Y(u)fY(t),Y(u)fY(t)))”2 . 162

< (E‘Y(u)—Y(t)—Y(u)Jr?(t

i + - = 1, v; > 1. Let us estimate each of the multipliers of the right-hand

V2
51de of the last 1nequahty For the estimation of the first multiplier, we proof auxiliary
relation. Let £ be a Gaussian random variable with parameters 0 and o2

E[¢]P = 27ra f |z[? eXp{ }dac—k-t dx—odt’

=0l 7= f |t\pexp{f%}dt:cp (O’z)g,

cp:[fupexp{——}du—
:\/7f 20)% exp {— v}—dv

ﬁ bfv%_ exp{—v}dv= %1—‘ (p—;l)

dv

= ’du:m

L
2

It is follows from the Stirling formula that, 0 < 6 < 1
pl_ 1
P(25) = vam (21)T Fexp {28 exp { 1l }
2 g
<vam (8)" (1+1) exp {~4 + sk fexp {2}

L . :
Finding a maximum of In f(p), where f(p) = (1 + %) exp {f% + m}
we obtain that under p > 1 f(p) < 1. Thereby for a Gaussian random variable, the
following relations hold true:

P
2

El¢)P = ¢, ()7, [6.3]
cp < \/ﬁpg exp {—g} . [6.4]

It follows from the first proved relation that:

pv1

E‘Y(u)—Y(t)—f/(u)+Y(t)

e, (E’Y(u) Y () -Y () +}7(t)‘2>2.
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Using the presentations of process

N Ak41
Y (t) = Z / cos Atd¢ (M) + Zsm Atdn(\),  Ani1 = +oo,
k=0 e k=0

and its model Y (t) we obtain that:
~ ~ 2
E )Y )~ Y (1) —Y(u)—i—Y(t)‘

—1 Akt
=E Z f CO8 A\u — oS A\t — cos At + cos Agt) d€ ()
N-1 /\k+1
+ > f (sin Adu — sin Agu — sin At + sin Axt) dn (N)
k=0
o 2
+ f (cos Au — cos At) d€ (A) + [ (sin du — sin At) dn (N)
A A
N—1 Ak41 )
= Y [ (cosAu—cosAgu —cos At + cos Ayt)” dF (N)
k=0 X
N—1Ak+1 5
+ > [ (sinAu—sin A\pu — sin At + sin Agt)” dF (X) +
k=0 X

+ [ (cos Au — cos \t)> dF (A) + [ (sin du — sin At)* dF ()
A

>y

N—1 Ak+1
<4y (‘sin “(’\+’\") sin “()‘;’\’“)
E=0 X

EOARHA) o A= AR)
) Sin 3

+ [sin
N—1 Ak+1
o (

k

/\k) ~ t(/\k+)\)
2

) dF (\)

. A—A A+A
sin u( > k) oS u( -5 k)

)ZdF%A)+

+ ’sm

[6.5]
2
—|—4/\f (sm%sin w) dF ()

oo 2
+4 f (sinwcos w) dF (\)

1 Ak41 2
<8 Z i (U(A;W + t“;m) dF (\) + 8 (F (o) — F (A))
< 211\‘,—(u+t)2F(A)+8(F(OO) - F(4)),
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since on each of the domains [Ag, Ag1+1], A — A < App1 — Ap = % Thereby,

(e ’Y (W)=Y () =Y (u)+Y (t)’pvl) < eph AL L [6.6]
where
A2 9
AN, u,t = 2m (u+t)"F (A) + 8 (F (00)—F (A)). [6.7]

Let us estimate Ee?v2max(Y(@=Y®).Y(@-Y®) Note that for the Gaussian
random variable f = N(0,02), the next inequality holds true

Eexp{X} = exp{

} Using this, we can write the next estimation:

E exp {pvg max (Y (u) =Y (¥) Y (u) — Y (t))}

< Eexp {pvs (Y (u) = Y (t))} + Eexp {pvz (17 (w) - Y (t)) }

:cxp{(pv;)E(Y(u) —Y(t))Q} + {(””;)E (?(u) _?(t))2}.

E (Y (u) =Y () = B(0) — 2EY (u)Y (¢) + B(0)

=2B(0)—2B(t—u) = /1—cosAt—u))dF()\)
0

=4 / sin? wdF (\) <4B(0).
0

~ - 2
It is obvious that E ’Y () — Y (t)‘ < 4B (0). Then,
EcPv2 max (Y (u) =Y (£),Y (u)=Y (t)) < 262(;01)2)23(0).
Thereby, using estimation [6.6] as the last inequality, it follows from [6.2] that:

EleY@-y® _ Jw-vYol < CﬁlAJg\] 275 2 0BO),

where A+ is defined in [6.7]. It follows from the last estimation and estimation
[6.4] for ¢, that:
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T 1
/ Y(u)=Y (1) _ V()= (1) )”du
0
T ) T 1
S/ (\@(pvl)pTleXP{ pgl }),, AR, 270 e B Oy,
0

Taking the integral in the right-hand side of the above estimation and using
inequality /= +y < \/z + ,/y after one of them is integrated, it is evident that after
elementary transformation of the statement of lemma follows from [6.1]. ([l

LEMMA 6.2.— Let Y () be a homogeneous, centered, continuous mean square
Gaussian random process with spectral function F' (\). There exists spectral moment

[ A%dF (X\), 0 < B < 1, and partition D of domain [0,A], A € R such that
0

A1 — A = %, N € N, that for all p > 1 the following estimation holds true:

T T
E / oY (W)=Y (th) gy, / T W)= (t4h) g,
0 0
T T p %
_ / Y (=Y ®) gy 4 / T | < hPay.,
0 0

where

1
GN,t,p = 2% (1—'1 /2PN,t + (27—26AQBB (O)) 2 AN,t) 17616173(0)_%7

2 )
Coseas (AN s AP 325 [ 28
Py =2 ) 2T | Py +2 ABdF ()),
A

AN = (T; + Tt) V2F (A)% +2T/2 (F (0) — F (A)).

PROOF.—
(E ‘fT oY (W)=Y (t-+h) g f Y (w)=Y (t+h) gy,
1
— [T eY@-Y(Wgy + foT Y (W)=Y (1) gy )
B ‘foT eY(u)fY(t)dueY(t)fY(tJrh) _ fT oY (W)=Y (t) g e¥ (=Y (t+h)
+f0T eY(u)—Y(t)due Y (t+h) _ f Y (u)=Y () gy,
_foT e?(u)—?(t)dueY(t)—y(t+h) +f0T eY(u)—Y(t)du‘ )

=
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T ~ ~
_ <E / Y (W)=Y ) gy, (eY(t)fY(t+h)76Y(t)7Y(t+h))
0

T _ _ T _ ~ ~ ~
+/ eY(u)fY(t)du(eY(t)fY(H»h)_1> _/ WY (1) g, (ey(tyy(wh)_l)
0 0

N
- T o P\ 7
4 (& (eY(t)—Y(t+h) _ 1)/ (eY(u)—Y(t) _eY(u)—Y(t)) du . [68]
0

Let us estimate separately each of the summands of the right-hand side of [6.8].
Consequently,  using the general Minkowsky inequality,  inequality
le® — e¥| < |x — y| e™®*(=¥) and Hélder inequality, we obtain:

p
)
< fT E ‘eY(u)—Y(t)du( Y (t)=Y (t+h) _ e?(t)_?(tJrh)) p)% du

< Jo(® Y() =Y (t+h) =V (0)+V (¢ + ) (6.9]

max(Y(t)—Y(t+h),}7(t)—)~’(t+h))’ )

1

y

T ~ ~
/ Y (WY (1) gy, (eY(t)—Y(t+h) _ eY(t)—Y(t+h))
0

D=

(E ‘fOT Y (W)=Y (1) gy, (eY(t)fY(tJrh) _ ef/(t)ff/(tth))

Y(u t)

\H\

b~

Xe du

S

< Jy ((E1AL P (182 ()*)7)7 du,

where
AY)=Y @)=Y (t+h)-Y @) +Y (t+h),

Ay (Y) = eY(u)—Y(t)emax(Y(t)—Y(t+h),§7(t)—3~’(t+h))’

% + % =1, r; > 1. By virtue of [6.3]

pr1
2

(B2 (V) ") = (E[AL () 7 ey
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Using representations [4.3] and [4.8] of the process Y (¢) and their model Y (t)
and inequality |sinz| < |z|?,0 < 8 < 1, we obtain:

E|A1()_E‘Yt+h) Vi -vm+vo)|

—1 Ak41
= Z f (cos A (t 4 h) — cos Mg (£ + h) — cos M + cos At)? dF ()
=0
N— 1 /\k+1 )
+ Z f (sin A (t + h) —sin A (¢ + h) — sin At + sin A\it)” dF (N)
+ [ (Cos/\ (t +h) — cos At)” dF (\) + [ (sin X (t + h) — sin \t)* dF ()
A A
N—1 Ak+1
< kZO [ 4 (‘sin (t+h)(2’\+’\") ’sin (Hh)(;‘*)"“) — sin ()‘72)"“”
= Ak
2
+ |sin @= )\k)t n (t+h)(2>\+>\k) _sin (>\+2>\k)t ) dF (\)
—1 /\k+1
+ Z [ 4 (‘Sin (GEDICEDYY )COS RN _ oo (A+mt‘
= 5 2 2 2 2
+’cos (’\+2’\’“)t n (”h)(;*’\’“) — sin (A}’\k)t )dF N

[e’e) 2
. A(2t+h)
+ f4 ’sm Ay

o0 2
|sin )‘2—h|2dF ()\)—&—fél‘COSW‘ ‘sin%de ()
A

1 Ak41

Z f 4 (‘2005 (2t+h')£A_Ak) sin ()‘_i"“)h"

| /\

)\ )\k)t

+ ’sm 2cos (2t+h)i)‘+)"“) sin ()‘Jri"“)h D ’ dF ()

N—1 Ak+1
i z_:o f 4<‘Sin (t+h)(2>\7>\k-)

2
+ ’2 cos (2t+h)i>‘_>"“) sin ()‘_i’“)h D dF (N

+23-28p28 f N2BdF (\)

}2 sin LR ) Ot Adh

—1 Mkt 81,8 _ BpBY\ 2
kzo i 16(0‘ M)Ph? | (A ;k)t (A+A4%> h ) dF (\)
N— 1>\ k41 2
n ZO f 16( t+h)(2>\f>\k) ()Hr);l%)/ih/i i (Afz%)ﬂhﬁ) dF (\)
Ak

| /\

+23-28p28 f NBdF (N)
A

2 o0
<32 5 [ (W) 5 @AD") dF )+ 2707 [Rar (),
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0 < B < 1. Therefore,

E|A; (Y)]* < h* Py, [6.10]

1\ 2 o0
where Py, = 2774 ((£)” + 2" 1A ) P (A) + BT NPAE(), 0 <
< 1. Thereby:

(E[A (V)™ < cpnh”ﬁPQ (6.11]

Let us estimate E |Ag (Y)|"" . It follows from the Hélder inequality that

|~

E|A; (V)" < (Eexp {prafi (Y (u) =Y (£))})

~

1

X (Eexp {p’/‘gfg max (Y (t)=Y (t+h) ,}N/ (t) — Y (t+ h)) })i )
[6.12]

% + % = 1, fi > 1. Since for Gaussian random variable ¢ = N (0, 0?), the next
relation holds true E exp {\{} = exp {

} and it was shown in lemma 6.1 that,

E|Y (u)—Y (1) < 4B(0),E‘Y(u) 757(t)‘ < 4B(0) , then:

Eexp{profi Y (v) =Y (¢))}

E exp { prafo max (Y(t) —Y (t4h),Y (t) —}N/(t—i-h))}
< exp{ @ B(Y (1) ¥ (14 1)}

+exp {ME (37 (t) - Y (t+ h))Q}
< 2exp {2 (praf2)’ B (0)} .

Let us put f; = fo = 2. It is evident by using the two last inequalities and [6.12]
that

(E |2y (V)[P2)72 < 27 exp {8p*ra B (0)}.
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In consideration of [6.11] and the last inequality, it follow from [6.9] that:

N
T T % £ i %
g/ ((\/5(1)7’1)’)21 exp{*z%}) ! h”BPJ\Qz,t22meSp2”B(O)> du
0

1 1
< h52ﬁT\/r1PN,tp§ exp {SprgB (0) — 2} . [6.13]

Let us estimate the second summand of the right-hand side of [6.8].
1

P\ »
T o T
< / (E‘(eY(t)—Y(t+h) _ 1) (eY(u)—Y(t) _ eY(u)—Y(t))‘ )P du
0

T = ~ s
< / ((E ‘ey(t)—Y(t+h) _1 P 1) 51
0

(E ‘ (eY(u)—Y(t) _ e?(u)—f/(t)) ‘psZ) 512) ' du, [6.14]

T ~ ~
/ Y (W)=Y ®) gy, (eY(t)fY(t+h) _ eY(t)fY(tJrh))
0

o T o
(eY(t)—Y(t+h) _ 1) / (eY(u)—Y(t) _ eY(u)—Y(t)) du
0

iJri = 1. Using inequality |exp (z) — 1| < |z|exp {|z|} , and after the H6lder
inequality,

ps1

ElTO-Fern 4 <E (’f/ t) =Y (t+ h)’ e|3~’(t)717(t+h)|)10s1

A _ _ 1
<E (‘f/ ) v (t+h) psm> Iy (Eep8112|y(t)—Y(t+h)|> T5 7

N—1 Mkf No1 Mept
=E / cos A, (t+h) d§(N) + / sin \g (t 4+ h) dn(N)
k=0 % k=0 3

2
N_1 M1

Ak41
- / cos At d§ (A) — / sin Atdn (N

k=0 AL
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o Mo (264 1) . Mk
=E / _Qsin¥ 'nLdf( M+
k=0 e
2
Ak+1
N—-1
Ae (2t + R
+ /25111— S k(2+ )dn()\)
k=0 3
NoLE @ h) y Ah
gsin? L) o %dF(/\)
k=0 I
/\
o, Ak (2t+ R
+ /4sm ZhZ %d}?(x)
k=0 N
Ak41
N-1
<3 / sin? A"hdF(A)
k=0 b
N1 Mkt Nh) 28
<8 / (;) dF (\) < 227202828 (A), 0<B<1
k=0 Ak

that

- _ i 1 ps1
<E‘Y(t)—Y(t+h) ) Sl (23-%/\2%233(0)) :

In addition,
(E ps1la| V(1) Y(t+h)|) < 2% 2(ps1)*l2B(0)
Thereby

ps1
< (2372@\2‘3}1263(0)) T 9tz 2ps)2BO) [615]

1)V h ps1

Let us estimate E ’ Y(u)-Y(t) _ oY (w)=Y(t) b2

ps2

E ‘eY(u)—m) _ Y=Y ()

<E (‘y (W) —Y ()~ Y (u) +V (t)‘ emax(Y(u>—Y<t>7?<u>—?<t>))””
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< (E‘Y(u)—Y(t)—?(u)H?(t)

1
pSle) mi

1

(EePSng maX(Y(u)7Y(t),)7(u)7)7(t))> ma

L 4+ L — 1. Since it was proved in lemma 6.1,
ma ma

~ ~ 2
E[Y () =Y (1) =V () +7 () <Axue
A? 9
Axui =255 (w+1)° F(8) + 8 (F (00) = F (1),
that
~ ~ psamy 7,%1 Ps2
By @-y@-¥@+v o)™ < i ag,.

1

<E6p82m2 max(Y(u)—Y(t),?(u)—};(t))) m2 < 2m2 eQ(pSQ) sz(O)

It follows from the two last inequalities that

pSa 2052

2
m B(0
< i A2, 2 2P B O)

E ’6Y(u)7Y(t) _ YWY

Using [6.15] and the preceding inequality, put s1 = so =11 = lo = m; = my =
2. It follows from [6.14] that:
p) 5

(E (6?(t)—17(t+h) _ 1) /T (eY(u)—Y(t) _ e?(u)—?(t)) du
0

T P
S/ (lm (23 QﬂAthﬂB( ))§2ﬁ€2p281l23(0)
0

Cpsily

1
1 2 P
CpeéﬁrflAQ 2252 2P st"‘B(OD du
u,

1

T S S S b
s/ ((\/5 (psln) "+ e‘p(;ll)ll " (22NN B (0)) " 2B o1z BO)
0

1
ps2mi  psami \ TS
2 A

x(\/i(pSle) T e

P 1
2 2p2sama B(0)
Nou,t2T252e du

T 3 1 1
< hﬁ/ (2@4142% L (2°72PA%PB(0)7 p 161’3(0)*1) du.
; :
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Estimating the expression under integral and taking the integral, we obtain that:
1
P\

< WPt Ay (23*2%253 (0)) ? pelopBO)-1
where Ay, ¢ = (T{ + Tt) V2F (M)A 127 /2(F (00) — F (A)). Set ry =ry =1.
The assertion of lemma follows from [6.8] if we take into account [6.13] and the last
inequality. t

(e?<t>—?<t+h> _ 1) /0 ’ (em)—Y(t) _ e?<u>—?<t>> du

LEMMA 6.3.— Let Y (t) be a homogeneous, centered, separable, continuous in mean
square, Gaussian process with spectral function F' (). Let there exist a spectral

oo
moment [ A?’dF ()\),0 < 3 < 1, and the partition of domain Dy [0,A], A € Ris
0

such that \p,_1 — A\, = %7 N e N.If Sy < aexp{—%(o)} , then:

p { sup ]GH) (¢) -GV (c)\ > a}

0<¢<1
. lnﬁ 1 a u+L 2 «
hlg 64B(0) N % gT 1n§ 32B(0) ' B ox 71n S~
32 (0) 2 32 (0) P17 64B(0) [
[6.16]
where:
4V2AN, o
Sy =max{Sy1,5 Snyg = ———,
N {Sn1.Sn2} Sna Je
6 (T\/2PN + (272PA% B (0))% AN,T)

SN2 =

\/é )
An,o = T?Q\/ZF (A)% +2T/2(F () — F (A)),

3772 A
An T = =5V 2F (A)N +2T/2(F (00) — F (A)),

2 [ee)
_osmas (AN s AP 3-25 [ \28
Py =2 S ) 2T | P +2 AZBAF ()).
A
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_ / T “ _ —1
PROOF.— Note that (G~ (0))' = grgtry = [ € due Y(@HO) 1t follows
from the Lagrange formula that:

sup |G () = G ()

0<¢<1
S |G L) =G0 +¢ ((G_l (é))/ - (é_l (C))/)‘
< (0 @) - (@ )]
T T
B e EE
Thereby,

P{ sup \GH) (-G (o\ >a}
0<¢<1

T T
sup /ey(“)_y(t)du—/e?(“)_?(t)du Sap.
0e<T | J

If follows from lemma 6.1 that

|~

T T P
inf Y (u)=Y () gy — e?(“)*?(t)du
0<t<T
0 0

1
27 /o1 A, op* exp {2pv2B (0) - 2} : [6.17]

where Ay o = An,tl,_o- Using by 6.2, we estimate the entropy integral in
corollary 1.16.

960

T \7 NN A 0TI G
P pB

/ AN / 7 (ENe ge = TGNy
a(=1 (e) 5

0

0
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17 55 > 0.Gnp = Gn,tpl,_rp - Taking into account that function f (6) =

(%)

1
T
0P8 (1-

takes a minimum value in the point ) = and also 0y < , after elementary

manipulations we obtain:

_1
pp+1’

B !
inf L T G]\lf’p <T?»Gpyp 7(1)5 +1)
0<6<1 975 (1-6) 1—35 ’ pB8—1

In consideration of [6.17], we obtained estimation and inequality
(a +b)P < 2P~ (aP + bP); based on corollary 1.16, we have:

T

T
P< sup /ey(")fy(t)du—/6?(“)7?(t)du > o
0<t<T J

(ot 1 1Y 9or-1 T%G M
or (2;7\/171,4]\;’ op2 exp{2pv, B (0)—5}) Nop ™ (pp-1)
aP + aP

P
By describing Gy ,, and taking into consideration that under p > 2 ( Y 1) <

2 and (pB+ 1)PTF < (pB)PTF (2 )p+5 and by setting vy = 8, after elementary
mampulatlons we obtain:

T

T
P< sup /ey(“)*y(t)duf/ YW-YO gy > a
0<t<T J

=

1 2
_ Shapf e {2070 (0} T9va (2)" presetons©
’ +

aP oP

% (p (%) Tp”é) exp {16p° B (0)}
<

b

oP

6<(27 Z‘BA?ﬁ‘B(o))% T)

€

where SN = max {SN717SN72} y SN,l = m%, SN’QZ

(T\/QPN)
Y

hand side of the last estimation in the point py =

Sx (p%+(ﬂ)%Tpp+%) exp{lﬁsz 0)}

Py =Pnyli=1 , AN = ANt |t=1 . We calculate the value of the right-

In

9B (0) It is the point of minimum of
functlon . The condition p > 2 to secure that
1-— —ﬁ > 0 holds true. By v1rtue of corollary 1.16, we obtain [6.16] and the lemma is
proved. (]
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THEOREM 6.2.— Let Y (¢) be a homogeneous, centered, separable, continuous in
mean square, Gaussian process with spectral function F' () . Let there exist a spectral

moment [ A2#dF (\),0 < B < 1, a partition D, of domain [0,A], A € R is such
0
that A1 — A\, = %, N € N, then the model of Cox process {v (B), B € B},

directed by the log Gaussian process exp {17 (t)} , approximates them with accuracy
« and reliability 1 — + if the following conditions hold true:

Sy < aexp{GZlBﬁ(O)},

e

In g o

In g wB) 38 B In g mEt+h In? re
°Ey o - <
(32 B (o)) + < 2 > (323 (0)) Py 6B ) (=7

where Sy is defined in assertion of lemma 6.3.

In

PROOF.— The assertion of the theorem is a corollary of definition 6.3 and lemma 6.3.
d

6.3. Simplified method of simulating log Gaussian Cox processes

The method of simulation considered in the previous section is complicated to
realize on a computer. If a model of log Gaussian Cox process is obtained only under
a large value of N, then simulation of random variables with cumulative distribution
_Jy cxp{f’(t)}dt
B Jr exp{f’(u)}du
this section another method of simulation. This method does not demand to simulate
random variables with the above distribution function.

function G (x) is a long time process. That is why we propose in

The model of log Gaussian Cox process is constructed in two steps. First, we
simulate Gaussian process Y (¢) . We consider some partition of domain T = [0, T
T

on k domains by length d = + : 0 ={p < 1 < ... <t =T, tjy1 — t; = d,

i=0,k—1LetB; = [t;, tit1], 1 (B;) = [ exp { Y (t) }dt and Y (t) is a model
B;

of Y (t) . Second, for each i = 0, k — 1, we construct a model of log Gaussian Cox
process v (B;), that is a model of Poisson random variables with mean i (B;). Since
v (B;) is a number of points of the model that belong to domain B;, we allocate these
points in B; by all means. If 7 (B;) = 1, we place this point in the center of the
domain.

It is evident that the model v (B;) is admissible if the conditional probabilities
by (B;) =P {V(qu —k/Y (), te T} and pry (B;) = P {ﬁ(Bi) = kY (1),
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t € T} differ little, and the probability of the event that the number of points v (B;)
(respectively, v (B;)) is more than one is also small. Therefore, the problem of
simulation of the log Gaussian Cox process consists of two problems. The first is the
problem of the choice of domain T partitioning, and the second is a construction of
the model of the field Y (t) .

Partitioning of the domain T (that is d or k) is chosen in such way that the
following inequality holds true:

P{v(B;) > 1} <, [6.18]

where ¢ is given and small (for example 6 = 0,01).

THEOREM 6.3.— Let {v(B),B C B} be a Cox process driven by log Gaussian,
homogeneous process exp {Y (¢)} . The inequality [6.18] holds true if we set

[N

d:f]’; 26 exp {—2B (0)}]* . [6.19]

PROOF.— Since
P{v(Bi)>1} =E(1 —exp{—u(Bi)} — pu(Bi)exp{ —u(Bi)}),

it is sufficient to choose such a partitioning that the following inequality holds true:
E (1 —exp{—p(Bi)} — p(Bi)exp{—pn(Bi)}) <.

By virtue of 1 —exp {—z} (1 + ) < ””2—2 as x > 0, the preceding inequality holds
true if

E 1 (B;)) < 26. [6.20]

For £ = N (0, 0®) we have E exp {\{} = exp {#} and:

2

Bl (B = B Lf exp {Y (1)} dt]

*Efexp{Y }dtfexp{Y( )} ds
ff Eexp{Y (t) +Y (s)} dtds

B;xXB;

= [[ exp {M} dtds
B;xXB;

= [f exp{M—FEY(t)Y(S)—i—M} dtds
BiXBi
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= ff exp{B(O)+B(t—S)}dtdS
B; X B;

=exp{B (0)}3]{3 exp{B(t —s)} dtds
< d*exp{2B (6)} .

The assertion of the theorem follows from the last inequality and [6.20]. (]

We want to construct such a model of the log Gaussian Cox process Y (¢) that the
conditional probabilities pyy and pyy differ little with probability close to one for all
1=0,k—

DEFINITION 6.4.— The model of Cox process {v (B), B € B} driven by the log
Gaussian process exp {?(t) } approximates the process with accuracy o, 0 < o < 1
and reliability 1 — ~y, 0 < v < 1, if the following inequality holds true:

P{ max | pry (Bi) — ﬁkY(Bi)|>04}<’Y-
B;e®B i=0,k—1

LEMMA 6.4.— Let Y (¢) be a homogeneous, centered, continuous in mean square
Gaussian process with spectral function F' (), the partition Dy of domain [0, A],
A € Rissuchthat \y_1 — A\ = %, N € N, then for all p > 1, the next estimation
holds true

(E ‘exp {Y (t)} —exp {}N/ (t)}‘p>%

where

‘t}\'—‘

223k, () e { 230 - 1 |

2b
Any=B(0) — F(A) 4227202 (j\\f) F(A),

b € [0,1], vy and vy are such numbers that - -+ E =1.

PROOF.— It follows from |exp {z} — exp {y}| < |z — y|exp {max (x, y)} and the
Holder inequality that:

(B lexp {v (1)} — exp {¥ (t)}‘p)%

o {110, 7.0) |

pvl)p%1 (Eexp {pvg max (Y( ), Y (¢ )) })m,
[6.21]

=

< (E‘Y(t)—f/(t)

< (E‘Y(t)—f/(t)
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1 L = 1. By virtue of [6.3],

V1
bv1

pv1 ~ 2\ 2
= (E}Y(t)—y(t)‘ ) Coun
where the value c. is from [6.4]. Since for Gaussian, homogeneous, centered random

~ N2
processes, we have E (Y (¢))° = B (0), E (Y (t)) = F(A), such that:

E‘Y(t)—ff(t)

B|Y (1)~ (0] = BO)+F (1)~ 28Y ()7 (1),

N—1 Akt1 N—1 Ak41

EY(t)?(t)zE(Z [ cosAtdé(N)+ > [ sinAtdn(N)

k=0 X k=0 Xy

f cos A\t d€ (A f sin A\t dn (A))

—1 Akt N—1 Ak+1
Z f cos A\tdE (X)) + > [ sinAgtdy (A))
=0

Ak k=0 Xy
k N—]?\k-+1
f os)\tcos/\ktdF()\)+ > [ sinAtsin Ayt dF (X)
k=0 X

“M|

k+

Z flcos t(A =) dF (N).

That is why
E |y () —f/(t)f
CBO) - F(A)42F(A)-25 ATlcos £ — ) dF (\)
E=0 X

—1 Ak+1

=B(0)—F(A)+2 Z f 2sin? ( HA- Ak))dF(/\)
N—1 Ak41 420

<BO)-F(A)+4y [ ZOMTgp), 0<b<l.
k=0 A

Since A — Ay < Apy1 — Ay =&,k =0, N — 1, then

< AN,t> [622]

pUiN poy | ~L L
1)” L < A7l (6.23]
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Let us estimate exp {p vy max (Y t),Y (t)) } .For £ = N (0, 0%), we have

Eexp {\¢} =exp { /\2202 } ,

thus:
Eexp {pvg max (Y t),Y (t)) } < Eexp{pvY (t)} + Eexp {p v Y (t)}

:exp{(pgz) B(O)}+exp{(p22) F(A)} SQeXp{(pZQ) B(O)}.

Thereby by using the last inequality, [6.23] and estimation [6.4] for c,, the
assertion of the lemma follows from [6.21]. O

LEMMA 6.5.— Let Y (¢) be a homogeneous, centered, continuous in mean square
Gaussian process with spectral function F' (\). There exists spectral moment

[ A%dF (M), 0 < B < 1, the partition D, of domain [0,A], A € R is such that
0

A1 — A = %, N € N, then for all p > 1, the next estimation holds true:

(E ‘exp {Y({t+h)} —exp {}7 (t+ h)}

(e ty ) e FOY)[) < #Cxs

where:

~ 1 T ~ 1 ~
Gnitp = 27pexp {1)22 (flAN,t + foB (0)) - 2} Ky,

IA(N,t = \/TlﬁN,t + \/23_258152A25F (A) ENM
2 o]
~ - AN AB+1
Py =2 (=) +2°7t—— | F(A) +23*2B/A2ﬁdF(A),
' N N
A

N A 2b
Any = B(0) — F (A) + 22720420 <N> F(A),

b € [0,1], f1, fa, s1, S2, S3, 1, T2 are such numbers that 7o = s3, % + % =1,
1,1 1 1 1 .1 _
Tilil=1t+l=1

'
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PROOF.- It is evident that

1

( ’ Y(t+h) _ oV (t+h) _ (eY(t) R0 ‘p)E
_ ( ’( Y (t+h) =Y (t+h) _ eY(t)—Y/(t)) Y (t+h)
I (e?(urh) _ e?(t)) (eY(t)fi;(t) _ 1) ’p> v
< (E[AL () VP)7 + (E|A2 (Y) Az (V) Va[)7,
where:
A (Y)=|Y(t+h) =Y (t+h)—Y @) +Y (t)],
Vi = exp { max (Y(t+h) —Y(t+h),Y (t) —?(t))}exp{f’(tJrh)},

Ay (Y)=|Y (t+h)—Y (1)
A (Y)=|Y () - Y (#)],
Va = exp max( (t+h), ))}exp{‘Y(t)—f/(t))}.

)

Let % + % =1, % + si + = =1, by using the Holder inequality:

B A1 (Y) Vil” < (B[A (1) )7 (B|V3")7, 1 1
B 1Az (V) Ag (V) Val’ < (B[22 (V)]™)™ (B[ (V)") % (B[15")

pri
2

By virtue of [6.3], E|A; (V) [P = (E |A (Y)|2) Cpr, - This was shown
during the proof of lemma 6.2

~ ~ 2 -~
E|A; (V)] :E‘Y(Hh) Y (t+h) Y (1) +Y(t)‘ < W% Py,

where
~ AP AB+1\ 7
Py =277 (N> +2f5—1tT F(A) +23—25/A2ﬁdF (A,
0 < 8 < 1. Thereby
A, (V)P < 78 Byt ey, [6.24]

Let us estimate E [V;]7" . Let % + ;—2 = 1, by using the Holder inequality

pr2

E|Vi[” = E emax(Y(Hh)—?(Hh),Y(t)—?(t)) exp {?(t n h)}
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< (Eexp {prgfl Inax( (t+h)—Y (t+h), Y (t )—?(t))})ﬁ

x (Eexp {p?‘gfg?(t—l—h)})g. [6.25]

Eexp{prgflmax< (t+h)—Y (t+h), Y (t )—17(2?)>}

Sexp{w ‘Yt+h) Y(tJrh)‘Z}

—|—exp{(p2f1 ‘Y ?(t)‘z}

It is evident that

S AN,ta

B[ (t4+5) -V (¢ +h)]2 i

where A N, is defined in [6.22]. Then:

A
=
|
~
N
-
N—
N—
H/_/
N—
o

(E exp{prgfl max ( (t+h)=Y (t+h),Y

2
< 271 exp {(pwz)flgNt} .

(Eexp {p’l”gfg? (t+ h)}) 7 < (exp {(pTzfQ)ZF (A)}) "

2
_ exp{(pT22) f2F(/\)}
By using two preceding inequalities, it follows from [6.25] that;
L (pr2)® (4 2
E[VA["* < 277 exp § 5 ( FiAn. + f2BB (0)) : [6.26]

Let us estimate E |Ay (Y)|P°*. As a result of [6.3],

bs1
2

2 ()P = (BlA2 (V) 7 ey
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It was shown during the proof of lemma 6.2 that
~ ~ 2
E|A; (Y))? =E ‘Y (t+h)—Y (t)‘ < PBARPF(A), 0< B <1
Thereby,

ps1
2

E A (V)P < (2572PA%R2PF (M) 7 cps,. [6.27]

Let us estimate E |Ag (Y)|P**. Since E|As (Y)? = E|Y (t) = Y (t)| < Any,
piﬂ

and E |A; (V)P = (E\Ag (Y)|2) ® Cpe,, then

Dbs2
2

E|As (V)P < A2, cps,- [6.28]

Let us estimate E | V5|P*. Let é + é = 1, by using the Holder inequality

ps3

E |V, =E ’ exp {max (}7 (t+h),Y (t)) } exp{
< (E exp {p33el max (}7 (t+h),Y (t)) })
X (Eexp {p83€2 ‘Y (t)-Y (t)‘})6 .

Y (-7 0]}

Eexp {p8361 max ()N/ (t+h),Y (t)) } < 2exp {(p53261)2F (A)} .

For Gaussian random variable & with parameters 0 and o2, we have

Eexp{A[¢|} <Eexp{A¢} + Eexp {—A{} = 2exp {#}, which is why:

Eexp {p83€2 ’Y(t) —?(t)‘} < 2exp{(p83’262)221\/¢} .

That is,

B (V5" < 2exp { (PS;) (GQ,ZN,,E +e B (0)>} . [6.29]
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Thereby, by using [6.24], [6.26]-[6.29], and [6.4], we obtain:

1
P);

( ’exp{Y +h)}7exp{?(t+h)}f(exp{y(t)},exp{37(,5)}>
< (B|A, (V)[P) 7T (B[V;]7"2) P72

+ (B |Ay (V)PP (B|As (V)[P2) P (E |V3|7*) P

<nP Aj\%[ CpTll opmafi exp {w (flA\N,t + f2B (0))}

[N

+ (23—26A2/Bh2ﬁp (A)) cpsl A2 cpsz 2P83 exp {% <€2A\N,t +eB (0)>}

1

t22pr1 (PT1)2 @*%Zﬁ exp{pr2 (flANt+f2 ( ))}

mb—‘

,hﬁ{

1 1 1 1

+ (23_25A2BF (A) EN’t) 9%ps7 (ps1)? e 327052 (psy)? e~ % 27%

N

X exp {% (GQA\N,t +e1B (O)) H .

L 1 1 1
Put fi = es, fo = e1, ro = s3. Taking into account 22p71 x2pr2fi < 25b,

1 1 1 1 .
22ps1 22ps2 2Pszer < 2», we obtain:

1
P

(E ’ exp{Y (t + h)}—exp {}7 (t+ h)}— (exp {Y (t)} —exp {}7 (t)}) ‘p)
<h’ |:ﬁ1\é/f 25 (prl)% exp {p;Q (flA\N,t + foB (0)) - ;}

+ (22N F (M) Ang) 20 (1) (ps2)?

xexp {22 (fidya+ £B0) - 1}] .

After elementary manipulation, the assumption of the lemma follows from the last
formula. ]

LEMMA 6.6.— Let Y (¢) be a homogeneous, centered, separable, continuous in mean
square Gaussian process with spectral function F' (). There exists spectral moment

[ A%dF (X), 0 < 8 < 1, partition Dy of domain [0,A], A € R is such that \j,_1 —
0

Ao =4 Ne NIf

. 2ra (flA\N + f2B (O)>
Sy < aexp — )

B
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then
P { max |pky (Bl) —]Ajky (Bz) | > a}
B;€B i=0,k—1
) —~
, 38\ 7 T2 (flAN + f2B (O)>
< <p2 +T (f) pp”s) exp q — 5 p* . [6.30]
where
In 5% N R R
p= — , SN:maX{SNJ,SNQ},
r2 (i + £B(0))

o 2dyu(B(0) - F(A)

Sni =

b

=

~ 6d ~ =
SN,2 = % (\/’I’lPN + \/23_268182A25F (A) AN) ,

2 [ee)
D _ ob—48 A ’ B—1 AP 3-28 28
Py =2 ~) T2 F(h)+2 NBAF (),
A

R AN 2
AN::Ban—fwA)+2%%T%(N> F(A),
be[0,1], f1, fa, s1, S2, S3, 1, T2 are such numbers that ro = s3 = va, %—Fﬁ =1,

Lyl g Lyl

S1 So S3 Ty T2

PROOF.— We now estimate the difference | pry (B;) — Pry (B;) | by using the mean
value theorem for derivatives:

_|exp{=p (B} (1 (B:)*  exp{-i(B:)} (i (B:)"

| pry (Bi) —pry (Bi) | ol Kl

0 (B2) = i (Bo)| gy exp L= (B} (i (B)* [k = e (By)

1 (B) = i (B) =

p(Bi) — i (Bi)] %e_ﬂ(&’) (i (B))* < |u(Bi) = i(B)l, k< fi(B).

™M) (i (By) <l (B)) ~ i (Bi)], k> fu(By)
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If £ = 0, then

lpoy (Bi) = poy (Bi)| = lexp {—p(Bi)} — exp{—p(Bi)}|
< |p(Bi) — i (Bi)llexp{—f (Bi)}| < | (Bi) — i (Bi)] -

Therefore, the difference of probabilities |pry (B;)—pPry (B;)| is estimated in
terms of |(B;)—(B;)|, and we obtain:

P {|pry (Bi) — bry (Bi)| > a} <P {|u(B;) — 1 (B;)| > a}, [6.31]

1 =0, k — 1. Itis easy to check that

p{ _mwc lu(B) (B>

B;€®B, i=0, k—1

=P max /exp{Y(t)} dtf/exp{f’(t)}dt >

B;eB, i=0,k-1

B; B;
<P max /sup exp{Y (t)} —exp {}7 (t)}’ dt >«
B;€B,i=0,k—1J teT
=P max /dt - sup exp{Y(t)}—eXp{}N’(t)H >
Bi€®B, i=0, k—1 teT

_p {jgg’exp{Y ()} fexp{?(t)}‘ > ‘;‘} 6.32]

By virtue of lemma 6.4,

inf (E‘exp{Y(t)}—exp{f/(t)}‘p)%

0<t<T

S =
N

<27 (B(0) = F (7))

(pv1)® exp {p;QB (0) — ;} . [6.33]

By using lemma 6.5, we estimate the integral in theorem 1.16:

670 70 & % » Pl-EHTiE

1 Bl P
/N; d5</ T( ) ge = LT Ony,

E —_—

pp
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1— -1 > 0, where G Np = G N.t . It is easy to check that the function
B sP ;6P =T

_ 1 . . . . . _ 1 Lp(%)
f6) = p= = has its minimum value in the point 6y = 77 and O < —>=.

After elementary manipulations, we obtain

1 T8G
inf Np

(p8+1)"*7
0<0<19$(1_9) l_p% '

pB—1

Taking into account [6.32] and [6.33], we obtain the estimation and inequality
(a + b)? < 2P~ (aP + bP); based on corollary 1.16, we get

1~
< TEGN,I)

P { max | (B;) — 1 (By)| > a}
Bi€B, i=0, k—1

p p, 2 % pu2 py  op—lp@P (pB+1)" "B
2P (B (0) — F'(A))" p2vf exp {TB (0) — 5} i N.p (pB-1)P

a\P a\P
(9) (2)
By using the definition of G ~,p and taking into consideration that under p3 >

p P +1 +1 p+% .
2 (585) < 5 @B+ )"TE < (BYTF (3)"77 and puting v = 1, after
elementary manipulation we obtain the following estimation:

P { max | (Bs) — 1 (By)] > a}
Bi€ B, i=0, k—1

- §§,’1pg exp {&2B(0)} +T§fv,2 (%) ’ pp+% exp {pz% (flgN + foB (O))}

P aP

5 7 () ' Yo (700}

oP

b

where §N = nlax{§N71,§N72} s §N,1 = —2d\/ﬁ(B\(/%)_F(A))7 §N,2 = G—Ué TlﬁN—F

% \/23—2551 soA2PF (A) EN. By evaluating the value of the right-hand side at the

o

point pg W that are closed to the point of minimum of the

corresponding function, and taking into consideration that condition p8 > 2
guarantees that 1 — ﬁ > 0 holds true, the assertion of the lemma follows from

corollary 1.16 and [6.30]. O

THEOREM 6.4.— Let Y () be a homogeneous, centered, separable, continuous in
mean square Gaussian process with spectral function F' (). There exists spectral

moment [A??dF (\), 0 < B < 1, the partition D, of domain [0, A], A € R, such
0
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that \p_1 — A\, = %, N € N, then model of Cox process {v (B), B € B},
directed by log Gaussian process exp {}7 (t)} approximates process v with accuracy
o and reliability 1 — « if the following inequalities hold true:

2 (f1dn + f25(0))

§N<aexp — )
g
. ~
. 38\ 7 .. ) (flAN + f2B (0))
<p2+ff<5f> zf+ﬁ>eXp - 5 <,

where . Sy, Ay are defined in 6.6, b € [0,1]

p T2(f1A\N+f2B(O))7 Ny AN -0, ) )
fi, fo, S1, S2, 83, r1, 7o such number, that ro = s3, + + + = 1,

f1 fa

1 1 1 _ 1 1 _
T4l log 1yl

7/,-1

PROOF.— The assertion of theorem follows from definition 6.4 and lemma 6.6. O

Given the construction method of the models of the log Gaussian Cox processes
are easier in comparison with the previous. But this method gives worse accuracy,
especially in the case where one of the domains B; consists of more than one point.

6.4. Simulation of the Cox process when density is generated by a
homogeneous log Gaussian field

In this section, the method of Cox processes simulation offered in the previous
section is expanded the case where density is generated by a homogeneous random
field.

Let {Y (E) ,f € T} be a centered, homogeneous, Gaussian field, simple
functions of which are measurable on T. By analogy with previous section, first we
simulate field Y (f) second we consider some partition Dy of domain T, and on
each element of partition Dt we construct the model of Poisson random variable
with the corresponding mean.

Let T =[0,7] x ... x [0, T],T € Ry, and the partition D is chosen in the
following way:

= { [t 80 TY) X [t ) e < it

, , T
ﬂﬁl—ﬁf:d:kﬂkENﬂnanszQk—lk
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We denote Y (f) by model of field Y (ﬂ, (B, ....in) =
[ exp {}7 (t_) }df and 7 (B, .. ,) by model v (B, . ;. ), that is the model
B. .

of Poisson random variable with mean i (B;, . ;) -

Since v (B, ,...4,) is the number of model points that belong to the domain
Bi, .....i,,» we allocate these points at B;, .. ; by any way. If v (B;, .. ;. ) = 1, we
allocate one point at the center of the domain.

The partition of the domain T (that is d or k) we choose in such a way that the
inequality

P{v(B; ) > 1} <0, [6.34]

yeensln

holds true, where ¢ is defined beforehand.

THEOREM 6.5.— Let{v (Bi,,...i,) Bi,,...i., C B} beaCox process, directed by log
Gaussian homogeneous field exp {Y" (f) } . The inequality [6.34] holds true if we set

2n

T "
d=< [25 exp {723(0)}}
PROOF.— The proof repeats the proof of theorem 6.3. (]

DEFINITION 6.5.— The model of Cox process {v (B, ..., ), Bi,,....., C B} directed
by log Gaussian homogeneous field exp {Y (f)} approximates with accuracy o, 0 <
o < 1 and reliability 1 — v, 0 < vy < 1, if the following inequality holds true:

LEMMA 6.7.— Let Y (f) be a homogeneous, centered continuous in mean square
Gaussian field, then for all Vp > 1, the following inequality holds true:

where

Wy = Jord"J 2,
Iy =22 22 0y (Am) + B (0) — v (A7),

U1

et is any positive number more than one, a € [0, 1].

Vo =
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PROOF.—

P {B max ‘/’l/ (Bi17~~-77:n) - /A’Z(Bi1>~--7i7z)| > a}

ily»-»,ine

k
< > P{lu(Bi. i) (Bi, i) >a}

01,.00,0n =0

< k" ) =T (B ,
<k B ma’fe%P{W(Bn,m,zn) [ (Biy,....in)| > o}

It follows from the Tchebychev inequality that:

~ E|u(Bi,, . i,) — (B, )l
P{lu(Bi,....i.) = A (Biy,..i,) | > o} < R
By virtue of the generated Minkovski inequality:
E |/”' (Bila-“ﬂ;n) - /7 (Bi17~-,in)|p
p
<E / ‘exp{Y(f)}fexp{}N/(f)de
Bil ..... in
p
~ N

< / (E’exp{Y(t_)}fexp{Y(f)} ) dt

P, (B i) = (Bl > o
i1

=

k" (Bi f7 (E’exp{Y(f)}—exp{?(f)}‘p)

p
dF)
< - . [6.35]

~ p

Let us estimate E ‘ exp{Y (£)} —exp {Y (f)H . Let - + - = 1. By using

first inequality |exp {2} — exp {y}| < |x — y| exp {max (z, y)}, and then the Holder
inequality, we obtain:

Bexp {Y (1)} —exp {¥ (@) }]'
<B[y () -7 (O e {pmax (v (). 7 ()}
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pvl)ﬁ (Eexp {pvg max <Y (f) , Y (f))})% .

[6.36]

<(BE|y (-7

By virtue of [6.3],
pu1
pv1 2

~ . 2
B|y @ -7 ()" = (E[y 0 -7 0 )
Since for the Gaussian, homogeneous, centered random field

E(Y () =5(0).E(V (5))2 = & (A"), then
E’Y(f}7?(5}’2:8(6)+<I>(A")72EY(E))7(5).

By using representation [4.9] of field YV (ﬂ and model [4.10], we obtain:
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:' 4 / cos( Lx— X()\?,...,/\;”))d@(j\’).

Thus, taking into consideration the above-presented relation:

E‘Y(t_) Y(t‘)‘z:2@(A”)—2EY(E)}7(5)+B(6)—<I>(A")

1 1
2 n 2 n 2
€ [0, 1] . By using inequality (é’, f) < (Z ef) (Z ff) and taking into
i=1 '
consideration that A, — Aim < AimFl — \im = &

By @) -V @

() (o)
<4 Z 5% a(X)+5 (0) -2 (A")
01,een, zn,_A(“ ,,,, in)

~~~~~~~

O (A" + B( ) O (A"). [6.37]
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Let us estimate E exp {p Vg MaxX (Y (t_) , Y (f)) }

Eexp {pvg max (Y (E) ,}7 (t_))}

< Eexp {pvgY (f)} + Eexp {pvg? (E)}

= exp { (p22)2B (6)}+exp { (pZZ)QCI) (A”)}
< 2exp {(7’”22)23 (6)} . [6.38]

Taking into considerations [6.37] and [6.38], it follows from [6.36] that

E‘exp{Y (f)} — exp {}7 (f)}‘p < cﬁl JI% 273 exp{pzsz (6)} [6.39]

The statement of the lemma follows from [6.39], [6.4] and [6.35]. (I

LEMMA 6.8.— LetY (f) be a homogeneous, centered, continuous in mean square
Gaussian field. If Wy < aexp {% — 2B (6) } , then the next inequality holds true:

P {Bil.l.rﬁfe% | pey (Biy,...in) — Pey (Biy,..in) | > a}

i-In W
1 W, 2v35(0) 1 W\ 2
Ly Wy s —In=X
S an 2 _’a exp _ (2 i ) ,
vs B (0) 20, B (0)
where Wy is defined in lemma 6.7, vy = vl“il, v1 1S any positive real number more

than one.

PROOF.— It was shown at the proof of lemma 6.6:

P {Blmaxe ® lpry (Biy,...in) =Py (Biy,...i,)] > a}
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By virtue of lemma 6.7:

P{ max __|pry (Biy,...i,,) —Pry (Biy,...i,) >a}
Biy,...,in€B

2k"WEp% exp {pz%B (6) -

oP

[N
—

Letpy = 3-In 2% ( ‘3 and substitute this value in the right-hand side of the inequality

above. This pomt is near to the point of minimum. Taking into consideration that pg
must be more than 1, we obtain the assertion of the lemma. [l

THEOREM 6.6.— LetY (f) be a homogeneous, centered, continuous in mean square
random field, then the model of Cox process {v (B, .....i,.), Bi,...i, C B}, driven

by log Gaussian homogeneous field exp {}7 (t_) , approximates it with accuracy «
and reliability 1 — -, if the following inequalities hold true:

Wy < ozexp{f — 0B (0)}

2" & 2
n 7_111 WN 205 B(0) (%—n%)
2k ( UQB<0) ) exXp {_ 21)23(6) <7
where Wy is defined in lemma 6.7, vy =
than 1.

1a

PROOF.— The theorem is a corollary of definition 6.5 and lemma 6.8. O

EXAMPLE 6.1~ Let random field {Y (¢),£€ T}, T = [0,7] x [0,7], T € R
satisfy  assertions of theorem 6.6 and have spectral  density
f (A1, A2) = exp {—8 (A + A3) }. In Table 6.1, it is shown to find the value of N
for such a process under given accuracy « and reliability 1 — ~. All models are
constructed in the domain T = [0, 10] x [0, 10].

In Figure 6.1 sample functions of Gaussian field Y (¢) and generated models of log
Gaussian process v(B) are shown in the case when 3 = 10 and the values 6, o, 1 —
are taken from the last four rows of Table 6.1 respectively.

6.5. Simulation of log Gaussian Cox process when the density is
generated by the inhomogeneous field

In this section simplified method of simulation is considered in the case when
the density isn’t homogeneous field. That is as opposed to the case of homogeneous
field, procedure of simulation differs only by the way of construction of models of
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field Y (f) . That is why we formulate main results without describing the simulation
procedure. Let {Y (f) ,f IS T} be centered, Gaussian field, in which simple function
of them are measurable on T. The partition of domain T and all denotations remain
as in earlier section.

6 | a|l—~|8 d N
0.01(0.01{ 0.99 [ 1 ]0.253928|12,386
0.01(0.01{ 0.97 | 1 ]0.253928] 9,736
0.01(0.03{ 0.97 [ 1 ]10.253928] 3,015
0.01/0.05( 0.95 | 1 10.253928] 1,552

0.01]0.03| 0.97 |10]0.361579| 95
0.01]0.05( 0.95 |10]0.361579| 54
0.02]0.03| 0.97 |10{0.429992| 156
0.0210.05( 0.95 |10]0.429992| 87

Table 6.1. The result of simulation of log Gaussian Cox process

Figure 6.1. Sample functions of Gaussian field and generated
models of log Gaussian Cox process

THEOREM 6.7.— Let {v (B,,.....i..) , Biy......,, C B} be a Cox process driven by log
Gaussian inhomogeneous field exp {Y (f)}, the eigenvalue of integral equation
[4.11] is bounded,

lor ()| < L, VteT,VkeN.

The inequality

P{v(Bi,..i,) > 1} <4, [6.40]
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holds true if

d=

El

1
(o] 1 2n
25exp{—2L2 Z)\}] .
k=1"F

PROOF.— Since

P{v (B, . i, )>1}
=E (1—exp{—u (Bi,, i, )} =1 (Biy,....i,) exp{—p (Bi....i.,)})

andunderz >0 1—exp{—2a}(1+2z)< %2, then it is sufficient to choose such a
partition that the following inequality holds true:

Eu(Bi,....))° < 26.

By virtue of €= N (0, 6?), the next relation holds true E exp {\{} =exp { - } ,
we have:

E[U(Bil,...,in)]Q:EB f exp{Y(f)}de [ exp{Y (3)}ds

< | exp{;ijk (6% (F) + 201 (1) 1 ( §>+¢k<§>)} dfs

Biy,...in XBiy,. . in
[ wfiEinommo)s
= exX - -— S
p 2 I Spk Pk
Biy,....in XBiy,... in =1

1
< d*" 212y T — 4.
<ol |

The last inequality proof the theorem. (]
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LEMMA 6.9.— LetY (f) be Gaussian, centered, continuous in mean square random
field with the eigenfunctions of integral equation [4.11] restricted:

lop ()| <L VieT, keN,

then Vp > 1, the next inequality holds true:

P { qmaxe% | (Biy,...in )= (Biy,...in)| > a}

i1,y in

— o0
26" pk exp {g + 2l 3 f,c}

< k=1 ,
< oF
where
1
Wy—raoi [ S L)
N — (%1 Z >\7k )
k=N+1
Vg = Ul”ip v1 1S any positive real number more than 1.
PROOF.— It was shown under proof of lemma 6.7:
P B i) — 1 (Biy. )| > <
{pm_ e Bu i) = (Bl > af <
12N b
k( f (E|exp{y@}_exp{y@}\)Pdt-)
Lot . [6.41]

oP

p

E‘exp{Y (f)} —exp{f/ (f)}
pﬂl)% (Eexp {pvg max (Y (t_) , Y (ﬂ)})% ,

[6.42]

<(Ely@® -7

1y % = 1. By virtue of [6.4]:

V1
pu1

Bly @ -7 ()" - By @-7@ ) "
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Taking into consideration that in representation [4.13] of field Y’ (f) E&Lé = O,
when Jy; is a symbol of Kroneker, we have:

k=1 k=1
2
o & & = (B _ o o 1
7Ek:;+1 Akd)k(f) 7k§+1 Ak =t k:;rl/\k.
That is,
pv1
~ puU1 > 1 2
e 50 o (5 1)
k=N+1 K

02)? o= &7 (t v2L)? S5 1
SQexp{(p2) Z 323}§2exp{(p2) Z)\k}

k=1

Taking into consideration two last inequalities, it follows from [6.42] that:
~ P
E‘exp{Y (ﬂ} —exp{Y (f)}‘
%
O 00 1 N p2’U2L2 1
v p — v _
< cpiy L (Z )\k> 2zexp{ 5 I;)\k .

k=N-+1

Taking into consideration estimation [6.4], the assumption of the lemma follows
from [6.41]. O

LEMMA 6.10.— LetY (f) be a Gaussian, centered, continuous in mean square random
field, with eigenfunctions of integral equation [4.11] restricted:

lo ()| <L VEeT, keN.
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Wy < aexp{é —v L2 Y /\ﬂc},then:
k=1

P {B max |pry (Biy,....in) —DPky (Biy i )| > a}

i1,...,in €B
1—21n N
ES — \2
= 4v, L2 =
1ol W | = (1 —2In %)
n (e}
<2k =, PN =, (0
2 2 1
2’1)2L Z Py 8’1)2L E by
k=1 k=
where Wy is defined in lemma 6.9, vy = Ul”il, v1 1s any positive real number more

than 1.

PROOF.— It was shown under proof of lemma 6.6:

P { max ‘ka (Bily--win)_ﬁky (Bila--<7in)| > a}
By, B

i10ein

<P [ Bq' i )—1 Bq' i 5
<P, max_ 0(Ba )70 (B i) > )

sstn

that is why by virtue of lemma 6.9, we get:

P {Bllmaxe% \pky (Biy,...in) —Dky (Biy,...in)| > Oé}

seeain

— o0
Qk”WJI\}p% exp{ng p2v22[,2 Z )\1]\}
k=1

<

oP

12l VN
21/2 L2 i %
. TR e S :
hand side of the last estimation. Since pg is greater than one then we can substitute

po for p in the above inequality. After this manipulation the statement of the lemma is
completely proved. (I

Consider the point py = , that is close to minimum point of the right-

THEOREM 6.8.— Let Y (f) be a Gaussian, centered, continuous in mean square
random field, with eigenfunctions of integral equation [4.11] restricted:

l6n ()| <L VIeT, keN,
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then the model of Cox process {V (B,  i,), Bi C B}, generated by log
Gaussian inhomogeneous field exp {17(17) }, approximates them with accuracy « and

reliability 1 — -y if the following inequalities hold true:

— oo
WN<anp{é—v2L2 > )}’C},

k=1
1-21n YN
= o) 2
N 1-21n Wy v L2 Y i (1721n TN>
2" | —= P expy s 0 <7,
2vg L2 kgl b 8ug L2 k§1 bys

where Wy is defined in lemma 6.9, vy = Ul”ll,

than 1.

v1 is any positive real number more

PROOF.— Itis evident that the assumption of the theorem is a corollary of lemma 6.10
and definition 6.5. 0

6.6. Simulation of the Cox process when the density is generated by the
square Gaussian random process

This section is a logical continuation of section 6.3. It uses a simplified method of
simulation. The difference is that the density of the Cox process p (-) in this case is
generated by the square Gaussian process, that is 1 (B) = [ Y2 (t) dt, where Y (t)
is a centered, homogeneous, Gaussian process.

Since the procedure of the simulation was already described in section 6.3, we
formulate the result at once in the same way as in section 6.3.

THEOREM 6.9.— Let {v (B;), B; € B} be a Cox process, driven by square Gaussian
process Y2 (t) . The inequality

P{v(B;) > 1} <4,

holds true if we set

LT (2
Tk - \3B2(0)) -

PROOF.— It was shown under proof of theorem 6.3,

P{Z/(Bz) > 1} <

E [ (B;))
— 5 [6.43]
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E[u(B)]>=E /Y2 (t)dt :E/Y2 (t)dt/Y2 (s)ds
B;

_E/ Y2 (t dtds—//EYz t)Y? (s) dtds.

B;xB; B;xB;

[6.44]

By virtue of the Isserlis formula:
EY2(t)Y2(s) = EY2(t) EY2 (s) + 2(EY (1) Y (s5))?
= B?(0) +2B%(t — s) <3B2(0).
Taking into consideration the last estimation, the assertion of the theorem follows

from [6.43] and [6.44]. U

LEMMA 6.11.— Let Y (¢) be a homogeneous, centered, continuous in mean square
Gaussian process with spectral function F' (\), a partition D of domain [0, A], A €
R such that A,—; — Ay = &, N € N, then

(Var (Y2 () — V2 (t)))% < 8V/2exp{—1} B (0) A,
where

Ant = B(0) — F (A) + 2272042 (A

2b
N) F(A), belo].

PROOF.— By using the Holder inequality,

(Var <Y2 () — V2 (t)))% - (E ‘YQ () — V2 (t)f)é

< <E‘Y(t)—}~/(t)

- + o= = 1. By virtue of [6.3] proofed in lemma 6.1:

2\ Yt

" <E Y -7
" (E ‘Y (t) + ?(t)’z)w
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Under proof of lemma 6.4 it was shown that:

E‘Y(t)—f/(t)r

S A\N,ta
where Ay ¢ = B (0) — F (A) 4 22726420 (%)% F(A), be0,1]. Itis evident that
~ 2
E’Y(t) +Y(t)‘ < 4B(0).

Thus, by estimating cg,,, and cg,, it follows from [6.45] that:

(Var (Y2 (t) — y?2 (t)))% = (szlgv]\/l,t) a (c2v, (4B (0)>v2)ﬁ
< (\/§ (2v1)"" exp {—vl}) = AZ%W (\/5 (2v2)"* exp {—’Ug}) g 2v/B (0)
— 492 (1102 B (0))% exp{—1} A2, .

If we set v; = v, = 2, we obtain the assertion of the lemma. O

LEMMA 6.12.— Let Y (¢) be a homogeneous, centered, continuous in mean square
Gaussian process with spectral function F'(\), there exists spectral moment

[ A%dF (M), 0 < B < 1, a partition Dp of domain [0,A], A € R such that
0

Aol — A = %, N € N, then the following inequality holds true:

(Var (Y2 (t+h)—Y2(t+h)— <Y2 () — V2 (t))))é < Hy h°,

where
) AN
Hyy=2% exp{-1} /B (0) Pyt + <2> VRN |,
AN’ A T
Py, =27 (=) +2°7t—— | F(A)+ 23—25/A2ﬁdF(A),
: N N
A

Ry = 8T2]/\\[—22F(A) + 8 (F (00) — F (M) .
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PROOF.—

(Var (Y2 (t+h)—Y2(t+h)— (Y2 () — V2 (t))))é

= <E‘(Y(t+h)Y(t))(Y(t+h)+Y(t))

—(?(t+h)f}7(t)> (?(t+h)+?(t))’2>
- (EHY(t—Fh)—Y(t)— (?(t+h)—f/(t>)] (Y (t+h)+Y (1)

+(F+n) =Y W) (Y (t+h)+ V(1)

(
—(?(Hh)—?(t)) (?(t+h)+)7(t))‘2)2

< <E (Yt m) V1)~ (Y0 - Y1) [+ 1) +v0) ‘2> :

4 <E (Y@ -Tarn+ (v - 7)) [Fie+n-vo) ‘2> g
[6.46]

Let us estimate each of the two summands of the right-hand side of the last
estimation. For vy, v such that 4711 + % =1, we have:

B|(v(+n) ~V+n - (v -¥0)) [V +n+ve)] ‘2

< (E [Yie+n) = TVie+n - (Y)Y ‘2) g

2v v
X (E ‘Y(t YR+ Y(t)‘ ) C L 1647]
It was shown under proof of lemma 6.2 that:

E|Y(t+h) —Y(t+h) — (Y(t) . 17(7:)) \2 < 2Py,
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2 oo
where Py, = 2774 (&) 4+ 287 HASE )T P (A) + 2572 [ AP (3), 0 < B
A
< 1. This is why:

2’01

<E \ Y(t+h) —Y(t+h)— (Y(t) - ?(t)) 2”2) "I PPy, [648]

Since E|Y (t 4+ h) + Y (£)]* < 4B (0) , we get:

— 2’02

(E Y (t+h) + Y(t)\m) " < T2 AB(0). [6.49]

If we put v; = vo = 2 and taking into consideration [6.48] and [6.49] after
elementary manipulation, it follows from [6.47] that:

B|(v(+n) Vi +n - (v -¥0)) [V +n+ v ‘2
< 263 B (0) exp {—2} Py h?’. [6.50]
It is evident that:

E ‘ Y(t+h)=Y(t+h)+ (Y(t) - Y(t)) ‘2 < Ry,

A2
Ry = 8T2WF(A) +8(F (00) — F ().
By using representation of process Y (), it is evident that:

N-1

~ ~ 2 Ak41
E‘Y(H—h)—Y(t)‘ :2F(A)—22[\ cos A\h dF ())
k=0 7k
N-1 -
_ At 2 Ach 2-28 A28 28
—42 sin” —— dF (\) <2 APF(A) R*P, 0< B <L
k=0 YAk

By virtue of the two last inequalities:

E ‘ (Y(t YR —Y(t+h)+ (Y(t) . ?(t))) [}7(15 +h) - ?(t)} ‘2
< 263720 oxp {—2} A% F (A) Ry h?®.  [6.51]

Taking into consideration [6.50] and [6.51], the assertion of the lemma follows
from [6.46]. O
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LEMMA 6.13.— Let Y (¢) be a homogeneous, centered, separable, continuous in mean

square

Gaussian process with spectral function F' (\), there exists spectral moment

[ A2PdF (N), £ < B <1, apartition Dy of domain [0, A], A € R such that A,_1 —
0

A = %7 N € N, then:

where:

P { max | pry (Bi) — pry (Bi)| > a}
B;€ B i=0, k=1

_ 94+325 g2 ,_(V2-1a o
T (28-1)? Un

Xexp{ (V2-1)"a? _(\/5_1)04}7

_2d1nax (5071\[,150’]\[) UN QUN

Un = dmax (6o n, ton) + (V2 — 1)a,

Jo.n = 8V2exp {1} B} (0) A%,
. —  [/A\?
tU,N = 231_BT’6 eXp{_].} AV B(O) ( PN% + (2) V RN) 3

2b
Ay = B(0) — F (A) 4 2>7207% (11\\[) F(A), belo,1],

oo

ANP AB+1 2
Pyz =2"% (N) +25_2T—N F(A)+23_2’8/)\25dF (),

12

Ry = 8T2%F(A) +8(F (00) — F(M)).

PROOF.— It was shown under proof of lemma 6.6:

P { max Ipry (Bi) — pry (By)] > a}
B;€ B i=0, k=1

§P{ max |w (B;) — 1 (B;)] >a},
B;€ B i=0,k—1
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that is for the square Gaussian Cox process, we have:

P { max Ipry (Bi) — pry (By)| > a}
B;€Bi=0, h—1

<P {Sup ‘YQ (t) — V2 (t)’ > O‘}. [6.52]
teT d

Let us estimate the entropy integral from corollary 3.5. Using lemma 6.12, we
have:

m""

1\ 3 L
top top HB T1H2 + —35+1
/ r <N (a(_l)(v))) dv < / T—X dp = — N ﬁ op) ;
0 0 VB 323 +1

1
~25 +1>0,Hy = HN,t|t:g .

Thus, after elementary manipulation:

to 2
r(=1 (t;p/o pr (N (0(71)(11))) dv) < @Bfi)%i’ﬂ > %

Taking into consideration lemmas 6.11 and 6.12, the last inequality and by set

p= %, the assertion of the lemma follows from [6.52] and corollary 3.5. O

THEOREM 6.10.— Let Y (¢) be a homogeneous, centered, separable, continuous in
mean square, Gaussian process with spectral function F' (\). There exists spectral

moment [ A2’dF (), + < 8 < 1, a partition D of domain [0, A], A € R such that
0

Ak—1—Ap = &, N € N, then a model of Cox process {7/ (B), B € B}, generated

by square Gaussian process y? (t) , approximates them with accuracy « and reliability
1 —~if:

2 (V2-na) 7
(28 —-1)? Un

(V2-1)"a? (V2 —1)a
_ — 6.53
*exp { 2d max (0o,n, to,n) Un 2UN <7 1633

where Uy, 0o, n, to,n are defined in lemma 6.13.

PROOF.— The assertion of the theorem follows from definition 6.4 and lemma 6.13.
O
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6.7. Simulation of the square Gaussian Cox process when density is
generated by a homogeneous field

In this section, we consider the square Gaussian Cox process when the density f (+)
is generated by a homogeneous random field (1 (B) = [, Y2 () df, where Y (%) is
Gaussian, homogeneous random field). The simplified method of simulation described
in section 6.3 is used. Let us formulate the results.

THEOREM 6.11.— Let {v (B, ...i,),Bi,...i, C B} be a Cox process, driven by
square Gaussian homogeneous field Y2 (f) The inequality

P{I/ (Bil,--~7in,> > 1} < 5,

holds true if we set

1
2n
P
ko \3B2(0)
PROOF.— Proof is analogical to the proof of theorem 6.9. O

LEMMA 6.14.— Let Y (f) be a homogeneous, centered, continuous in mean square
Gaussian field, and for all Vp > 1 the following inequality holds true:

p{, w0 (Bo i) 7 (Ba i)l > o
i

seenin

V2kndre (4B (6) U102> : J]%pp exp {—p}

oP

<

where

2a A 2a
JN — 2272an2ad A

N2a

a € [0,1], v1, vo are such numbers that % + é =1.

@ (A" + B (0) - & (A",

PROOF.— Analogical to [6.35], we have:

P B ) —T(B:
{ w5 (B s) = Bl > o

i1,.in €
p
dt
Bi, ...

oP

o
3
N
~
>
~~
=
~
[\v]
—
!
|
~
(V]
—~
H
bS]
~—
D=

<

[6.54]

By virtue of the Holder inequality for v; and vy such that .- 4 .- =1,

EY2(H) - YX(B)|? < (B|Y () — Y (5)[P**) %5 (B|Y () + ¥ (£)[P**) s . [6.55]



300 Simulation of Stochastic Processes with Given Accuracy and Reliability

pUL
Since E’Y (f) 7?@)’%1 = Cpu (E’Y (f) ?(f)’z> i , by using the

o2
estimation from lemma 6.7 for E ‘Y () =Y (£)| , we have

pu1 bv1

E‘Y({)fi}({) ScpvlJNTv
Coa ad2aA2a N , N
Iy =2 (A )+B(O) — B (A"), [6.56]
a € [0,1]. It is evident that
~ pv2 = %
E|Y () +V @] <en (4B(0)) © [6.57]

Taking into considerations [6.56] and [6.57] and also estimation [6.4] for c,,,, and
Cpu, after elementary manipulation, it follows from [6.55] that:

E ’YQ (f) —y? (f)‘p <V2 (4B (6) vlvg)gpp exp {—p} JI%.

Taking into consideration the last estimation, the assertion of the lemma follows
from [6.54]. U

LEMMA 6.15— LetY (5) be homogeneous, centered, continuous in mean square of

1
a Gaussian field, then if o > 2d™ (B (6) J N) : , then there is a valuation:

1505 in

where Jy is defined by the condition of lemma 6.14.

PROOF.— By using the proof in lemma 6.6 inequality, we get:
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y
2

D
V2E"d"P (4B (0)v1v2) 2 J 2 pP exp{—p}

We find the minimum of function — on variable
p. By set v1 = vo = 2, it is evident that the given lemma is a corollary of lemma 6.14.
O

THEOREM 6.12.— Let Y(t_) be a homogeneous, centered, continuous in
mean square Gaussian field, a model of random Cox process
{v(Bi,,....in) s Biy,...i, C B}, driven by square Gaussian homogeneous field

y?2 (t_), approximates them with accuracy « and reliability 1 — ~, if the following
inequalities hold true:

o> 2 (B (3) )"
\/ik”exp{—o‘l} <7,

2dn(B(0)Jn )2
where Jy is defined in lemma 6.14.
PROOF.— It is evident that the theorem follows from definition 6.5 and lemma 6.15.

O

6.8. Simulation of the square Gaussian Cox process when the density is
generated by an inhomogeneous field

In this case, the algorithm of simulation of the square Gaussian Cox process differs
only by construction of the inhomogeneous field model {Y (t_) ,t € T} .

THEOREM 6.13.— Let {v (B;,,...i,),Bi,,...i, C B} be a Cox process, directed by

square Gaussian inhomogeneous field Y2 (f), with the eigenfunction of integral
equation [4.11] restricted,

lox ()| <L, VieT,VkeN.
The inequality
P{v(Bi,..,) > 1} <3,

holds true if we set

i

dexp {2}
8v2 (L 27 le)Q

T
=<
d n =
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PROOF.— Under proof of theorem 6.9 for the square Gaussian Cox process, we obtain

estimation:
EY? ({)EY? R
P{v(Bi, . i,) >1} < // Mdtds}
xXB

2
B

LARTEEE in i1, 0n

L -,

By virtue of Holder inequality for w;, uo such that u% + 2

I

»

P{v(Bi,. .i,) >1} < // (Ey2n (’E))MQ(EYmW (;))Edt_'d

[6.59]

Since by the use of representation [4.14],
o] 2 00 2 o]
2 €k 97 (1) 2 1
=E — t = —~ <L —
=0 -5(Z fow ) - SR r LS
then by virtue of [6.3],

U7 — - 1
EY?" (1) = cau, (L:Z::l M)

U1

u
Analogically, EY 22 (5) = ¢, (L2 Sy )\ik) . We estimate cg,,, and cg,,, by
using [6.4]. By set u; = us = 2, the assertion of the lemma follows from [6.59]. [

LEMMA 6.16— Let Y (f) be a centered, continuous in mean square random field,
with the eigenfunction of integral equation [4.11] restricted,

lor ()| < L, VteT,VkeN.

then Vp > 1 the following estimation holds true:

..... in €
p
ﬂkndnp(vlvg)% 2I2 < Z )\lk) (Z >\1k> ppexp{—p}
k=N+1 k=1
— ap b

where v1, vo are such numbers that % +L=1
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PROOF.— Under proof of lemma 6.14 for vy, v2 such that + - =1, the following
inequality is proofed:

P {Bllmaxe% I (Biy,...in) — B (Biy,.i, )| > a}

11111 in

<

oP
[6.60]
pu1
Since E ‘Y #-Y (f)‘pm = Cpu, (E ‘Y #-Y (f)r) i , then by using

~ 2 [ee]
estimation E ’ Y (f) -Y (f)‘ <Lz X 1 i obtained in lemma 6.9, we have:

pbv1

E|Y(®) -7 @) <1 ( i A1k> . [6.61]

k=N+1

By using representations [4.13] and [4.14] of the field and their models, we get:

E[Y()+7 0] B[S S (
N 2
:E 2 gl (tA) +k:%+1 \557 (£>
iqﬁ( > A0 e L

k=N+1 k k=1

Taking into consideration the last inequality,

pv2
Bly 0+ (0" = e (B[y ()7 0]
pv2
< Cpuy (2L)p“2< Al) . [6.62]
k=1 "k

By using [6.61] and [6.62] and also estimation [6.4] for cp,, and cp,, after
elementary manipulation, the assertion of the lemma follows from [6.60]. ]
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LEMMA 6.17— LetY (f) be a centered, continuous in mean square random field,
with the eigenfunctions of integral equation [4.11] restricted:

low ()] <L VIeT, keN.

If 4d™L? > L S~ L), th
a > > o > 3. | then

k=N+1 k=1

P {B max_ \pky (Biy,...in) —Dky (Biy,...in)| > a}

LA 2%

«
i (S £) (S5
PROOF.— Find the minimum of function:

V2EP AP (v05) (QLQ\/(ZZO:NH i) (Z;il ’\1"‘))p

oP

< V2™ exp{ —

x p?exp {—p}

on variable p. If we put v; = vy = 2, it is evident that the given lemma is a corollary
of [6.58] and lemma 6.16. U

THEOREM 6.14.— LetY (ﬂ be a centered, continuous in mean square Gaussian field,
with the eigenfunctions of integral equation [4.11] restricted:

lor (()| <L VEeT, keN,

then the model of Cox process {V (B;,,....i..) s Bi.....i,, C B}, generated by square
Gaussian inhomogeneous field Y2 (ﬂ, approximates them with accuracy a and
reliability 1 — =, if the next condition holds true:

= 1 = 1
a > 4d"L? ( > ) (Z)
winn M) o A
V2" exp { — e <7y

4d”L2\/(ZﬁN+1 ﬁ) (Ezozl %)

PROOF.— The assertion of the theorem follows from lemma 6.17 and definition 6.5.
O



/

On the Modeling of Gaussian Stationary
Processes with Absolutely Continuous
Spectrum

A model of a Gaussian stationary process with absolutely continuous spectrum is
proposed that simulates the process with given reliability and accuracy in L?(0, T).
Under certain restrictions on the covariance function of the process, formulas for
computing the parameters of the model are described.

Let £(t) be a Gaussian stationary random process, E¢(t) = 0, with a continuous

covariance function R(7) = FE&(t + 7)&(t) and a spectral function F()), i.e.
[SS) A

R(7) = [ cos AT dF(\). Assume that there exists an integral [ f(u) du, where f())

0 0

is a spectral density of £(t).

Consider the model of the process in such way
N-1
En(t) = Z T (n,(cl) cos At + 77,(62) sin )\kt), [7.1]
k=0
where ng), i = 1,2, are independent Gaussian variables such that Enl(f) = 0 and
Vam,(f) =1,and 0 = Mg < A\ < -+ < Ay_1 < Ay = A is a partition of the
interval [0, A]. We shall assume that A, — A\,—1 = A/N, where A and N are chosen
S0 as to ensure a given accuracy and reliability of the model, and

A—k+1
Tg:F(Ak+l)_F()\k):/ f(u) du

Ak

2 (o]
== / (sin Ag17 — sin A\g7)R(7) d.

™ Jo
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Also, we shall suppose that the covariance function R(7) is known, whereas f(\)
cannot be computed explicitly in general. The essential results of [KOZ 94] will be
used to compute all parameters of model [7.1] for random processes for which R(0) —
R(7) increases a neighborhood of zero.

Let F'(u) be the distribution function of some random variable and let ¢ (t) be its
characteristic function.

LEMMA 7.1.— For any k > 0 and a > 0, the following equality holds:

/02a ( /vv2+a </Uu2—“ - (/Uvﬁ“(sign Vg1 — R(v(k+1))dvk+1) dvk) ~~dv1)

1—a 2—a k—a

2k+1ak+1

> sin® 2y u
- [ e (1- gp(a)) du, [7.2]

where R(v) = F(v) — F(—v).

PROOF.— For any distribution function F'(v) and its characteristic function ¢(t), the
relation

T o 2
2 [ sin?at
== plt)dt (7.3]

holds true. Now replace ((y) by the characteristic function (sinat/(at))¥(t).

Observe that sin at/(at) is the characteristic function of the uniform distribution on

[~a, a]. Therefore, (sinat/(at))*o(t) is the characteristic function of the random
k

variable n = £ + > 0, where £ and 6, s = 1,2, ...k, are independent random
s=1

variables. The distribution function of ¢ is F(z). The random variables 6, are
uniformly distributed on the interval [—a, a.

Let Fy (x) be the distribution function of the sum £ + 6. Then

1 a 1 xz+a
Fi(x) = % Flz—y)dy = %a F(u)du

—a

and
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Therefore, from [7.3] it follows that for k = 1

1 2a v1+a ) oo i3
(/ R(vq) dw) dvy = 7/ Mcp(t) dt. [7.4]

2 2
2a 0 1—a ™ — 00 t a

Now substitute the characteristic function (sin at/(at))p(t) for ¢(t) in [7.4] to
obtain

/Oza </vv2+a(/vvﬁa.,.(/ka+aR(vk+1)dvk+1) dvk)~~«>dv1

1—a 2—a k—a
2k+1 o) . £\ k+2
_ / (Sm“ ) pdt. [7.5]
T J_eo t

If p(t) = 1, then

2a va+a vata vpta
/ ( / (/ . (/ Sign (Uk+1 dkarl) dvk) .. ) dvy
0 v v "

1—a 2—a k—Q
2k+1 [e’e) . t k42
- / (Sm“ ) dt. [7.6]
T J_o t

since R(u) =sign w.

Next, by subtracting [7.5] from [7.6] and making a change in variables in the
integral on the right-hand side of the equality obtained, we obtain [4.2]. (]

COROLLARY 7.1.— Let arandom variable £ have a symmetric distribution. Then, ()
is an even real function and the following equality holds:

/02a </7)2+a (/vm_a’ o (/“H“(sign Vi1 — R(v(k+1)) dUkJrl) dvk) . dv1)

v —a 2—a v —a
2k+1 k+1 [ee} k+2
- 7a/ (bm “) (1—@(3)> du. [77]
T oo N a

LEMMA 7.2.— Let ¢(t) be the characteristic function of a symmetric random variable
and let ¢)(t) be a monotonically increasing function such that ¢)(0) = 0 for 0 < ¢ < ¢
and ¥ (uv) < ¥y (u)pa(v) for |uv| < to, where ¥;(u), i = 1,2, are monotonically
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increasing functions such that ¢;(0) = 0. If for |¢| < ¢ the inequality 1 —p(t) < 9 (t)
holds, then for any a > tpand k = 0,1,2,...

’/_‘: (six;u>k+2 (1 - w(g)) du‘ < Oy (a),

where

ato w )
Ok,u(a) / Yo (u dqu/ ui(jg) du) + (k+ 1)(ato)*+2"

PROOF.— By the properties of function ¢ (uv), we obtain

L7 -e)ad
S/ () o () [ () s [
<¢1 /¢2 du+/ Owl(iyﬁ(f?d“JFW‘

O

COROLLARY 7.2.— If for |t| < to and some functions ¥*(¢), s = 1,2,..., M,
M

satisfying the assumptions of lemma 7.2, the inequality 1 — ¢(¢) < > 9*(¢) holds,
s=1

then for a > t; ! the following inequality:

M

L) T el <20

oo

is valid.

EXAMPLE 7.1~ If the assumptions of lemma 7.2 are satisfied for ¢(t) = c,|t|7,
0<vy<2 thenfork >~ —1

c 1 1 1 2 Cyt
hasla) = 2 ( )
ku(@) =23 v+1+k+1—v)+WmV“<k+1 k+1l-vy

LEMMA 7.3— Let R(v) = F(v) — F(—v), where F'(v) is distribution function of
some random variable. Then for each a > 0, the following inequalities hold:

2a
/ (sign v1 — R(v1))dvs > (1 — R(2a))2a, 78]
0
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2a vi+ta
/ (/ (sign vy — R(v2)) d’Ug) dvy > (1 — R(3a))3a?, [7.9]
0 vi—a
and
2a vita vota 16 .
/ (/ (/ (sign vs — R(vg))dv;g)dvg)dvl > (1- R(4a)) 3 a”. [7.10]
0 v1—a vo—a

PROOF.— Since the function R(v) is monotonically for positive values of v, we have

2a 2a
/ (sign v1 — R(vy)) dvy = / (1 = R(v1))dv; > (1 — R(2a))2a.
0 0

Inequality [7.8] is proved. To derive the second inequality, we note that —a <
vy < 3a, since 0 < vy < 2a. Forv; > a,

vita vita
/ (sign vo — R(v2)) dvg = / (1 — R(vg))dvy > (1 — R(vy + a))2a.

1—a v1—a

ForO0<v1 <a

v1+a
/ (sign vy — R(v2)) dvg

1—a

0 vi4a
:/m_a(—l—R(vg))dvg—k/o (1= R(vs)) dvs

vi—a vita
/ (=1 + R(vz)) dvz + / (1 — R(v3)) dvy
0 0

/Hvl(l — R(v2)) dvy > (1 — R(a + v1))2v1.

—v1

Therefore,

2a vita
/ (/ (sign vy — R(v3)) dvg) dvy
0 v

1—a
2a
> / (1 = R(v1 4+ a))2adv;
a

+ /a(l ~ R(vy + ) 200 dvy > (1 — R(3a)) 3a2.
0

Inequality [7.9] is proved. Let us establish now inequality [7.10]. Set

vota
Li(a,v) = / (sign v — R(vs3)) dvs.

2—a
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It is not hard to see that for v5 > a

11(617112)

vo+a
= / (]. - R(’Ug)) d’U3.

2—a

ForO0<wvy <a

I (a,v2)

0 vata
= / B (717R(1)3))d1}3+/0 (].7R(’U3))d’03

a—uva va+ta
—/ (1 — R(v3)) dvs + / (1 — R(v3)) dvs
0 0

a-+v2
/ (1 —R(’Ug))dvg.

—vg

Similarly, for —a < vy < 0

I (a,v2)
Set

Ir(a,v1)

T /a_vz(l — R(v3)) duvs.

+v2

vi1+a
= / Il(a,vg)dvg.

1—a

For 0 < v, <a,

a—v2

Ig(a,v1)=/0 E /(1—R(v3))du3} v

v1—a v2+a
a  atv
_|_/< / (l—R(vg))dvg) dvg
w [ (] 0 R dun) doe
= / ( / (1—R(v3))dv3) duvg
0 a v

+/( / G,+UQ(1*R(1)3))d1)3) dvg

0 a—uvg
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atvi  vata
- / (/(1_R(“3))dv3) dvs
- /a <U7G(I_R(Us))dv3) dvs
PR
[ ([ - rea)an

For 0 < v1 < 2a,

I(a,v) = / (v7a(1—R(v3))dv3> dvs

a+vy vota

i / ( /(1_R(U3))dvs)dv2.

a vo—a
Therefore,

2a vi+a va2ta

/(/ (/<Signv3_R(U3))dvg) dvg) duvy

v —a vVo2—a

a a+va

j< / (/(1*3(03))%3) dvz) dvn

a—v1  a—v3

+7a( /a ( (71]2(1 — R(v3)) dvg) dvg) dvy

2a a+vy va+ta

([ 0 R do) dua) don

+
po\
—

2/( / (l_R(a+U2))2’l)2d1)2) dvy
0 a—vq

+7( ”1/+a<1 — R(a+ v2)) 2vy dvz) dvy

0 v1—a
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2a  atw
—|—0/ ( a/ (1 - R(a+v9)) 2adv2) dvq
a a 2 a
>(1 - R(2a)) {O/ (a/vl 209 d’l)g) dvy + a/ (Ul/a 209 dvg) dvl}

+(1 — R(4a)) /2av1 dvy > (1 — 1’?(4@))1—;3 a®.
0

Inequality is proved. (|

COROLLARY 7.3.— Let arandom variable £ have a symmetric distribution, A > o, and
R(h) = F(h)— F(—h), where F(z) is the distribution function of £. Then, following
inequalities hold true:

1R(h)gi/ooo(Sizu>2(lcp(?))du, [7.11]

1-R(h) < % OOO (SHLU)BQ _ cp(%)) du, [7.12]
and

1-R(h) < iAw(SiI;“)4(1—@(?))du. 7.13]

The above inequalities are results of [7.7]-[7.10]. With the aid of [7.11]-[7.13]
and lemma 7.2, we may obtain estimates for 1 — R(h).

LEMMA 7.4.— If the characteristic function of the symmetric random variable satisfies
the conditions of lemma 7.2, then for h > t/to, k = 1,2, 3,

h
1-R(h) < %’“ Sros <E) [7.14]

Wheresl :2, S92 :8/3,83:3,t1 :2,t2 =3andt3=4.

When analyzing example 7.1, it becomes apparent that in order to obtain a better
estimate for 1 — R(h), given a value of v, it is necessary to use [7.14] with appropriate
value of k.

Let us now estimate the increment of the spectral function, F'(\), of stationary
random processes. Let R(7) be the covariance function. The function R(7)/R(0) may
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be interpreted as the characteristic function of the symmetric random variable with the
distribution function G(\) such that F'(\)/F(+o00) = G(A) — G(—X) for A > 0. To
estimate F'(+o00) — F()), lemma 7.4 may be applied.

THEOREM 7.1.— Let R(7) be the covariance function of a stationary random process
&(t), and let F'(\) be the spectral function of £(¢). If the function R(7)/R(0) satisfies
the assumptions of lemma 7.2, i.e. 1 — R(7)/R(0) < (1), then for h > t;/ty the
following inequality holds:

h
F(+00) — F(h) < F(400) ‘%’“ Sos (ﬁ)’ [7.15]

where k = 1,2, 3 and s, and t;, are same as in [7.14].
This theorem follows immediately from lemma 7.2.

REMARK.— The assertion of corollary 7.2 is also applicable to the function

R(1)/R(0).

Now we shall employ the estimate for the increment F'(+00) — F'()) to construct
models of random processes. Let £(t) be a stationary random process whose
covariance function R(7)/R(0) satisfies the assumptions of lemma 7.2 or
corollary 7.2. Following the method proposed in [KOZ 94], we construct the model
in the form [7.1], where Ay, = kA/N, k =0,1,2,..., N — 1. In order that, given ¢
and p, the inequality

T
P{[ €0 -exw@a><}<p
0
hold true, A and N may be chosen in the following manner suggested by formulas

from [KOZ 94]. Let 2,/ be a root of the equation exp{—z/2}(z + 1)1/2 = p/2.
Then, A is the minimal number satisfying

zp/2 / / / cos \(t — s) dF()\))2 dtds) i

+ T(F(+00) — F(A)) < /4.

Since

2 1/2
/ / / cos At —s)dF(N)) dtds) " < T(F(+o0) ~ F(A)),
A is the minimal number for which

T(F(+00) — F(A))(2pj2 + 1) < e/4, [7.16]
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or by theorem, the minimal number for which

A _
6]€)w (a) S E(4T(Zp/2 + 1)) 1.
Hence, N is the least number satisfying the inequality
N> ((zp2 + 1) T3 A2 F(A) 4 (3e) )% + 1.

According to [7.16], N may be chosen in the following way:

3

N = |:(Zp/2 + 1)T3A2 (F(+oo) - m

)47+ 1.

Thus, we have found all parameters of the model.



8

Simulation of Gaussian Isotropic
Random Fields on a Sphere

The models of Gaussian isotropic random fields on an n-measurable sphere are
constructed that approximate these fields with given accuracy and reliability in the
space L, p > 2.

DEFINITION 8.1.— A random field £(x) on sphere S, in n-measurable space is called
isotropic in wide sense if E &(x) = const (further we will suppose that E£(x) = 0)
and E&(x1)E(xz2) = B(cos @), where cos 8 is the angular distance between x1 and
xo [YAD 93].

We suggest that the field { = {£(z),z € S,,} is Gaussian and continuous in mean
square. Random field ¢ has a representation [5, p. 61].

oo h(m,n)

Ea)=> " Y &8 () 8.1]

m=0 [=1

where ! is a sequence of independent Gaussian random variables such that E ¢!, =
0, EEL.&8 = b,00,68, (m = 0,1,2,...51 = 1,...,h(m,n)), 67, is a Kronecker
symbol, b,, > 0, s (x) = sl (01,...,0,_2, ) are orthonormal spherical harmonics
(m+n—3)!

=)t is the number of such harmonics.

with degree m, h(m,n) = (2m+n — 2)

In addition, > b,,h(m,n) < cco. Note that s, () are trigonometric polynomials
m=0
of n — 1 variables with degree I. The properties of s! () and the formulas for s! ()
can be found in [BAT 53].
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mm

Note that Py, (z) = Zh(rln el gl (z). Hence,

£@) = Pul). [8.2]

A simulation problem of the field £ consists of a construction of some Gaussian
field £ = {£(x), = € S, }, that approximates in some sense random field & with given
accuracy and reliability [ZEL 88, KOZ 94, KOZ 94, KOZ 92]. Field f has to accept
the possibility of computer simulation.

In this section, the model is constructed that approximates random field £ with

given accuracy and reliability in space L,(S,), p > 2, it means that the filed é is
found that by known ¢ and § inequality

P{ </ E(z) — f(x)|pdx> S 5} <46 (8.3]
Sn
holds true.

As a model of random filed is proposed to choose such field

h(m,n)

N
£@)=¢n@) =) &l sty (@) [8.4]

m=0 [=1

Computer simulation of this random field does not present any difficulties.
The main problem is to find NV such that inequality [8.3] is satisfied.

LEMMA 8.1.— Let &, 52, RN fn be independent Gaussian random variables E ¢; = 0,
D¢ =EE2 =o0?2,i=1,...,n. Then, for arbitrary 0 < u < 1 inequality

§<Z§2 i}a?)}@xp{—?}(l—u)‘% [8.5]

=1

E exp{

2(2

holds true.

Lemma 8.1 is a particular case of (4) in paper [KOZ 94].
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REMARK 8.1.— Itis easy to show that

iaf :E(iﬁf) and 2<ia§)é _ (2D(§§?)>é_

i=1

COROLLARY 8.1.— Let &1,&,... be sequence of independent Gaussian random
variables such that E¢; = 0, E¢? = ¢2. If )2, 07 < oo, then forany 0 < u < 1
inequality

(iff —iff?)} < eXp{—Z}(l —u)"F [8.6]

E exp{
i=1 i=1

Nl=

Q(Zil ‘7?)

holds.

oo
PROOF.— It is clear that the convergence of series > o2 provides convergence of

=1
oo
series Y &2 with probability one [LOE 60]. Moreover,
i=1
%) 3 o
(Zo—;) <Y ot <
i=1 i=1

Hence, [8.6] follows from [8.5], taking a limit as n — oo and using the Fatou
lemma. O

LEMMA 8.2.— (The Nikolski Inequality ) [NIK 77]. Let T(@), @' = (u1,...,uq),
0 <u; <2m1i=1,...,d, be trigonometric polynomials from d variables of the
power of U, 7' = (v1,va,...,V4).

= ([ [T @)’

then for p > r > 1 inequality

a N\ (-d)
17, < 3¢ (H ) TR (8.7]
1=1

holds.

The following theorems give the possibility to find the number of items NV in [8.4]
to construct the model of random field [8.1] with given accuracy and reliability in
L,(Sy).
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THEOREM 8.1.— For any z > 0 inequality

P {|[¢(x) — én(@)ll2 > (Anz + B)?} < R(2) [8.8]

holds, where

By = i h(m,n)by,, AN:< i h(mm)b?n)é,

m=N-+1 m=N-+1

R =en{-3 e+ D1

l

PROOF.— The functions s;,,(z), € S,,, are orthonormal, that is why

00 h(m,n)
2
l€@) —en@IE= > > (&)
m=N+1 =1
Since E (¢L)?2 = by, | = 1,...,h(m,n), and & are independent centered

Gaussian random variables, then from corollary 8.1 for any 0 < u < 1, we obtain

— 2_B
E exp u(lE(z) - En ()3 v) < exp - (1—u)2. [8.9]
2AN 2
It follows from the Chebyshev inequality that
P {|l¢(x) ~ En(@)ll2 > (Avz + Bn)*}
_ 2 _
< p o { L —Ex B =B, )
Ay
u(llé(x) — &n()]l3 — Bw) uz
<E -
< exp{ Ay exp 5
< exp{g} exp{u;}(l — u)*%.
Minimizing right-hand side of above inequality with respect to (u = 37), we
obtain [8.8]. O

Define R” (z) = >.._  Py(z),if m < r. Let {¢p(k),k = 1,...,00}, ¥(k) > 0,

s=m ~ S

be some sequence. Define

Ry (z,9) =Y W(s)Py(x), By =Y ¢*()bh(t,n),
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AS =2 <; VA (t)beh(t, n)) %.

THEOREM 8.2.— Let there exist monotonically non-decreasing sequence {¢(k), k =
1,...,00} (k) > 0,9(k) — oco,as k — oo, and for any m > 0

where ¢(s) = 3"~ 1s(n=1(1/2=1/P) Moreover, as s — o0
By (A3) "7 e(s)(w(s) = 0, [8.11]
then for any z > 0 and N > 0 inequality
o0 0 e} 3 1
P {llg(2) — &n(@)llp > (2(VRS)? + VR WR) 7 | < exp{—2}(22 +1)2[8.12]

holds, where

W= B&(A;r%c(s)( ! —1),

s=N+1

o _ NS (g5 0d 1 L
VNG = Z (45.) C(S)<¢(5)_1/)(5+1)>.

s=N+1

PROOF.— First note that from [8.10] follows that for any m > 0

St (505 - ) < 813

Really, it is easy to see that A3, < 2B, then (A%)2 < 2BS (A5)"2. The
following relationship is fulfilled (Abelian transform):

R = 3 Rt (G g ) Y

_
P(r+1)

Then, we have

1Rl = 3 1R D55 - )

s=m
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1
R’ _—. 8.14
Note that R?, (x,1) is trigonometric polynomial from (n — 1) variables of the
power of o/, 7/ = (s, s,...,s). Hence, lemma 8.2 implies that for p > 2
[ B (2, ¥)lp < 1R (2, %) ||2- [8.15]
We denote
0 =) i - gaT) e
w(s) =c(s -, m<s<r,
¥(s)  P(s+1)
1
p(r c(r)——-. [8.16]
) =) 555
then from [8.14]-[8.16] follows inequality
1B, ()]l < Z IR, (@, ) |- [8.17]

s=m

-
Let 05 > 0 now be such numbers that > d, = 1, and L > 0 is a number that will

be defined later; [8.17] and the Holder ine:quality yield the following inequality:

T

B exo{(L 1)) <B oo (171 3 o vile) |

sS=m

<E exp{ S, (so<s>L-16;1||R;z<x7w>||2)2}
r - 9 s
< I1 (5 on{(e)'5 IR )’} )

[8.18]
Since
S h(t,n)
1R;, (z, 9)]15 = Z () Y (€2 E|R(x,¢)|3 =B,
= =1

and D || RS, (z,v)]|3 = 271(AS,)?, then by the condition

us = ?(s)AS, L7262 < 1 [8.19]
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from lemma 8.1, we obtain

E exp{ (o(s) L7107 Y| By (2, 0)]12) ) = B exp{uo) || R, (2, 9)[3(A3) 71}

Bs 2 o .
<exp{f%§‘9)}exp{—é}(1—us)—z. [8.20]

Hence, from [8.20], [8.18] and for such L and g, [8.19] is satisfied, follows
inequality

B eo{ (271, 0l,)7)
<11 (exp{%}exr){—u;}(l _us)%)és. [821]

s=m

Denote now

r

L 0<v<l, L=vT%)Y (45)%0(s),

S=m

~

1(s
5y = (A3)}
( )Lu

N

then us = v < 1. That is why [8.21] is transformed into inequality
v||R2 (2)||?
B o AT}
(X (A5)20(s))

s i L (R

Vo= (A)7e(s),  Wh=Y B(A5) 7e(s).

S=m S=m

Then, inequality [8.22] can be rewritten as follows

B exp{””an@()V'i)g wed copf-la-n

[N

[8.23]

[8.23] yields inequality (z > 0)

1R ()1l = Vi Wi, V||R, (@)II5 — ViR Wi,
P { (‘:T E >z <Eexp (VI;)Q exp{—vz}

< exp{_g}u — )77 exp{-vz).
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If we minimize the right-hand side of the above inequality with respect to v, then
we obtain

P {|RL,(2)|]2 = VW > 2(Vi)?) < exp{—2}(22 + 1)%. [8.24]

From [8.24], [8.13] and the conditions of theorem follows that || R}, (x)||, — 0 as
m,r — oo in probability. This allows us to take in [8.24] a limit as » — oo and to
obtain the assertion of theorem if m = N + 1. O

The next theorem keeps all notation of previous one.

THEOREM 8.3.— Let there exist a monotonically non-decreasing sequence {¢(k),
k=1,...,00} (k) > 0,9(k) — oo, as k — oo, such that for any m > 0 the series
converges

oo

> (B 7e(s) <¢(13) - w(slﬂ)) < . [8.25]

s=m

Then, for arbitrary z > 0, N > 0 inequality

P {||£(x) —Ev@)lp > = i (B)7e(s) (w(ls) a z/J(81+1)>}

s=N+1

2’2 1
< exp{—2}62z [8.26]
holds true.

PROOF.- First note that from [8.25] follows that

1
P(s)

(Bfn)%c(s) — 0, when s — oco. [8.27]

Really,

(BZ@)%C“)wl :<Bméc(8)%(w1k)_ : )

> 1 1

<N (B¥)2e(k < - ) -0,
2B W\ 5oy~ 5T

as s — oo. Further, in expression [8.21], we denote

ds = (2Bf'n)%<p(s)L_1u_%, where 0 < v <1,
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> (B3 7 e(s),

sS=m

Then, us = A3, (2B:,)"'v < v < 1, because of A5, < 2BZ, . Therefore,
inequality [8.21] is transformed into

Eexp{ | Ry, ( )”z%(XT:(B’S”); ()>_2}

M\»—A

L =23y~

<onf (%) 1 S )t peo{ 5 fu-nt
:eXp{;}eXp{_;}(l_’/)_é <(1-v) 2 8.28]

By the Chebyshev inequality and [8.28], we obtain

plim,ei> (X miee) | <o -2 ba v

s=m

M»—-

If we minimize right-hand side of above inequality with respect to v, then we
obtain

2
P{|R Hp>ZZ B2 )z }<exp{ Z}zeé. [8.29]

From [8.29], the same as in previous theorem, taking into account [8.27], we obtain
[8.26]. [l

REMARK 8.2.— Theorem 8.2 gives a more precise estimation than theorem 8.3 but
under more restricted conditions. Moreover, the estimation of theorem 8.3 is more
convenient in the computation of N, which defines the accuracy of approximation. In
general, broad-brush estimations can be obtained by using the results of [ZEL 88].

8.1. Simulation of random field with given accuracy and reliability in
LZ(Sn)

Consider accuracy of simulation € > 0 and reliability 1 — 4,1 > § > 0. In
inequality [8.8], set z = zs, where § is a root of equation R(z) = J. N we find
as minimal number for which the inequality (Ayzs + By)? < ¢ is fulfilled. Since
Apn < By, then N can be found as a minimal number that

VBn <e(zs + 1)_%.
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8.2. Simulation of random field with given accuracy and reliability in
Lp(sn)s p Z 2

Let ¢ be accuracy of simulation, and 1 — ¢ be reliability of simulation. If we use
inequality [8.12], then z; is found as a root of equation exp{—z}(2z + 1)z = § and
N is as minimal number that inequality

N

(zs(VRoa)? + VRS WR) 2 <e [8.30]
holds.

Since the left-hand side of inequality [8.30] depends on the sequence v (k), then
choose ¢ (s) = s”, where 8 > (n— 1)(3 — 1). Then,

p
W]?/O+1: i BN+1(A?V+1)éC(5)< 1 1>

s=N+1 U(s)  d(s+1)
< sup (BS (AS )_é) i 3n—18(n—1)(%_% (1 B ]_)
T s>N+1 N+1\AN+1 S sB (8 + 1)/3
< N Bs s _1 a—Baon—1 /B
< sup (Bl (Avg) 77 J(N+1D)*773 —

s>N+1 B o

where o = (n — 1)(
where

% %) Similarly, Vﬁj_l < (A?VOH)%(N + 1)04755(5 _ 04)*1,

oo :
;’V°+1:2< > t4ﬂbfh(t,n)> .

t=N+1

In the same way, we can use inequality [8.26].
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