
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 18 (2017), No. 2, pp. 1001–1014 DOI: 10.18514/MMN.2017.2491

PARTIALLY SOLVED DIFFERENTIAL SYSTEMS WITH
TWO-POINT NON-LINEAR BOUNDARY CONDITIONS

A. RONTÓ, M. RONTÓ, AND I. VARGA
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Abstract. We suggest a new constructive approach for the solvability analysis and approximate
solution of certain types of partially solved Lipschitzian differential systems with two-point non-
linear boundary conditions. The practical application of the suggested technique is shown on a
numerical example.
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1. INTRODUCTION AND SUBSIDIARY STATEMENTS

The solvability analysis and approximate construction of solutions of various types
of regular and singular boundary value problems were successfully done mainly in
case of an explicit form of differential systems

dx.t/

dt
D f .t;x.t// :

There is a large gap in the study of solutions of boundary value problems given for
systems of differential equations of implicit form, in particular partially resolved with
respect to the derivative. This work in a certain form fills this shortcoming.

We study the following boundary value problem on a compact interval

dx.t/

dt
D f

�
t;x.t/;

dx.t/

dt

�
; t 2 Œa;b� ; (1.1)

g.x.a/;x.b//D d: (1.2)

Here we suppose that f W Œa;b��D�D1! Rn and g W D�D! Rn are continu-
ous functions defined on a bounded sets D � Rn and D1 � Rn (domain D will be
concretized later, see (1.8), D1 is given), and the function f is Lipschitzian with
respect to the second and third variables in the following form:
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ˇ̌̌̌
du

dt
�
dv

dt

ˇ̌̌̌
D

ˇ̌̌̌
f

�
t;u;

du

dt

�
�f

�
t;v;

dv

dt

�ˇ̌̌̌
�K1 ju�vjCK2

ˇ̌̌̌
du

dt
�
dv

dt

ˇ̌̌̌
(1.3)

for any t 2 Œa;b� fixed and all fu;vg �D;
n
du
dt
; dv
dt

o
�D1; where K1;K2 are a non-

negative constant matrix of dimension n�n:
Here and below, the absolute value sign and inequalities between vectors are un-

derstood componentwise. A similar convention is adopted for the operations ”max”,
”min”. The symbol 1n stands for the unit matrix of dimension n, r.K/ denotes a
spectral radius of a square matrix K:

If the maximal in modulus eigenvalue of matrix K2 is less then one

r.K2/ < 1;

then from (1.3), if u¤ v, we obtain

Œ1n�K2�

ˇ̌̌̌
du

dt
�
dv

dt

ˇ̌̌̌
�K1 ju�vj ;

or ˇ̌̌̌
f

�
t;u;

du

dt

�
�f

�
t;v;

dv

dt

�ˇ̌̌̌
�K ju�vj ; (1.4)

where

K D Œ1n�K2�
�1K1 DK1CK2 Œ1n�K2�

�1K1:

Moreover, we suppose that for the maximal in modulus eigenvalue of matrix

QD
3.b�a/

10
K (1.5)

holds
r.Q/ < 1: (1.6)

If ´ 2 Rn and � is a vector with non-negative components, B.´;�/ stands for the
componentwise � -neighbourhood of ´ W

B.´;�/ WD f� 2 Rn W j��´j � �g :

Similarly, for the given bounded connected set ˝ � Rn; we define its component-
wise ��neighbourhood by putting

B.˝;�/ WD [
�2˝

B .�;�/ :

Let us fix certain closed bounded sets Da � Rn and Db � Rn and focus on the
continuously differentiable solutions x W Œa;b�! D, x

0

W Œa;b�! D1 of problem
(1.1)-(1.2) with values x.a/ 2Da and x.b/ 2Db: For given two bounded connected
sets Da � Rn and Db � Rn; introduce the set

Da;b WD .1��/´C��; ´ 2Da;� 2Db;� 2 Œ0;1� (1.7)



PARTIALLY SOLVED DIFFERENTIAL SYSTEMS WITH TWO-POINT CONDITIONS 1003

and its componentwise ��neighbourhood

D WD B.Da;b;�/ : (1.8)

It is important to emphasize thatD andD1 are supposed to be bounded and, thus,
the Lipschitz condition for f is not assumed globally. The boundary conditions
(1.2), generally speaking, non-separated and non-linear.

With the function f involved in equation (1.1), we associate the vector

ıŒa;b�;D;D1
.f / WD

max
.t;x;dx

dt
/2Œa;b��D�D1

f
�
t;x; dx

dt

�
� min
.t;x;dx

dt
/2Œa;b��D�D1

f
�
t;x; dx

dt

�
2

:

(1.9)
We recall some subsidiary statements which are needed below.

Lemma 1 ([1], Lemma.3.13). Let f W Œ�;�CI �! Rn be a continuous function.
Then, for an arbitrary t 2 Œ�;�CI � ; the inequalityˇ̌̌̌
ˇ̌
tZ
�

24f .�/� 1
T

�CIZ
�

f .s/ds

35d�
ˇ̌̌̌
ˇ̌� 12˛1.t; �;I /

�
max

t2Œ�;�CI �
f .t/� min

t2Œ�;�CI �
f .t/

�
(1.10)

holds, where

˛1.t; �;I /D 2.t � �/

�
1�

t � �

I

�
; j˛1.t; �;I /j �

I

2
; t 2 Œ�;�CI � : (1.11)

Lemma 2 ([1], Lemma 3.16). Let the sequence of continuous functions
f˛m.t; �;I /g

1
mD0 ; for t 2 Œ�;�CI � ; mD 0;1;2; ::: be defined by the recurrence re-

lation

˛mC1.t; �;I /D

�
1�

t � �

I

� tZ
�

˛m.s;�;I /dsC
t � �

I

�CIZ
t

˛m.s;�;I /ds; (1.12)

˛0.t; �;I /D 1:

Then the following estimates hold for t 2 Œ�;�CI �:

˛mC1.t; �;I /�
10

9

�
3I

10

�m
˛1.t; �;I /; m> 0; (1.13)

˛mC1.t; �;I /�
3I

10
˛m.t; �;I /;m> 2;
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2. PARAMETRIZATION AND CONVERGENCE OF SUCCESSIVE APPROXIMATIONS

The idea that we are going to employ is based on the reduction to a family of simple
auxiliary boundary value problems [5]. This approach was used also in [2–4, 6, 7].
Namely, we introduce the vectors of parameters

´D col.´1;´2; :::;´n/; �D col.�1;�2; :::;�n/ (2.1)

by formally putting
´D x.a/; �D x.b/: (2.2)

Instead of boundary value problem (1.1)-(1.2) we will consider the following
”model” problem with two-point linear separated parametrized conditions at a and
b:

dx

dt
D f

�
t;x;

dx

dt

�
; t 2 Œa;b� ; (2.3)

x.a/D ´; x.b/D �: (2.4)
As will be seen from statements below, one can then go back to the original prob-

lem by choosing the values of the introduced parameters appropriately.

Let us connect with the two-point parametrized boundary value problem (2.3)-
(2.4) the sequence of functions

xmC1.t;´;�/D ´C

tZ
a

f

�
s;xm.s;´; ;�/;

dxm.s;´;�/

ds

�
ds� (2.5)

�
t �a

b�a

bZ
a

f

�
s;xm.s;´;�/;

dxm.s;´;�/

ds

�
dsC

t �a

b�a
Œ��´� ; t 2 Œa;b� ;

mD 1;2; :::; satisfying (2.4) for arbitrary ´;� 2 Rn, where

x0.t;´;�/D ´C
t �a

b�a
Œ��´�D

�
1�

t �a

b�a

�
´C

t �a

b�a
�; t 2 Œa;b� : (2.6)

It is easy to see from (2.6) that x0.t;´;�/ is a linear combination of vectors ´ and
�, when ´ 2Da; � 2Db:
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Theorem 1. Assume that

9 non negative vector � W � �
b�a

2
ıŒa;b�;D;D1

.f /; (2.7)

where D is the ��neighhourhood of the set Da;b defined according to (1.7), (1.8)
and ıŒa;b�;D;D1

.f / is given as in (1.9):

ıŒa;b�;D;D1
.f / WD

max
.t;x;dx

dt
/2Œa;b��D�D1

f .t;x; dx
dt
/� min

.t;x;dx
dt
/2Œa;b��D�D1

f .t;x; dx
dt
/

2
;

(2.8)
the function f 2 C.Œa;b��D�D1;Rn/ is Lipschitzian with respect to the second
and third variables according to condition (1.3) and for the matrix Q of form (1.5)
holds an inequality (1.6).

Then, for all fixed ´ 2Da; and � 2Db:
1. The functions of the sequence (2.5) belonging to the domainD are continuously

differentiable on the interval Œa;b�, and satisfy the two-point separated boundary
conditions (2.4).

2. The sequence of functions (2.5) for t 2 Œa;b� converges as m!1 to the limit
function uniformly

x1 .t;´;�/D lim
m!1

xm.t;´;�/: (2.9)

3. The limit function satisfies the two-point separated boundary conditions (2.4).
4. The limit function x1 .t;´;�/ for all t 2 Œa;b� is a unique continuously differ-

entiable solution of the integral equation

x.t/D ´C

tZ
a

f .s;x.s/;
dx.s/

ds
/ds�

t �a

b�a

bZ
a

f .s;x.s/;
dx.s/

ds
/ds (2.10)

C
t �a

b�a
Œ��´� ;

i.e. it is the solution of the Cauchy problem for the modified system of integro-
differential equations:

dx

dt
D f

�
t;x;

dx.t/

dt

�
C

1

b�a
�.´;�/; x .a/D ´ (2.11)

where �.´;�// WDa�Db! Rn is a mapping given by formula

�.´;�/ WD Œ��´��

bZ
a

f

�
s;x1 .s;´;�/ ;

dx1 .s;´;�/

ds

�
ds: (2.12)
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5. The following error estimation holds:

jx1 .�;´;�/�xm .�;´;�/j6

6
10

9
˛1.t;a;b�a/Q

m .1n�Q/
�1 ıŒa;b�;D;D1

.f /; t 2 Œa;b� ;m� 0: (2.13)

Proof. We will prove that for ´ 2 Da; � 2 Db and t 2 Œa;b� the values of the
functions (2.5) belong to the domain D and it is a Cauchy sequence in the Banach
space C .Œa;b� ;Rn/ : Indeed, using the estimation (1.10) of Lemma 1, relation (2.5)
for mD 0; t 2 Œa;b� implies that

jx1 .t;´;�/�x0 .t;´;�/j �

�˛1.t;a;b�a/

2664
max

.t;x;dx
dt
/2Œa;b��D�D1

f .t;x; dx
dt
/� min

.t;x;dx
dt
/2Œa;b��D�D1

f .t;x; dx
dt
/

2
/

3775
(2.14)

� ˛1.t;a;b�a/ ıŒa;b�;D;D1
.f /�

b�a

2
ıŒa;b�;D;D1

.f /;

which means according to (2.7), that x1 .t;´;�/ 2 D; whenever .t;´;�/ 2 Œa;b��
Da�Db:

Using this and arguing by induction according to Lemma 1 we can easily establish
that

jxm .t;´;�/�x0 .t;´;�/j � ˛1.t;a;b�a/ ıŒa;b�;D;D1
.f /�

b�a

2
ıŒa;b�;D;D1

.f /;

mD 2;3; :::; which means that all functions (2.5) are also contained in the domain
D; for all mD 1;2;3; :: and .t;´;�/ 2 Œa;b��Da�Db:

Now, consider the difference of functions

xmC1 .t;´;�/�xm .t;´;�/D

D

tZ
a

�
f

�
s;xm .s;´;�/ ;

dxm .s;´;�/

ds

�
�f

�
s;xm�1 .s;´;�/ ;

dxm�1 .s;´;�/

ds

��
ds

(2.15)

�
t �a

b�a

bZ
a

�
f

�
s;xm .s;´;�/ ;

dxm .s;´;�/

ds

�
�f

�
s;xm�1 .s;´;�/ ;

dxm�1 .s;´;�/

ds

��
ds;

mD 1;2; ::: and introduce the notation

rm.t;´;�/D jxm .t;´;�/�xm�1 .t;´;�/j ;mD 1;2; :::: (2.16)
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By virtue of the Lipschitz condition (1.4), for mD 1 from (2.15), we have

r2.t;´;�/�K

24�1� t �a
b�a

� tZ
a

r1.s;´;�/dsC
t �a

b�a

bZ
t

r1.s;´;�/ds

35 : (2.17)

According to the recurrence relation (1.12) and estimation (1.13) from (2.14) and
(2.17) follows that

r2.t;´;�/�K

�
1�

t �a

b�a

� tZ
a

˛1.s;a;b�a/ ıŒa;b�;D;D1
.f /dsC

C
t �a

b�a

bZ
t

˛1.s;a;b�a/ ıŒa;b�;D;D1
.f /ds �

�K˛2.t;a;b�a/ ıŒa;b�;D;D1
.f /:

By induction using estimation (1.13), we can easily establish that

rmC1.t;´;�/�K
m˛mC1.t;a;b�a/ ıŒa;b�;D;D1

.f /�
10

9
Qm˛1.t;a;b�a/ ıŒa;b�;D;D1

.f /

(2.18)
Therefore, in view of (2.18)ˇ̌

xmCj .t;´;�/�xm.t;´;�/
ˇ̌
�

�
ˇ̌
xmCj .t;´;�/�xmCj�1.t;´;�/

ˇ̌
C
ˇ̌
xmCj�1.t;´;�/�xmCj�2.t;´;�/

ˇ̌
C :::

CjxmC1.t;´;�/�xm.t;´;�/j D

jX
iD1

rmCi .t;´;�/�

�
10

9
˛1.t;a;b�a/

jX
iD1

QmCi�1ıŒa;b�;D;D1
.f /D

D
10

9
˛1.t;a;b�a/Q

m

j�1X
iD0

QiıŒa;b�;D;D1
.f /; (2.19)

where ıŒa;b�;D;D1
.f / is given by (2.8). Since, due to (1.6), the maximum eigenvalue

of the matrix (1.5) does not exceed the unity, we have
j�1X
iD0

Qi � .1n�Q/
�1 ; lim

m!1
Qm D 0n: (2.20)

Therefore, we conclude from (2.19) that, according to Cauchy criterium, the sequence
fxm .t;´;�/g

1
mD0 of the form (2.5) uniformly converges in the domain .t;´;�/ 2

Œa;b��Da�Db to the limit function x1 .t;´;�/ : Since all functions of the sequence
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(2.5) satisfy the linear separated parametrized conditions (2.4) for all values of the in-
troduced parameter ´ 2Da; � 2Db the limit function x1 .t;´;�/ also satisfies these
conditions. Passing to the limit as m!1 in equality (2.5) we show that the limit
function satisfies both the integral equation (2.10) and the Cauchy problem (2.11),
where �.´;�/ is given by (2.12). Passing to the limit as j !1 in (2.19) we get the
estimation (2.13). �

3. CONNECTION OF THE LIMIT FUNCTION x1 .t;´;�/ TO THE SOLUTION OF THE
ORIGINAL PROBLEM

Theorem 2. Under the assumptions of Theorem 1, the limit function

x1.t;´
�;��/D lim

m!1
xm.t;´

�;��/ (3.1)

of the sequence (2.5) is a solution of the non-linear boundary value problem (1.1)-
(1.2) if and only if the pair of parameters .´�;��/ from (2.2) satisfies the system of
2n algebraic or transcendental equations

�.´;�/ WD Œ��´��

bZ
a

f .s;x1 .s;´;�/ ;
dx1 .s;´;�/

ds
/ds D 0;

�.´;�/ WD g.x1 .a;´;�/ ;x1 .b;´;�//�d D 0: (3.2)

Proof. The proof can be carried out similarly as in Theorems 2 and 3 from [8]. �

Remark 1. The system of equations (3.2) is usually referred to as a determining
equations. In such a manner, the original infinite-dimensional problem (1.1)- (1.2) is
reduced to a system of 2n equations numerical equations.

The method thus consists of two parts, namely, the analytic part, when the integ-
ral equation (2.10) is dealt with by using the method of successive approximations
(2.5), and the numerical one, which consists in finding values of the 2n unknown
parameters from equations (3.2).

The next statement proves that the system of determining equations (3.2) defines
all possible solutions of the original non-linear boundary value problem (1.1)-(1.2).

Theorem 3. Let the assumptions of Theorem 1 hold. Furthermore, assume there
exist some pair of vectors

�
´0;�0

�
2Da�Db that satisfy the system of determining

equations (3.2).
Then:
1. The non-linear boundary value problem (1.1)-(1.2) has a solution x0.�/ such

that
x0.a/D ´0; x0.b/D �0: (3.3)

Moreover, this solution is given by the limit function of the sequence (2.5):

x0.�/D x1
�
�;´0;�0

�
D lim
m!1

xm.�;´
0;�0/; t 2 Œa;b� : (3.4)
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2. If the non-linear boundary value problem (1.1)-(1.2) has a solution x0.�/; then
the system of determining equations (3.2) is satisfied with

´D x0.a/;�D x0 .b/ : (3.5)

Proof. The proof can be carried out similarly as in Theorem 4 from [8]. �

4. SOLVABILITY ANALYSIS BASED ON THE APPROXIMATE DETERMINING
SYSTEM

Although Theorem 2 provides a theoretical answer to the question on the construc-
tion of a solution of the original non-linear boundary value problem (1.1)-(1.2), its
application faces certain difficulties due to the fact that the explicit form of the limit
function x1 .�;´;�/ and consequently the explicit form of the functions

� WDa�Db! Rn; � WDa�Db! Rn

in (3.2) is usually unknown. This complication can be overcome by using the so-
called approximate determining equations

�m.´;�/ WD Œ��´��

bZ
a

f .s;xm .s;´;�/ ;
dxm .s;´;�/

ds
/ds D 0;

�m.´;�/ WD g.xm .a;´;�/ ;xm .b;´;�///�d D 0 (4.1)

for a fixed m:

Lemma 3. Under the assumptions of Theorem 1 and if the function g WDa�Db!
Rn in the boundary restrictions (1.2) satisfy the Lipschitz condition

jg.u1;u2/�g.v1;v2/j �Kg1 ju1�u2jCKg2 jv1�v2j ; (4.2)

for all fu1;u2g � Da �Db and fv1;v2g � Da �Db , where Kg1;Kg2 are a non-
negative constant matrix of dimension n� n; then for the exact and approximate
determining functions defined by (3.2) and (4.1) for any .´;�/ 2Da�Db andm� 1
hold the following estimates:

j�.´;�/��m .´;�/j �
10

27
KQm .1n�Q/

�1 ıŒa;b�;D;D1
.f /;

j�.´;�/��m .´;�/j �
�
Kg1CKg2

� 5
9
.b�a/Qm .1n�Q/

�1 ıŒa;b�;D;D1
.f /;

(4.3)
where the matrixQ and the vector ıŒa;b�;D;D1

.f / are given respectively in (1.5) and
(2.8).
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Proof. Let us fix an arbitrary .´;�/ 2 Da �Db: Using the Lipschitz condition
(1.4), estimate (2.13) and the equality

bZ
a

˛1.t;a;b�a/dt D
.b�a/2

3
; (4.4)

we have
j�.´;�/��m .´;�/j D

D

ˇ̌̌̌
ˇ̌
bZ
a

f .s;x1 .s;´;�//ds�

bZ
a

f .s;xm .s;´;�//ds

ˇ̌̌̌
ˇ̌

�K

bZ
a

10

9
˛1.s;a;b/Q

m .1n�Q/
�1 ıŒa;b�;D;D1

.f /ds D

D
10

27
KQm .1n�Q/

�1 ıŒa;b�;D;D1
.f /;

which proves the first inequality in (4.3).
From (3.2) and (4.1) using the Lipschitz condition (4.2) and (2.13), we obtain

j�.´;�/��m .´;�/j D jg.x1 .a;´;�/ ;x1 .b;´;�//�g.xm .a;´;�/ ;xm .b;´;�//j

�Kg1 jx1 .a;´;�/�xm .a;´;�/jCKg2 jx1 .a;´;�/�xm .a;´;�/j

�
�
Kg1CKg2

� 5
9
.b�a/Qm .1n�Q/

�1 ıŒa;b�;D;D1
.f /;

i.e. the second estimate in (4.3) holds also. �

Based on both exact an approximate determining systems (3.2) and (4.1) let us
introduce the mappings H WDa�Db! R2n and Hm WDa�Db! R2n by setting

H .´;�/ WD

2664 Œ��´��

bZ
a

f .s;x1 .s;´;�/ ;
dx1.s;´;�/

ds
/ds;

g.x1 .a;´;�/ ;x1 .b;´;�//�d

´ 2Da�Db

3775 ; (4.5)

Hm .´;�/ WD

2664 Œ��´��

bZ
a

f .s;xm .s;´;�/ ;
dxm.s;´;�/

ds
/ds;

g.xm .a;´;�/ ;xm .b;´;�//�d

´ 2Da�Db

3775 ;
(4.6)

We see from Theorem 2 that the critical points of the vector field H of the form
(4.5) determine solutions of the non-linear boundary value problem (1.1)-(1.2). The
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next statement establishes a similar result based upon properties of vector field Hm
explicitly known from (4.6).

Theorem 4. Assume that the conditions of Lemma 3 hold. Moreover, one can
specify an m� 1 and a set

˝ WDD1�D2 � R2n;

whereD1 �Da;D2 �Db are certain bounded open sets such that the mappingHm
satisfies the relation

jHm .´;�/jB@�

�
10
27
KQm .1n�Q/

�1 ıŒa;b�;D;D1
.f /�

Kg1CKg2
�
5
9
.b�a/Qm .1n�Q/

�1 ıŒa;b�;D;D1
.f /

�
(4.7)

on the boundary @˝ of the set ˝. If, in addition

deg.Hm;˝;0/¤ 0; (4.8)

then there exists a pair .´�;��/ 2D1�D2 for which the function

x�.�/ WD x1
�
�;´�;��

�
is a solution of the non-linear boundary value problem (1.1)-(1.2).

In (4.7) the binary relation B@� is defined in [1] as a kind of strict inequality for
vector functions and it means that at every point on the boundary @˝ at least one of
the components of the vector jHm .´;�/j is greater than the corresponding component
of the vector in the right-hand side. The degree in (4.8) is the Brouwer degree because
all the vectors fields are finite-dimensional. Likewise, all the terms in the right-hand
side of (4.7) are computed explicitly e.g. by using computer algebra system.

Proof. The proof can be carried out similarly as in Theorem 4 from [6]. �

5. EXAMPLE

Let us apply the approach described above to the system of differential equations8<:
dx1.t/
dt
D x1.t/ x2.t/�

dx2.t/
dt
Cx22.t/D f1

�
t;x1.t/ ;x2.t/;

dx1.t/
dt

; dx2.t/
dt

�
dx2.t/
dt
D

dx1.t/
dt

dx2.t/
dt
C
1
2
x2.t/C

t
4
D f2

�
t;x1.t/ ;x2.t/;

dx1.t/
dt

; dx2.t/
dt

� ;

(5.1)
t 2 Œa;b�D

�
0; 1
2

�
; considered under the two- point non-linear boundary conditions�

x21.a/�x2.b/D�
1
32

x22.a/�x1.b/D
1
32

(5.2)

Following (2.1), (2.2), introduce the parameters ´D col.´1;´2/; �D col.�1;�2/:
Let us consider the following choice of subsets Da;Db and D1; where one looks

for the values x.a/; x.b/ and the values of the derivatives dx1.t/
dt

; dx2.t/
dt
W
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Da DDb D f.x1;x2/ W �0:2� x1 � 0:2; �0:2� x1 � 0:2g ; (5.3)

D1 D

�
.x1;x2/ W �0:2�

dx1

dt
� 0:2 ; �0;2�

dx2

dt
� 0:2

�
: (5.4)

This choice of the setsDa andDb is motivated by the fact that the zero-th approx-
imate determining system (i. e., (4.1) with m = 0) has roots lying in these sets (5.3),
see the second line in Table 1. Recall that, in order to obtain it, only function (2.6)
are used, and no iteration is yet carried out. We see that this piecewise linear func-
tion provides quite reasonable approximate values of the parameters. In this case,
according to (1.7), we have

Da;b DDa DDb: (5.5)
For � involved in (2.7), we choose the vector

� WD col.0:3;0:3/: (5.6)

Then, in view of (5.3), (5.5), (5.6), the set (1.8) takes the form

D D f.x1;x2/ W �0:5� x1 � 0:5; �0:5� x1 � 0:5g : (5.7)

A direct computation shows that the Lipschitz condition (1.4) for f given by (5.1)
on D and D1 of forms (5.7) and (5.4) holds with matrices

K1 D

�
0:5 1

0 0:5

�
; K2 D

�
0 1

0:2 0:2

�
;

Œ1n�K2�
�1
D

�
1:333333333 1:666666667

0:333333333 1:666666667

�
;

K D Œ1n�K2�
�1K1 D

�
0:6666666665 2:166666666

0:1666666666 1:166666667

�
:

Therefore, by (1.5)

QD

�
0:09999999998 0:3249999999

0:02499999999 0:1750000000

�
and r.Q/D 0:235128120913226 < 1:

Furthermore, in view of (1.9)

ıŒa;b�;D;D1
.f / WD

max
.t;x;dx

dt
/2Œa;b��D�D1

f .t;x; dx
dt
/� min

.t;x;dx
dt
/2Œa;b��D�D1

f .t;x; dx
dt
/

2
D

D

�
0:4812500000

0:3525000000

�
and by (5.6) we have

b�a

2
ıŒa;b�;D;D1

.f /D

�
0:1203125000

0:0881250000

�
� �:
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TABLE 1.

m ´1 ´2 �1 �2

Exact 0 0 �
1
32 D�0:03125

1
32 D 0:03125

0 0.001561487459 -0.001556662026 -0.0312475768 0.03125243824
1 0.0004122967488 -0.0003873893367 -0.03124984993 0.03125016999
2 -0.000157576675 0.0001562942819 -0.03124997556 0.03125002482
3 -0.8640511032 �10�5 0.6489136242�10�5 -0.03124999997 0.03125000006
4 0.1264993624�10�4 -0.1236038310�10�4 -0.03124999985 0.03125000015
5 -4.892901202�10�7 6.586000019�10�7 -0.03125000000 0.03125000001
6 -0.1073874769�10�5 0.1030957108�10�5 -0.03125000001 0.03125000000
7 1.587193848�10�7 -1.712004563�10�7 -0.03124999999 0.03124999999
8 8.595697086�10�8 -8.040876912�10�8 -0.03125000000 0.03125000000
9 -2.502073667�10�8 2.574184204�10�8 -0.03124999999 0.03125000001

We thus see that all the conditions of Theorem 1 are fulfilled, and the sequence of
functions (2.5) for this example is convergent.

It is easy to verify that the pair of functions

x�1 .t/D�
t2

8
; x�2 .t/D

t2

8

is a solution of the given boundary value problem (5.1)-(5.2).
Using (2.5) and applying Maple 13 for different values of m to implement the ap-

proximations xm .t;´;�/D col.xm1 .t;´;�/ ;xm2 .t;´;�// and solving the approxim-
ate determining system (4.1), we find the following values of introduced parameters,
which are presented in Table 1. The graphs of the exact and approximate solution for
mD 9 for the first and second components are shown on the Fig. 1.

(a) First component (b) Second component

FIGURE 1. The exact solution .x�1 .t/;x
�
2 .t// (solid line) and its

nineth approximation (dots)
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[8] M. Rontó, Y. Varha, and K. Marynets, “Further results on the investigation of solutions of integral
boundary value problems,” Tatra Mt. Math. Publ., vol. 63, pp. 247–267, 2015, doi: 10515/tmmp-
2015-0035.

Authors’ addresses

A. Rontó
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