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Introduction

It is well known that exact analytical solutions can be found for a relatively small number of physi-
cally interesting systems in both the classic and quantum cases. But the exact solutions often serve
as a starting point for approximate calculations. In addition, they can help to define the edge of
applicability of different approximate methods.

The first solutions of Schrödinger equation were found for the simplest potentials which direct
equation of motion to differential equations for the known elementary and special functions. For
example, such potentials are

V (r) = arn,

where n = 2 correspond to oscillator, n = 1 – to linear, n = 0 – to constant, n = −1 – to Coulomb
and n = −2 – to centrifugal potentials [1, 2].

The class of tasks, which assumes a solution in the exact analytical kind, for the systems of
coupled equations is considerably poorer, than at the single channel [3, 4]. At the same time a
necessity for simple models for research of complex physical systems (with coupled channels) is yet
more vital. Multichannel approach shows by itself universal and power mean of microscopic description
of the many-particle and multidimensional systems, of processes connected with excitation of different
degrees in them, and also by the method of solution of tasks with mixing of the spin states [5]. In this
article an exact analytical solution is presented which is found for the system of light-heavy quarks
with mixed spin states [6].

Physical states of two fermions system

The state of two fermions system is characterized by energy of system E, total angular momentum
J ( ~J = ~L + ~S), projection of momentum MJ and spatial parity P = (−1)L+1. Orbital momentum L
and total spin of the system S (~S = ~s1 +~s2) aren’t “good” quantum numbers in general case, but it is
convenient to use them for denotation of the concrete states. If the system consists of particle and its
anti-particle (qq̄), the state of such system is characterized additionally by charge–conjugation parity
C = (−1)L+S and has a definite spin S. The possible states of the two-fermions system are determined
by the rules of addition of angular momentum and resulted in a table 1, where we used spectroscopy
denotations 2S+1LJ .

Table 1. The states of two fermions with equal masses.
Singlet (S = 0) Triplet (S = 1)

J ↓ \ P−→ + – + –
0 — 1S0

3P0 —
1 1P1 — 3P1

3S1+3D1

2 — 1D2
3P2+3F2

3D2

Such states are characteristic for quarkonium qq̄, positronium e+e− and other similar systems.
Evidently, that in this case the states 1S0, 3P0, 1P1, 3P1, are the pure states, but states 3S1+3D1,
3P2+3F2 and so on are mixed ones. We note that all states have definite spin.
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In the case when the two fermions system consists of particles of different mass (for example, qQ),
a total spin of the system already is not simply certain and the physical states of such system can be
got imposition of two parts a table 1, and that is resulted in a table 2.

Table 2. The states of two fermions with different masses.
J ↓ \ P−→ + –

0 3P0
1S0

1 1P1+3P1
3S1+3D1

2 3P2+3F2
1D2+3D2

In this situation only two states 1S0 and 3P0 are the pure states, but all others are mixed on an
orbital moment (but definite on the spin), or on a spin (but definite on the orbital momentum).

Potential models with coupled channels

By analogy with the well studied structure of nucleon - nucleon potential [7], Hamiltonian of the
quark-quark system with different masses (m1 6= m2) can be written down in a kind [8, 9]

H =
p2

2µ
+ V0 (r) + VLS(r)(~L~S) + VLS−(r)(~L~S−) + VSS(r)(~s1~s2) + VT (r)S12, (1)

where µ is reduced mass of the system, ~S− = ~s1 − ~s2. In Hamiltonian (1) it is taken into ac-
count only members which are linear in relation to a spin and orbital moments, namely, symmet-
ric (~L~S) and antisymmetric (~L~S−) spin-orbital operators, spin-spin (~s1~s2) and spin-tensor S12 =
12

[
(~s1~r) (~s2~r) /r2 − (~s1~s2) /3

]
operators.

According to the table 2, for the system of different constituent flavors (mq 6= mQ̄), the states with
the complete moment J = L are described by a double-base wave function

Ψ(~r) =
u(r)

r
=M

JJ0(θ, ϕ) +
w(r)

r
=M

JJ1(θ, ϕ), (2)

where u(r) and w(r)are radial wave functions, which correspond to singlet and triplet spin configura-
tion, and =M

JLS(θ, ϕ) is spin-orbital part of the wave function.
In work [6] it was shown, that similarly to mixing of orbital momentums by tensor forces in a

deuteron [10] and in a quarkonium [11], it could be got the system of coupled Schrödinger equations
for mesons with quarks of different flavors and total momentum J = L





u′′ +
(
k2 − J(J+1)

r2 − U1(r)
)

u = U3(r)w

w′′ +
(
k2 − J(J+1)

r2 − U2(r)
)

w = U3(r)u
, (3)

where k2 = 2µE and Ui(r) are channels’ potentials, which are expressed through the components of
quark-quark potential

U1(r) = 2µ
(

V (r)− 3
4
VSS(r)

)
,

U2(r) = 2µ
(

V (r)− VLS(r) +
1
4
VSS(r) + 2VT (r)

)
, (4)

U3(r) = 2µ

(√
J(J + 1)VLS−(r)

)
.

The numerical solution of the system (3) was realized in work [6]. For the receipt of analytical solution
we will choose channel potentials at a Coulomb kind, namely, U1(r) = A

r , U2(r) = B
r and U3(r) = C

r .
If one substitutes them in (3), we obtain such coupled system of equations





u// +
(
k2 − J(J+1)

r2 − A
r

)
u = C

r w;

w// +
(
k2 − J(J+1)

r2 − B
r

)
w = C

r u.
, (5)
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If potential parameter C is set to zero then system (5) will contain two uncoupled equations. Because
for Coulomb potential the bound energies are negative the value k2 in (5) is connected with the energy
by expression

k2 = −2µE. (6)

Analytical solution

Similarly to a task for the hydrogen atom, an asymptotic of wave functions looks like e−kr on the
infinity (r −→∞). Therefore we will search the solution of the system (5) in a kind

u = f(r) · e−kr; w = g(r) · e−kr. (7)

After a substitution (7) in the system (5) and obvious simplifications, we will obtain:
{

r2f ′′ (r)− Lf (r)− L2f (r)−Arf (r)− 2kr2f (r) = Crg (r)
r2g′′ (r)− Lg (r)− L2g (r)−Brg (r)− 2kr2g (r) = Crf (r)

(8)

Farther it is convenient to convert the system of two differential equations of the second order to the
single equation of the fourth order. For this purpose we will define the function g(r) from the first
equation of the system (8) and substitute it in the second equation. For the function f(r) we will get
differential equation

r4f (4) + r3p3(r)f (3) + r2p2(r)f
′′

+ +rp1(r)f ′ + p0(r)f = 0, (9)

where pi(r) are polynomial functions whose coefficients contain the potential parameters A,B,C,
orbital momentum L and energy parameter k. We will search the solution of equation (9) in the kind
of power series

f (r) = rs(a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5 + ...), (10)

where s and ai are unknown coefficients (a0 6= 0). We will substitute (10) in (9) and collect together
terms with like powers of r and set equal to zero. A fourth power equation in s (indicial equation)
arises when the coefficient of r0 is set to zero and a0 is left arbitrary

r0 : −2a0L− a0L
2 + 2a0L

3 + a0L
4 − 2a0s + +4a0Ls + 5a0s

2 + 2aL
0 s2 − 4a0s

3 + a0s
4 = 0.

This indicial equation gives four real roots

((s1 = L + 2), (s2 = L + 1), (s3 = −L + 1), (s4 = −L)). (11)

The first two solutions f(r) ∼ rL+2 and f(r) ∼ rL+1 obey the boundary condition in the origin
u(0) = w(0) = 0, but the other don’t. It can be noticed that a point of r = 0 is the erroneous special
point [12] of equation (9) and so the both noted solution are independent ones. Namely, function

f(r) = a0r
L+1 + a1r

L+2 + a2r
L+3 + ... (12)

with two free constants a0 and a1 will be a general solution which obeys the first boundary condition.
At the definite power parameter of s = L + 1, setting coefficients at the next degrees of r equal to

zero pozvolyae consistently to define while unknown coefficients a2, a3, a4... of function (12):

(AB − C2 + 2Ak + 2Bk + 4k2 + 2AkL + 2BkL + 8k2L + 4k2L2)a0+
+(−2A− 2B − 12k − 2AL− 2BL− 20kL− 8kL2)a1 + (12 + 20L + 8L2)a2 = 0

(13)

(AB − C2 + 4Ak + 4Bk + 16k2 + 2AkL + 2BkL + 16k2L + 4k2L2)a1+
(−6A− 6B − 60k − 4AL− 4BL− 64kL− 16kL2)a2 + (72 + +84L + 24L2)a3 = 0

(14)
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At set a0 and a1 from (13) we will find a2, then from (14) it is possible to define a3et cetera. From
the structure of equations (13) and (14) evidently, that the system of equations for determination of
coefficients of power series (12) has a tridiagonal form of the following kind:





b11 · a0 + b12 · a1 + b13 · a2 = 0
· · · · · · · · · · · · b22 · a1 + b23 · a2 + b24 · a3 = 0
· · · · · · · · · · · · · · · · · · · · · · · · b33 · a2 + b34 · a3 + b35 · a4 = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · b44 · a3 + b45 · a4 + b46 · a5 = 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

, (15)

where the first two coefficients bij in each the row depend on the parameters of potentials of A,B, C,
orbital number L and eigenvalue parameter k of system (3), but the third – only from an orbital
number.

As a partial decision (12) is determined by two satisfactory constants, we can dispose of them thus,
to build polynomial functions. Namely, we get the first polynomial, taking

a0 = 1, a1 = 0 (16)

but need set to zero a coefficient b11(
4 + 8L + 4L2

)
k2 + (2A + B + 2AL + 2BL) k + AB − C2 = 0. (17)

The condition (16) is an equation on an eigenvalue k

k1,2 = −A + B ±√
(A−B)2 + 4C2

4(L + 1)
. (18)

Substitution of (16) and (18) in the system (15) gives the next values of coefficients of power series
(12)

a2 = a3 = ... = 0.

So, according to (7), (8) and (12), we get the first two pairs of radial functions

u(r) = rL+1e−kr

w(r) = −A+2k(L+1)
C rL+1e−kr , (19)

where k takes on two values (18).
An algorithm (16-18) can be repeated, namely, to take satisfactory a1 and a2

a1 = 1, a2 = 0

and to need set to zero a coefficient b22(
16 + 16L + 4L2

)
k2 + (4A + 4B + 2AL + 2BL) k + AB − C2 = 0,

that determines the next two eigenvalues of wave-number k

k3,4 = −A + B ±√
(A−B)2 + 4C2

4(L + 2)
. (20)

Such initial choice gives us next two solutions

u(r) = rL+1(a0 + r)e−kr

w(r) = rL+1
(

2(L+1)(1−a0k)−a0A
C − A+2k(L+2)

C r
)

e−kr , (21)

where a0 is determined from equation (13) and eigenvalues (20) and looks like

a0 =
4(L + 1)(L + 2)

A + B ±√
(A−B)2 + 4C2

. (22)
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Results and discussions

The main result we have obtained is that the model of coupled channels with Coulomb like potentials
(5) has exact analytical solution which is very similar to the solution of single channel case (hydrogen
atom). The radial wave functions are exponent function multiplied by polynomials. In the case of
coupled channels the eigenvalues k are twofold (see (18) and (20) ). The greater eigenvalue we indexed
α and the second one as β

knα = −A + B −√
(A−B)2 + 4C2

4(L + n)
, knβ = −A + B +

√
(A−B)2 + 4C2

4(L + n)
, (23)

where n=1,2,. . . And according to (6) the correspondent energies are

Enα =
−(A2 + B2 + 2C2) + (A + B)

√
(A−B)2 + 4C2

16µ(L + n)2
, (24)

Enβ =
−(A2 + B2 + 2C2)− (A + B)

√
(A−B)2 + 4C2

16µ(L + n)2
. (25)

The energy Enα is the ground state of the system. According to (7) the physical values of value k
must be positive and from (23) it follows that if a condition

C <
√

A ·B (26)

is correct (the case of weak coupling) then we have two eigenvalues of energy (24) and (25) but if the
condition (26) isn’t correct (strong coupling) we have only one eigenvalue of energy (24).
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