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The Bohr–Sommerfeld quantization rule and the Gamow formula for the width of quasi-
stationary level are generalized by taking into account the relativistic effects, spin
and Lorentz structure of interaction potentials. The relativistic quasiclassical theory
of ionization of the Coulomb system (VC = −ξ/r) by radial-constant long-range scalar

(Slr = (1 − λ)(σr + V0)) and vector (Vlr = λ(σr + V0)) fields is constructed. In the
limiting cases, the approximated analytical expressions for the position Er and width
Γ of below-barrier resonances are obtained. The strong dependence of the width Γ of
below-barrier resonances on both the bound level energy and the mixing constant λ is
detected. The simple analytical formulae for asymptotic coefficients of the Dirac radial
wave functions at zero and infinity are also obtained.
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1. Introduction

Wide range of problems from various fields of physics (elementary particle physics,
nuclear physics, physics of atomic collisions, etc.) is related to representations of
formation and decay of nonstable (quasistationary) states of quantum systems.1

Properties of such states are of interest for investigation of ionization of atoms,
ions and semiconductors under the influence of constant and homogeneous electric
and magnetic fields,2 for description of cluster decays of atomic nuclei3 and effects
of the spontaneous creation of positrons,4,5 in consideration of a vacuum shell of
supercritical atom,4–6 and from the point of view of studying the Dirac equation in
the strong external fields as well.

The relativistic theory of decaying (quasistationary) states is elaborated quite
well for the cases when components of an interaction potential of a fermion with
external fields belong to the vector type, i.e. are Lorentz-vector Aµ components.2,5–7
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At the same time the interior logic of development of the decaying states theory
obviously dictates the statement of qualitatively new problems having an origin in
nuclear physics and elementary particle physics. So, for example, quark structure
of nucleons and multiquark states in a nucleus compel to look at the nature of
the internuclear forces in a new way as well. Under the stimulating influence of
QCD, the problem of manifestation of quark–gluon degrees of freedom in atomic
nuclei and nuclear processes has gained new development in the last decade and
now, undoubtedly, constitutes the main prospect of fundamental researches in this
field of nuclear physics. Without going into the further discussion of these important
problems, note only that there are already enough reviews, books and papers where
the specified tendency is sufficiently reflected (see, for example Ref. 8 and references
therein).

As is known, the problem of penetration through potential barriers underlies
a theoretical view of the phenomena of cluster decays of atomic nuclei and non-
stable resonance states of strongly interacting elementary particles. The subsequent
theoretical description of such phenomena should be based on the relativistic wave
equations by taking into account that besides electromagnetic forces the inter-
actions between elementary particles can also be realized by the forces which are not
dependent on the electrical charge. Take for example nuclear interactions between
the nucleons, caused by interaction of nucleons with the meson field. One more class
of (this time long-range) forces related to the considered problem are the forces
arising between nucleons during exchange of electron–neutrino pairs (so-called β-
forces). For the first time such forces have been introduced by I. Tamm9 in 1934,
and more recently the vector and pseudovector variants of these interactions were
considered in detail by authors of the well-known monography.7 From the point of
view of new problems of the strong interaction theory, it is interesting to explore the
more general case when a spin-1/2 particle interacts with the scalar and vector fields
simultaneously. As is known now, there is a reason to think that such interactions
exist between quarks in hadrons.

The main difficulties of the theory of quasistationary states (for the applications
specified above) are caused by the fact that in many cases the interactions cannot
be described within the standard methods that use expansions in small energy
parameter. In the problems related to the description of quasistationary states
of the relativistic composite systems, additional difficulties arise when solving the
Dirac equation with unseparable variables. In the modern theory of decaying states,
these difficulties are overcome by means of the relativistic version of the imaginary
time method developed in papers.2,10,11 This allows one to calculate the tunneling
probability of relativistic particles through potential barriers including those that
do not possess spherical symmetry.

Though this method has heuristic force and physical clarity, nevertheless it
cannot be considered to be strictly mathematically justified, despite some attempts
that were made in this direction.2,12 As is known, the accounting of the Coulomb
interaction between the outgoing electron and atomic core within the imaginary
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time method encounters considerable difficulties and, for example, in the theory of
multiphoton ionization of atoms2 is not fully carried out up to present time.

Fortunately, many interesting questions of the relativistic theory of quasi-
stationary states can be elucidated on an example of the simple models permitting
exact or asymptotically exact solution of the Dirac equation. From the variety of
such problems here we consider the hybrid version (13) of spherical model of the
Stark effect (SMSE). Inclusion in the standard SMSE of “new” interactions, related
to the scalar field, opens new possibilities for its applications in the relativistic
nuclear physics and QCD. In a more general context, we consider the nonstandard
modeling problem of study of simultaneous influence of the radial-constant scalar
and vector fields on a system of Coulomb levels.

The quasistationary solutions of the Dirac equation in the composite field (13)
at 1/2 < λ ≤ 1 and the corresponding complex spectrum of energy are generated
by the radiation requirement meaning that at infinity the solutions F (r), G(r)
are the divergent waves (see Ref. 13). If E is real, such solution does not exist,
however, there are infinitely many complex quasistationary levels E = Er − iΓ/2
with exponentially small imaginary part Γ.

For the field (13) consisting from the mixture of Coulomb and radial-constant
vector and scalar fields, the Dirac equation is separable in spherical coordinates.
Apparently, this circumstance should essentially facilitate calculation of the position
Er and width Γ of resonance. Let us note, however, that the usual approach (the
numerical solution of the Dirac system) encounters the known difficulties related to
exponential increasing of the Gamow wave function (at r → ∞) of a quasistationary
state. In view of complexity of this problem, we shall solve it in the quasiclassical
approximation that gives the useful analytical expressions for the position Er of
resonance and its width Γ. Except the reasons of convenience, the WKB method,
or quasiclassical approximation, possesses a number of the principle advantages
as compared to other methods. As is known, unlike the perturbation theory, this
approach is not related to the smallness of interaction and, consequently, has a wider
range of applicability, allowing one to investigate qualitative regularities in behavior
and properties of quantum mechanical systems. Other important advantage of this
method is in its applicability to the cases of both electromagnetic and scalar external
fields. Further, we shall consider the version of WKB method offered in Refs. 13–15
that can be used in the case of both the discrete spectrum and quasistationary
states (resonances).

This paper is organized as follows. In Sec. 2, we generalize the Bohr–Sommerfeld
quantization rule to the relativistic case where a spin-1/2 particle interacts with
scalar and electrostatic external fields simultaneously. In Sec. 3, by means of WKB
method we solve the problem of finding asymptotic coefficients of the wave function
in zero and at infinity with appropriate accuracy. Section 4 is devoted to the con-
struction of the quasiclassical theory of ionization of Coulomb system (VC = −ξ/r)
by radial-constant scalar (Slr = (1 − λ)(σr + V0)) and vector (Vlr = λ(σr + V0))
fields by taking into account the relativistic effects and fermion spin. In the limiting
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cases σ/ξm̃2 � 1 and σγ/Ẽ2
r � 1, the approximate analytical expressions for width

of below-barrier resonances Γ which show the strong dependence of Γ on both the
energy of bound level Er and mixing parameter λ are obtained.

2. Position of Quasistationary States

Separating the angular variables in the Dirac equation with the spherically sym-
metric vector V (r) and scalar S(r) interaction potentials, we obtain the system of
first-order ordinary differential equations for the radial wave functions F and G

(c = 1):

�
dF

dr
+

k̃

r
F − [(E − V (r)) + (m + S(r))]G = 0 ,

�
dG

dr
− k̃

r
G + [(E − V (r)) − (m + S(r))]F = 0 .

 (1)

Here � is the Planck constant, k̃ = �k, k = ∓(j + 1/2) is the motion integral of the
Dirac particle in a central field, j� is the total angular moment; the definition and
normalization of the function F and G are the same as in Refs. 13–15

For the description of the phenomena related to the formation and decay of
quasistationary states, we consider the class of potentials V (r) and S(r) for which
the effective potential (see (11)) of the squared Dirac equation possesses a barrier
(of the type shown in Fig. 1).

Let us give the algorithm of construction of quasiclassical solutions of the Dirac
system (1). As usually, we seek a solution of this system in the form of product of
rapidly oscillating phase factor and slowly oscillating amplitude:

χ(r) =
(

F (r)
G(r)

)
= exp

{∫ r

y(r′)dr′
}

ϕ(r) ,

y(r) = �
−1y−1(r) + y0(r) + �y1(r) + · · · ,

ϕ(r) =
∞∑

n=0

�
nϕ(n)(r) ,

where � → 0 is a small parameter, ϕ(r) and ϕ(n)(r) are the two-component quanti-
ties (the upper and lower components of ϕ(n)(r) correspond to the radial functions
F and G respectively). Expansion of y(r) and ϕ(r) in � leads to a chain of the
matrix differential equations for y(n)(r) and ϕ(n)(r) which are solved consequentially
by means of known technic of the left and right eigenvectors of the homogeneous
system. Let us give the final formulae for the wave function of a quasistationary
state. These formulae have a different view in three regions: (i) a potential well
r0 < r < r1; (ii) below-barrier region r1 < r < r2; (iii) classically allowed region
r > r2 with quasidiscrete energy spectrum. Here r0, r1 and r2 are the turning
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Fig. 1. Barrier-type effective potential U(r, E); r0, r1 and r2 are roots of the equation p2(r) = 0.

points, in which the radial quasiclassical momentum

p(r) =
√

(E − V (r))2 − (m + S(r))2 − (k/r)2

becomes zero (see Fig. 1). In the classically allowed region r0 < r < r1, we have

F (r) = C±
1

(
E − V + m + S

p(r)

)1/2

cosΘ1 ,

G(r) = C±
1 sgnk

(
E − V − m − S

p(r)

)1/2

cosΘ2 .

(2)

Here we use the following new notations

Θ1(r) =
∫ r

r1

(
p +

kw

pr

)
dr +

π

4
, Θ2(r) =

∫ r

r1

(
p +

kw̃

pr

)
dr +

π

4
, (3)

w =
1
2

(
V ′ − S′

m + S + E − V
− 1

r

)
, w̃ =

1
2

(
V ′ + S′

m + S − E + V
+

1
r

)
. (4)

If a width of quasistationary level Γ � 1 (which is justified by the answer), the
condition of normalization by a single particle localized in the region r0 < r < r1

defines normalization constants C±
1 :∫ r1

r0

(F 2 + G2)dr = 1 ,
∣∣C±

1

∣∣ = {∫ r1

r0

E − V (r)
p(r)

dr

}−1/2

=
(

2
T

)1/2

, (5)

where T is the period of radial oscillations of a classical relativistic particle localized
in the region I (r0 < r < r1).
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In the below-barrier region (r1 < r < r2) at k > 0 the solution, corresponding
to the decreasing exponent, is of the form

χ =
(

F

G

)
=

C+
2√
qQ

exp
{
−
∫ r

r2

[
q +

(m + S)V ′ + (E − V )S′

2qQ

]
dr

}

×
( −Q

m + S − E + V

)
, (6)

and for states with k < 0

χ =
C−

2√
qQ

exp
{
−
∫ r

r2

[
q − (m + S)V ′ + (E − V )S′

2qQ

]
dr

}(
m + S + E − V

−Q

)
. (7)

Here q = |p(r)|, Q = q + |k|r−1.
At last, at r > r2 the divergent wave corresponds to the quasistationary state;

at k > 0 the quasiclassical formulae for F and G have the form

χ =
C+

3√
pP

exp
{∫ r

r2

[
ip +

(m + S)V ′ + (E − V )S′

2pP

]
dr

}(
iP

m + S − E + V

)
, (8)

where P = p+ i|k|r−1. For states with k < 0 the radial wave function χ is given by

χ =
C−

3√
pP

exp
{∫ r

r2

[
ip − (m + S)V ′ + (E − V )S′

2pP

]
dr

}(
m + S + E − V

iP

)
. (9)

The quasiclassical representations (2)–(9) constructed are invalid in small neigh-
borhoods of turning points rj (j = 0, 1, 2). To bypass these points and match the
solutions one can use the Zwaan method16 that allows to establish relations between
normalization constants:

C±
2 = −iC±

3 = ∓C±
1

2

[
E − V (r1) + m + S(r1)

|k|r−1
1

]± 1
2

× exp
{
−
∫ r2

r1

[
q ± (m + S)V ′ + (E − V )S′

2qQ

]
dr

}
. (10)

The quasiclassical formulae obtained above allow to solve a wide range of prob-
lems in the theory of quasistationary states. So, in the case of exponential smallness
of the barrier penetrability in the effective potential (EP)

U(r, Er) =
Er

m
V + S +

S2 − V 2

2m
+

k2

2m r2
, Ēr =

(E2
r − m2)
2m

(11)

the real part of level energy Er = Enrk is defined by the quantization condition∫ r1

r0

(
p +

kw

pr

)
dr =

(
nr +

1
2

)
π , nr = 0, 1, 2, . . . , (12)

where nr is the radial quantum number.
Now we explore one concrete example of the vector and scalar potentials

V (r) = −ξ

r
+ λv(r) , S(r) = (1 − λ)v(r) , v(r) = σr + V0 , (13)
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in whose mixture at 1/2 < λ ≤ 1 and any σ �= 0 quasistationary states of the Fermi
particles exist; here V0 is a real constant, ξ is the Coulomb coupling constant,
and λ is the coefficient of mixing between the vector and scalar parts of the long-
range potential v(r). The potential v(r) includes contributions of Lorentz-vector
Vlr(r) = λv(r) and Lorentz-scalar Slr(r) = (1 − λ)v(r) components, of which (at
1/2 < λ ≤ 1) the first one dominates in all range of r, 0 < r < ∞.

Even in the case of the relatively simple model of an interaction (13) the effective
potential U(r, Er) (11) is a complicated function of the initial potentials V (r) and
S(r), level energy Er, total moment j, and has an essentially different shape at
0 ≤ λ < 1/2, 1/2 < λ ≤ 1 and λ = 1/2. The appearance of the quasistationary
states in the potential model (13) at 1/2 < λ ≤ 1 and σ �= 0 is very natural. Under
specified conditions at small distances (r � 1) EP U(r, Er) corresponds to repulsion
proceeding to the quadratic attraction at r � 1. It indicates at the definitive role of
the long-range vector forces (electrostatic ones for example) in a barrier occurrence
in EP U(r, Er). This ensures a possibility of level decay by particle penetration
through the potential barrier in EP U(r, Er). Thus, at 1/2 < λ ≤ 1 the bound state
is transformed into the quasistationary one. At r → ∞ its wave function has an
asymptotic behavior of a divergent wave type (8), (9). At the same time, at any
σ �= 0 the energy E(σ) becomes complex (E = Er − iΓ/2), and its imaginary part
is directly connected to the probability of level ionization by the external field (13).

Interest to the potential model (1), (13) at 0 ≤ λ < 1/2 is basically caused
by its use for the description of mass spectra of mesons and baryons and is not
exhausted even till now (see, for example Refs. 13 and 17 and references therein).
It successfully combines the effective Coulomb interaction at small distances r with
the linear increasing at large r that leads to a confinement of color quarks and
corresponds to the string “stretched” between quarks. In our recent paper,13 the
detailed calculations of spectra of heavy-light mesons were carried out by means of
the potentials (13). In this case, the model parameters (13) are determined by a
standardly: σ is the string tension, ξ is the Coulomb coefficient, V0 is eigenenergy
of a static source, and parameter λ (0 ≤ λ < 1/2) gives the relative contribution of
the vector Vlr(r) and scalar Slr(r) potentials.

The term (S2 − V 2)/2m in EP (11) dominates at large distances and at 0 ≤
λ < 1/2 leads to the effective repulsion regardless of the sign of the parameter
σ. This repulsion is purely a relativistic effect and related to the fact that the
interaction of fermion with the scalar external field S(r) is added to the scalar
quantity m (particle mass), whereas the vector potential V (r) is introduced into
the free Dirac equation by the minimum way as the temporal component of the
4-potential Aµ. The presence of the relativistic terms (S2−V 2)/2m in EP U(r, Er)
leads to the fact that U(r, Er) (∼ (1 − 2λ)(σr)2/2m) increases quadratically at
large distances when 0 ≤ λ < 1/2. This ensures a confinement of color quarks and
gluons (not observed in the free state). These properties of EP U(r, Er) (13) of the
interaction model indicate that namely scalar fields, not vector ones, are essential for
confinement.
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Considering the interquark potential, it is worthwhile to investigate the qualita-
tive regularities of the quasiclassical spectrum of the interaction model (13) in the
phase of outgoing color, 1/2 < λ ≤ 1. One can even say that without such study it
is impossible to completely understand the physics of confinement.

Of course, the considered physical objects (quarks) cannot be free particles.
However, it is not necessary to imagine that the string between quarks can become
infinitely long. Outside of applicability of perturbation theory, at large distances the
strong coupling inevitably leads to the creation of color charged particles and the
problem becomes multiparticle in essence. Therefore, the problem about scattering
of quarks, forming such colorless objects as hadrons, is usually considered. The same
is valid for QCD problems related to study of quasistationary states of potential
type. Here the problems of influence of the most various physical factors such as
external fields with the mixed Lorentz-structure of interaction potentials, adiabati-
cally slow variation of interaction parameters, connections with other (exterior and
interior) degrees of freedom, translation and spin symmetry etc. on properties of
decaying states arise quite naturally.

Basically, one cannot exclude that the results obtained when solving similar
problems may appear useful for the description of tunnel effects in physics of con-
densed matter (for example, in two-zonal semiconductors). So, for example, the
electron in its motion in a solid behaves as a particle with “effective” mass meff ,
which differs considerably from the true mass m. Moreover, meff can depend on dis-
tance r and motion features, because the difference of masses (meff −m) is actually
caused by interaction of an electron with objects surrounding it. In the same sense
all quarks masses are “effective” because they are determined in processes in which
a quark interacts with other quarks.

In the following two sections, we shall set out the applications of elaborated
quasiclassical formalism to calculation of shifts and widths of quasistationary states
of the potential model (13) with outgoing color charges (1/2 < λ ≤ 1). Special case
λ = 1/2, separating a phase of confinement of color charges and a phase of outgoing
color (i.e. deconfinement), we will consider in our next papers.

Following the described in Ref. 13 (see Sec. 4 therein) calculation scheme, we
represent the quasiclassical momentum in a convenient form:

p(r) = |σ|√2λ − 1
R1(r)

r
= |σ|√2λ − 1

[(a − r)(b − r)(r − c)(r − d)]1/2

r
.

Here σ plays a role of intensity of the radial-constant long-range field, and the
turning points a, b, c and d are solutions to the equation r4 + fr3 + gr2 +hr+ l = 0
with coefficients

f =
2η1

(1 − 2λ)σ
, g = − Ẽ2

r − m̃2 − 2ξσλ

(1 − 2λ)σ2
,

h = − 2Ẽrξ

(1 − 2λ)σ2
, l =

γ2

(1 − 2λ)σ2
,
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where γ =
√

k2 − ξ2 and η1 = (1 − λ)m̃ + λẼr . The characteristic parameters
Ẽr = Er − λV0 and m̃ = m + (1− λ)V0 introduced here mean the “shifted” energy
and the “shifted” mass, respectively. The specified equation has four real roots
(d < c < b < a), determined by the expressions

a, b = −f

4
+

1
2
(Ξ ± ∆+) , c, d = −f

4
− 1

2
(Ξ ∓ ∆−) , (14)

where

Ξ =
[
f2

4
− 2g

3
+

u

3

(
2
Z

)1/3

+
1
3

(
Z

2

)1/3]1/2

,

∆± =

√
F ± D

4Ξ
,

F =
f2

2
− 4g

3
− u

3

(
2
Z

)1/3

− 1
3

(
Z

2

)1/3

,

Z = v +
√
−4u3 + v2 ,

D = −f3 + 4fg − 8h , u = g2 − 3fh + 12l ,

v = 2g3 − 9fgh + 27h2 + 27f2l − 72gl ,

the upper signs in (14) correspond to the turning points a and c, and the lower
ones correspond to the points b and d.

In the quantization condition (12), we integrate over the range of r where Ē −
U(r, Er) > 0. For the potentials (13) considered by us at 1/2 < λ ≤ 1, this means
that r0 = c and r1 = b where c < r < b and r > a are classically allowed regions,
and b < r < a is below-barrier region, in which p2(r) < 0; at r > a the particle
goes to infinity. If the maximum of the potential function U(r, Er) is at the point
rmax ≈ η1[(2λ−1)σ]−1 for σ > 0 (rmax ≈ [Ẽrξ/(η1|σ|)]1/2 for σ < 0), and minimum
is at rmin ≈ γ2/Ẽrξ then the energy spectrum of below-barrier resonances is in the
range Umin < Ēr < Umax. The considered situation is schematically shown in Fig. 1
where black dots indicate the position of turning points.

Using the technique of evaluation of quantization integrals from Sec. 4 of Ref. 13,
we can represent the phase integrals of Eq. (12) in the form

J1 =
∫ b

c

p(r)dr =
√

2λ − 1|σ|
∫ b

c

(r3 + fr2 + gr + h + lr−1)
R1

dr , (15)

J2 =
∫ b

c

kw

p(r)r
dr = − k

2
√

2λ − 1|σ|

[ ∫ b

c

dr

(r − λ+)R1
+
∫ b

c

dr

(r − λ−)R1

]
, (16)

where

λ± = −
Ẽ + m̃ ∓

√
(Ẽ + m̃)2 − 4ξσ(1 − 2λ)

2σ(1 − 2λ)
.
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In the general case for the arbitrary values of ξ and σ, the integrals J1 and J2

cannot be expressed in elementary functions. The carried out transformation of J1

and J2 is convenient because after replacement of the integration variable18

r =
c(b − d) − d(b − c) sin2 ϕ

b − d − (b − c) sin2 ϕ
(17)

the integrals from right-hand sides of the formulae (15) and (16) are transformed
to the complete elliptic integrals of the first, second and third kind.13,19 As a result,
we have obtained the transcendental equation

2
√

2λ − 1√
(a − c)(b − d)

{ |σ|(c − d)2

�̄
[
N̄1F (χ̄) + N̄2E(χ̄) + N̄3Π(ν̄, χ̄) + N̄4Π

(
d

c
ν̄, χ̄

)]
+

k

2(2λ − 1)|σ|
[
(c − d)(N̄5Π(ν̄+, χ̄) + N̄6Π(ν̄−, χ̄)) + N̄7F (χ̄)

]}
=
(

nr +
1
2

)
π ,

(18)

defining (in the quasiclassical approximation) the real part Er = Enrk of complex
energy of quasistationary states at Umin < Ēr < Umax. Here the quantities ν̄, ν̄±,
χ̄, �̄, ℵ̄, N̄j (j = 1, 2, . . . , 7) are obtained from respective expressions (A.1)–(A.6)
for ν, ν±, χ, �, ℵ, Nj (recently found by us in Ref. 13) by making the simultaneous
replacements a → b, b → c, c → d and d → a.

For the determination of the Stark energy Er = Enrk, Eq. (18) can be solved
by numerical methods only. To construct the asymptotic behavior of resonances, it
is necessary to apply asymptotic methods of calculation of phase integrals just as
in Sec. 4 of Ref. 13. This imposes some restrictions in calculation of shifts of quasi-
stationary levels and its widths for both small values of intensity σ of radial-constant
(scalar-vector) long-range field and not too large ones. Namely, the quantity m̃

divides the range of Ẽr = Er −λV0 into the two domains, in which the spectrum of
quasistationary states has a various asymptotic behavior. Consider some of the most
typical situations connected with the relative values of the energy Ẽr and level m̃.

Case A. If Ẽr < m̃, Umin < Ēr < m (see Fig. 1, where Umin = U(rmin, Er),
rmin ≈ γ2/Ẽrξ) and condition σ/ξm̃2 � 1 is satisfied, the pair of classical turning
points a and d is rather distant from pair of points c and b (see Ref. 13). For σ > 0,

a ≈ m̃ + Ẽr

σ(2λ − 1)
+

ξ

m̃ + Ẽr

, d ≈ −m̃ − Ẽr

σ
− ξ

m̃ − Ẽr

, (19)

b, c ≈ Ẽrξ ± θ

µ2

[
1 − Ẽrξ ± θ

µ4

(
η1 ± m̃ξη2

µ

)
σ

]
, (20)

and for σ < 0 the expressions for a and d in (19) should be interchanged.
Hereafter, we use the notation

θ =
√

(Ẽrk)2 − (m̃γ)2 , µ =
√

m̃2 − Ẽ2
r , η2 = λm̃ + (1 − λ)Ẽr .
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In this case, the derivation of asymptotic expansions of quantization integrals (15),
(16) in a small parameter σ/ξm̃2 is carried out just as in item A of Sec. 4 of Ref. 13
and gives the former expression for the level energy

Er = Ẽ0 + λV0 +
σ

2ξm̃2

[(
ξ2m̃2

µ2
0

− k2

)
η10 +

(
2ξ2m̃Ẽ0

µ2
0

− k

)
η20

]
+ O

((
σ

ξm̃2

)2)
,

(21)

Ẽ0 = m̃

[
1 +

ξ2

(n′
r + γ)2

]−1/2

, n′
r = nr + (1 + sgnk)/2 , (22)

and the quantities µ0, η10 and η20 are obtained from µ, η1 and η2 by replacing Ẽr

by Ẽ0.
The influence of weak radial-constant scalar and electric fields on the system

of Coulomb levels has been analyzed before (see, for example Refs. 13–15). The
analysis was carried out both on the basis of quasiclassical formulae (21) and by
the numerical solution to the transcendental equation (18). In particular, the cal-
culations have shown that the sign change in σ (σ → −σ) leads to small changes of
energy spectrum, if |σ| � 0.2 GeV2.

Case B. Let us now consider m̃ < Ẽr and m < Ēr < Umax (see Fig. 1, where
Umax = U(rmax, Er) and rmax ≈ η1[(2λ − 1)σ]−1). Here the ratio σγ/Ẽ2

r plays a
role of the small parameter. In this case the quasistationary states in the composite
field (13) exist only at the positive values of parameter σ.

Under the requirements formulated above, from (14) we have obtained

a ≈ Ẽr + m̃

σ(2λ − 1)
+

ξ

Ẽr + m̃
, b ≈ Ẽr − m̃

σ
+

ξ

Ẽr − m̃
, c, d ≈ −Ẽrξ ± θ

Ẽ2
r − m̃2

. (23)

It is seen that turning points c and b are rather distant from one another (a, b �
c, |d|). This allows to evaluate the quantization integral (12) analytically.

Further we shall give only the recipe of evaluation of the quantization integrals
J1,2. Just as in the item B of Sec. 4 of Ref. 13, the integration range in (15) and (16)
we divide into two domains c ≤ r ≤ r̃ and r̃ ≤ r ≤ b by introducing the dividing
point r̃ satisfying the requirement c � r̃ � b. In the first domain c ≤ r ≤ r̃, we
calculate the integrals (15), (16) by expanding the quasimomentum p(r) in a power
series in the parameters r/a � 1 and r/b � 1. In the second domain r̃ ≤ r ≤ b,
the expansion of p(r) we carry out in the small quantities c/r � 1 and |d|/r � 1.

When we add the asymptotic expansions of integrals over c ≤ r ≤ r̃ and r̃ ≤
r ≤ b, the final result will not contain the quantity r̃. So, we have obtained the
equation

η1

√
Ẽ2

r − m̃2

2σ(2λ − 1)
− η̃

(
η2
2

2σ(2λ − 1)
+ λξ

)
− γ arccos

(−Ẽrξ

θ

)
− Ẽrξ√

Ẽ2
r − m̃2

log
(

ση2θ

4e(Ẽ2
r − m̃2)2

)
− sgn k

2
arccos

(−m̃ξ

θ

)
=
(

nr +
1
2

)
π . (24)
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If we expand the left-hand side of (24) in m̃/Ẽr � 1 up to the terms of the third
order, then we obtain the transcendental equation for the level energy Er which we
solve by the method of consecutive iterations. Thus, we arrive at the expression for
the energy (within O(σγ/Ẽ2

r ))

Er = ζ−1

{
B +

(
B2 + ζ

[
2σ(1 − 2λ)

(
ξ log

σ|k|(1 − λ)
4Ẽ(0)2

+ 3ξ + λξÃ + πN

)
+ λm̃2(1 − λÃ)

])1/2}
+ λV0 , (25)

where

Ẽ(0) = E(0) − λV0 ,

Ã = (2λ − 1)−1/2 log
[(

1 + λ +
√

2λ − 1
)
(1 − λ)−1

]
,

ζ = (1 − λ)2A − λ − 2σξ(1 − 2λ)/(Ẽ(0))2 ,

B = (1 − λ)(1 − λÃ)m̃ − 4σξ(1 − 2λ)/Ẽ(0) ,

N = nr +
1
2

+
sgn k

4
+

1
π

(
γ arccos

(
− ξ

|k|
)
− ξ

)
,

η̃ = (2λ − 1)−1/2 log
[(

η1 +
√

(2λ − 1)(Ẽ2
r − m̃2)

)
η−1
2

]
,

(26)

and Ẽ(0) = E(0) − λV0, E(0) is the zeroth approximation of energy, by the choice
of which the quantity Enrk depends very weakly and in most cases one can take
E(0) ≈ Er(ξ = 0).

The expressions (24), (25) differ from the corresponding formulae in the case
of purely discrete spectrum13 only by replacements η → η̃ and A → Ã. So, the
substitution η → η̃, A → Ã transforms the equations E

WKB(as)
nrk , obtained in the

case of purely discrete spectrum, into the equations for a real part Er of energy
(24), (25) of below-barrier resonances. Accuracy of the calculation of Er by the
means of formulae (24), (25) is fully appropriate (see Sec. 4 of Ref. 13), and usually
there is no point to make the result more precise for practical purposes.

3. Asymptotic Coefficients of a Wave Function

Asymptotic coefficients CF,G at the zero and AF,G at the infinity are the charac-
teristic parameters of a wave function. We shall give simple analytical approxi-
mations for these coefficients which describe the results of numerical calculations
quite well.

First of all, we consider the construction rules of asymptotic expansions of solu-
tions to the Dirac equation at zero (r → 0) along with more standard expansions
of solutions, when r → ∞. For the considered potentials (18), we have

F, G = CF,Grγ + · · · , r → 0 ,
CF

CG
=

(k − γ)
ξ

. (27)
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Values of F 2(0), G2(0) (or, more precisely, of C2
F,G) define the probability to dis-

cover particles at small distances from one another and are of considerable physical
interest especially in the case of systems, in which interactions of two various types
(for example, the Coulomb interaction and long-range one v(r)) exist.

In the classically forbidden range 0 ≤ r < r0, the wave function of oscillat-
ing type (2) is changed by the solution decreasing exponentially with increasing
r (see Fig. 1). Matching the WKB-solutions to the Dirac equation on both sides
of the turning point r0, for radial distribution functions F (r) and G(r), we obtain
quasiclassical expressions in classically forbidden range r < r0:

F (r) = (−1)nr
C±

1

2

[
E − V + m + S

q(r)

]1/2

exp
[
−
∫ r0

r

(
q − kw

qr

)
dr

]
, (28)

G(r) = sgnk(−1)nr
C±

1

2

[
E − V − m − S

q(r)

]1/2

exp
[
−
∫ r0

r

(
q − kw̃

qr

)
dr

]
. (29)

All integrals in (28) and (29) are expressed through the quite complicated combi-
nation of the elliptic integrals. But in the cases Ẽr < m̃ and Ẽr > m̃ they can
be calculated through elementary functions, using the relations σ/ξm̃2 � 1 and
σγ/Ẽ2

r � 1 to expand the integrands into power series.
Let us first investigate the asymptotic behavior of the quasiclassical solutions

(28), (29) at r → 0 for the lower levels (Ẽ < m̃) which are basically defined by the
Coulomb potential (σ/ξm̃2 � 1). Note that the larger the Coulomb parameter ξ,
the smaller is the essential potential v(r) at small distances. Before the evaluation
of the asymptotic coefficients CF,G by means of formulae (28), (29), it is necessary
to expand the quasiclassical momentum p(r) in potential v(r). Then, using the
technique of evaluation of the phase integrals from Sec. 2 and proceeding in (28),
(29) to the limit r → 0, we obtain in zeroth approximation the expressions for the
asymptotic coefficients at zero:

|CF | =

√
ξ

Tγ

(
eθ0

2γ2

)γ[
θ0 (|k| − γ)

ξ(γm̃ + |k|Ẽ0)

] sgn k
2
(

ξẼ0 + γµ0

θ0

) ξẼ0
µ0

,
CF

CG
=

k − γ

ξ
.

(30)

Here θ0 =
√

(Ẽ0k)2 − (m̃γ)2, and the period of radial oscillations T is given by the
formula

T ≈ 2πξm̃2

µ3
0

. (31)

When we derive the expression (30) we use the quasiclassical requirement of the
normalization (5). Solving the Dirac equation (1) at small distances (in range 0 <

r < c), one can neglect the term with the linear potential (σ = 0). Having used
the asymptotic behavior of the normalized radial functions F (r) and G(r) of the
relativistic Coulomb problem20 at r → 0 and the relations (27), we find the more
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exact (than (30)) expression for CF :

CC
F =

(2µ0)γ+1/2

Γ(2γ + 1)

[
(m̃ + Ẽ0)Γ(2γ + n′

r + 1)
4ξm̃2

µ0

(
ξm̃
µ0

− k
)
n′

r!

]1/2(
ξm̃

µ0
− k − n′

r

)
. (32)

Here n′
r = nr + (1 + sgnk)/2. The formulae (30) and (32) differ one from another

within an error between the Stirling formula

n! =
√

2π exp{(n + 1/2) logn − n}(1 + O(n−1)) at n → ∞

and the Γ-function.
For states with Ẽr > m̃, when the requirement σγ/Ẽ2

r � 1 is satisfied, the
Coulomb potential is essential only in the range of small distances and can be
considered as a small perturbation in the basic range of particle localization (i.e. in
classically allowed range c < r < b). This gives the possibility to exclude (σ = 0)
the linear part of the potential v(r) from the quasiclassical momentum p(r) when
evaluating the integrals in exponents (28), (29). Then at r → 0 the asymptotic
behavior of radial wave functions F (r) and G(r) obtained in this way allows us to
determine the asymptotic coefficients:

|CF | =

√
ξ

Tγ

(
eθ

2γ2

)γ[
θ(|k| − γ)

ξ(γm̃ + |k|Ẽr)

] sgn k
2

exp

[
ξẼr√

Ẽ2
r − m̃2

arccos
ξẼr

θ

]
, (33)

where quantity θ is defined in (19), and energy Ẽr is given by the formula (18).
Characteristic feature of the considered case is the fact that in the integral (5),
which defines a period of radial oscillations T , only the range of values of the inte-
gration variable r, where the Coulomb potential can be considered a perturbation,
is essential. By neglecting the Coulomb interaction, we arrive at the expression

T ≈ 2
σ(1 − 2λ)

[
− λ

√
Ẽ2

r − m̃2 + (1 − λ)η̃η2

]
. (34)

The asymptotic coefficients AF , AG of radial wave functions at infinity are
important physical parameters of bound states as well. Along with the coefficients
CF , CG at zero (27), the asymptotic coefficients AF,G are continually encountered
in quantum mechanics,21 atomic and nuclear physics,22,23 in the inverse problem
of quantum scattering theory,24,25 etc. For the potentials (13) the quantities AF,G

are related to asymptotic behaviors of the normalized radial wave functions by the
relations

F, G = AF,Grγ̃ exp
(
−
√

1 − 2λσ

2
r2 − η1√

1 − 2λ
r

)
, σr → ∞ , (35)

where σ > 0, AF = −√
1 − 2λAG, γ̃ = η2

2
2(1−2λ)3/2σ

− λξ√
1−2λ

, and the parameter λ

has values in the range 0 ≤ λ < 1/2.
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In the below-barrier range r > r1 = b far from the turning point r1 = b under
the requirements σ/ξm̃2 � 1 and Ẽ < m̃, after the evaluation of integrals the
quasiclassical solutions (6), (7) are of the form of decreasing exponents

(
F

G

)
≈ 1√

Tq0

√m̃ + Ẽ0 + (1 − 2λ)σr

−
√

m̃ − Ẽ0 + σr



×
(

4µ4
0θ

−1
0 r

µ2
0 + µ0q0 + η10σr

) ξẼ0
µ0
(

ξm̃ − kµ0

ξm̃ + kµ0

)1/4

×
( √

1 − 2λq0 + (1 − 2λ)σr + η1 + ξẼ(1 − 2λ)σ/µ2

√
1 − 2λ[µ + ξ(λµ2 + 2η1Ẽ)/µ3] + η1 + ξẼ(1 − 2λ)σ/µ2

)γ̃

×
(

ξẼ0 − γµ0

ξẼ0 + γµ0

)γ/2

exp
[
− q0r

2
+

η1(µ − q0)
2(1 − 2λ)σ

+
ξẼ(µ + q0)

2µ2

]
, (36)

where q0 = σ
√

(1 − 2λ)(r − c)(r − d). The estimates show that by the satisfaction
of the requirements σ/ξm̃2 � 1 and Ẽ < m̃ there is quite long range of distances
r which are much larger than size of the Coulomb hydrogen-like system (r � 〈r〉,
see (37) or (38) in Ref. 13) and much smaller than the distance r̃ ≈ (Ẽξ/η1σ)1/2 at
which the Coulomb interaction becomes quantitatively comparable with the long-
range interaction. In this range as the wave functions of zeroth approximation,
it is natural to take the unperturbed radial functions F and G of the relativistic
Coulomb problem, and the potential v(r) can be considered as a small perturbation.
Neglecting it, we arrive at the following quasiclassical expressions for F and G:

(
F

G

)
=

 √
m̃ + Ẽ0

−
√

m̃ − Ẽ0

AWKB
C r

ξẼ0
µ0 e−µ0r

=
1√
Tµ0

 √
m̃ + Ẽ0

−
√

m̃ − Ẽ0

(ξm̃ − kµ0

ξm̃ + kµ0

)1/4

×
(

ξẼ0 − γµ0

ξẼ0 + γµ0

)γ/2(2µ2
0r

θ0

) ξẼ0
µ0

e−µ0r . (37)

Equating (37) to the asymptotic (at r → ∞) representation of solutions to the
Dirac equation in the Coulomb field20

(
F

G

)
=

 √
m̃ + Ẽ0

−
√

m̃ − Ẽ0

ACr
ξẼ0
µ0 e−µ0r , (38)
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we obtain the explicit expression for the period of radial oscillations of the classical
relativistic particle:

T =
1

2µ0|AC |2
(

ξm̃ − kµ0

ξm̃ + kµ0

)1/2(2eµ2
0

θ0

) 2ξẼ0
µ0
(

ξẼ0 − γµ0

ξẼ0 + γµ0

)γ

. (39)

Here AC is the asymptotic coefficient of the Dirac radial wave functions in the
Coulomb potential:

|AC | =
[

(ξm̃ − kµ0)µ0

2ξm̃2Γ(2γ + n′
r + 1)n′

r!

]1/2

(2µ0)
ξẼ0
µ0 . (40)

Comparison of (37) and (38) shows that their exponential and power factors are
the same, however, the asymptotic coefficients AWKB

C and AC differ within an error
between the Stirling formula and Γ-function.

The formula (37) is obtained by neglecting the linear part of the potential v(r).
This approximation was argued above by the means of the circumstance that under
the quasiclassical requirements (σ/ξm̃2 � 1) there is a range of distances 〈r〉 �
r � r̃, in which the distortion of a wave function, caused by action of the linear part
of the potential v(r), can still be neglected and there is the law of decreasing radial
wave functions (37) that is characteristic for the relativistic Coulomb problem.
Change of the law of decreasement (37) of functions F (r) and G(r) to (35) at
r � r̃ appears because in EP U(r, E) we have taken into account the quadratic
(in σr) terms which increase with increasing r more rapidly than others and so play
a role of the perturbation which destroys the asymptotic regime (37). As a result
of such an account, using the quasiclassical approximation (36) for the normalized
radial wave functions F and G at large r, we obtain the following expression for
the asymptotic coefficient at infinity

AF = 2µ0AC(1 − 2λ)γ̃+1/4σγ̃

(
µ2

0

σ

) ξẼ0
µ0
(√

1 − 2λµ0 + η10

2

)− ξẼ0
µ0

−γ̃

× exp
[
− (

√
1 − 2λµ − η1)2

4(1 − 2λ)3/2σ

]
. (41)

We now proceed to the other limiting case σγ/Ẽ2 � 1 when the centrifugal
potential γ2/2mr2 does not play an essential role at large distances and can be
omitted in the quasiclassical momentum p(r) = iq(r). Having expanded the quan-
tity q(r) = |p(r)| in powers of the Coulomb potential and calculated the integrals in
exponents in (6), (7) under the requirement σγ/Ẽ2 � 1, in the asymptotic domain
r → ∞, we arrive at formulae of type of (35) for F and G, in which

AF =
(1 − 2λ)1/4

√
T

(
2(1 − 2λ)σ

η2

)γ̃

× exp

[
− 2η2

1 −η2
2

4(1−2λ)3/2σ
+

ξm̃η2

2
√

1−2λ(Ẽ2−m̃2)
+

ξẼ√
Ẽ2−m̃2

arccos

(
− η1

η2

)]
, (42)
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and the period T is determined by the previous expression (34) where the replace-
ment η̃ → η = (1 − 2λ)−1/2 arcos(η1/η2) should be made.

4. Width of Quasistationary States

The quasiclassical approximation (or WKB method) is the most often used method
of the approximate solution to the relativistic quantum mechanical problems and
leads to an obvious physical picture of percolation of a particle through the potential
barrier in EP U(r, E).

In the consideration given above, the quasistationary character of the Stark
spectrum was ignored. Thereupon it is necessary to remind that for 1/2 < λ ≤ 1
and any value of σ �= 0, U(r, Er) has the shape of a potential with a barrier, owing
to what there are quasistationary states with complex energy E = Er − iΓ/2 in-
stead of discrete levels. This is a result of the attraction of the term −V 2/2 which
at large distances and 1/2 < λ ≤ 1 strongly suppresses the contribution of all other
summands in (13) and transforms the finite domain of the fermion motion into the
infinite one. Thereby one can assert that the influence of the long-range vector field
Vlr(r), dominating at large distances, is manifested not only by the means of a modi-
fication of the energy spectrum of the system, but also leads to a nonzero probability
of its decay due to a fermion passing through the potential barrier in EP U(r, Er).

The probability of tunnel transition of a particle from the bound state (with
energy Er) into the continuum state is defined by the imaginary part (i.e. by the
width Γ) of complex energy of quasistationary states:14,15

Γ = −2 Im[G∗(r)F (r)]r→∞ .

Having calculated the flux of the particles outgoing to infinity by means of qua-
siclassical formulae (8)–(10), we find the following expression for the level width Γ:

Γ =
1
T

exp[−2Ω] , (43)

T = 2
∫ b

c

Er − V

p
dr , Ω =

∫ a

b

(
q − kw

qr

)
dr . (44)

The obtained quasiclassical formula (43) is the relativistic generalization of the
well-known Gamow formula for the width of a quasistationary level. The nontrivial
moment of such a generalization is the modification of expression for the period
of oscillations T and the occurrence of the additional factor in the preexponent of
expression (43) that depends on a sign of the quantum number k and is caused by
the spin–orbit coupling in the mixture of the scalar S(r) and vector V (r) potentials.

Thus, in the quasiclassical approximation the problem is reduced to evaluation
of two characteristic phase integrals T and Ω.

Having used again the notations of Sec. 4 of Ref. 13, we write the quantity q

from (44) in a form convenient for our purposes

q = |σ|√2λ − 1

√
(a − r)(r − b)(r − c)(r − d)

r
,
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where the parameter λ ranges values from 1/2 up to 1. By an appropriate (similar
to (15), (16)) transformation of integrands the integrals on right-hand sides of
formulae (44) are reduced to the complete elliptic integrals. Without detailing the
aforementioned calculations of T and Ω, we give only the final result

T =
4

|σ|√(a − c)(b − d)(2λ − 1)

×
{

dẼr + ξ − λσ

(
d2 − (c − d)2

2(1 − ν̄)

)
F (χ̄) +

λσν̄(c − d)2

2�̄ E(χ̄)

+ (c − d)
[
Ẽ − λσ

(
2d +

(c − d)ℵ̄
�̄

)]
Π(ν̄, χ̄)

}
, (45)

Ω =
2
√

2λ − 1√
(a − c)(b − d)

{
− |σ|(b − c)2

�

×
[
N1F (χ) + N2E(χ) + N3Π(ν, χ) + N4Π

(
c

b
ν, χ

)]

+
k

2(2λ − 1)|σ| [(b − c)(N5Π(ν+, χ) + N6Π(ν−, χ)) + N7F (χ)]
}

. (46)

The quantities ν, ν±, χ, �, ℵ, Nj , ν̄, ν̄±, χ̄, �̄, ℵ̄, N̄j (j = 1, 2, . . . , 7) belonging to
(45), (46) are defined in (A.1)–(A.6) and (18).

The derived formulae (45), (46) are valid at large values of modules of phase
integrals T , Ω and together with (43) solve the problem of calculation of width Γ
of Stark below-barrier resonances at Umin < Ēr < Umax. However, these formu-
lae are rather cumbersome and not too convenient for concrete calculations. With
a purpose of deriving an analytical expression for the width of quasistationary
level Γ the calculations for the cases Ẽr < m̃ and Ẽr > m̃ should be carried out
separately.

Case A. Let us begin with the simpler (in the sense of calculation) case of quasi-
stationary levels with Ẽr > m̃ (Ēr < Umax) when the under requirements σγ � Ẽ2

r ,
σ > 0 the classical turning points b and a are rather distant from the pair of points d

and c. Asymptotic expansion of the barrier integral Ω can be constructed by means
of the procedure which is very similar to the procedure applied to quantization
integrals J1 and J2 in the case of purely discrete spectrum in the item A of Sec. 2.
Omitting the details of the calculation, we give only the final formula for the width
of the quasistationary level:

Γ ≈ 1
T

exp[−2Ω(Ẽr, λ)] , (47)

Ω(Ẽr , λ) =
π

2
√

2λ − 1

(
η2
2

σ(2λ − 1)
+ 2ξλ +

2Ẽrξ
√

2λ − 1√
Ẽ2

r − m̃2

)
, (48)
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~

~

Fig. 2. The function Ω(Er , λ) that defines the dependence of the exponential factor in the ion-
ization probability (47) on the level energy Er, 0.44 GeV < Er < 2 GeV.

where η2 is defined above in (19). Corresponding expansions for the energy Ẽr and
period are given by previous formulae (24), (25) and (34). Analytical expressions
(34), (47) together with the known dependencies of Er(σ), obtained by means of the
formulae (24), (25) or by numerical solution of the transcendental equation (18),
allow to calculate the widths of below-barrier resonances in “transitional” range of
intensity σ of the radial-constant (scalar-vector) long-range field. As can be seen
from the Fig. 2 the function Ω(Erλ) decreases monotonically with increasing param-
eter λ. Therefore, decreasing the relative weight (1−λ) of the Lorentz-scalar Slr(r)
in the long-range part v(r) of the interaction (13) rapidly increases a probability of
ionization of quasistationary level.

When the level energy is close to the top of the barrier (Ēr → Umax), the
quasiclassical formula (47) for the level width becomes invalid. From the viewpoint
of the effective potential, it corresponds to closing of the turning points b and a

owing to what the exponential smallness of level width Γ disappears. In this case, in
the below-barrier range b < r < a EP U(r, Er) becomes parabolic, and the quantum
mechanical problem, similar to calculation of penetrability of a parabolic barrier,
arises. The formulae necessary for considering this case are given, for example, in
papers.26,27

Case B. At Ẽr < m̃, Umin < Ēr the asymptotic expansions of T and Ω in posi-
tive powers of small dimensionless parameter σ/ξm̃2 are constructed by the same
technique, as in the item B of Sec. 2. In short, we shall derive only the asymp-
totic approximation of the integral Ω which defines the barrier factor. Assuming
that the potential barrier in EP U(r, Er) is rather wide, we divide the integration
domain b ≤ r ≤ a into two segments by the point r∗ which satisfies the condi-
tion b � r∗ � a (it is indeed possible because a → ∞ as σ → 0). In the first
domain b ≤ r ≤ r∗, the long-range potential v(r) can be considered as a small
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perturbation, and in the second one r∗ ≤ r ≤ a, on the contrary, the Coulomb
field is much weaker than the long-range field and can be considered as a small
perturbation. Expanding the quantity q(r) in small perturbation in each domain,
we obtain some tabular integrals in (44), the sum of which gives the value of the
barrier integral Ω to within terms O(σ/ξm̃2). By omitting the details, sense of
which is clear, we give the asymptotic behavior of the imaginary part of energy of
quasistationary state in a weak-coupling regime:

Γ ≈ 1
T

(
4µ4

0e

|σ|η20θ0

) 2Ẽ0ξ
µ0
(

m̃ξ − µ0k

m̃ξ + µ0k

)1/2(
Ẽ0ξ − µ0γ

Ẽ0ξ + µ0γ

)γ

× exp
{
− µη1

σ(2λ − 1)
− 1

|σ|√2λ − 1

(
η2
2

2λ − 1
+ 2λξσ

)
arccos

(
− η1

η2
sgnσ

)}
.

(49)

This result is valid for both positive and negative values of parameter σ, and in the
potential well c < r < b, one can again use the formula (31) or (39) for the period
of oscillations of a classical relativistic particle with energy Er. If one uses more
exact expression for the period (39), derived by matching WKB solution (37) with
the asymptotic behavior of the relativistic Coulomb wave function at r → ∞, then
one can represent the width of quasistationary levels (49) in the form

Γ = 2µ0|AC |2
(

2µ2
0

|σ|η20

) 2ξẼ0
µ0

exp
{
− Φ(Ẽ0, λ)

|σ| − 2λµ0ρ

2λ − 1

− 2 sgnσ√
2λ − 1

[
(1 − λ)η20ρ

2λ − 1
+ λξ

]
arccos

(
− η10

η20
sgnσ

)}
, (50)

where AC is the asymptotic coefficient (40) of the normalized wave function in
the Coulomb potential, and notations Ẽ0, µ0, η10 and η20 were introduced in (21),
(22). The functions Φ(Ẽ0, λ) and ρ(Ẽ0, λ) from the exponent (50) are given by the
formulae

Φ(Ẽ0, λ) = (2λ − 1)−1

{
η2
20√

2λ − 1
arccos

(
− η10

η20
sgnσ

)
+ η10µ0 sgn σ

}
,

ρ(Ẽ0, λ) =
1

2ξm̃2

[(
ξ2m̃2

µ2
0

− k2

)
η10 +

(
2ξ2m̃Ẽ0

µ2
0

− k

)
η20

]
.

(51)

Comparison of the results of calculations of level energies based on the “exact”
quasiclassical formulae (43), (45) and (46) with results of numerical calcula-
tions shows that relative error of (50) and (51) does not exceed 2% at |σ| ∼
10−6–10−4 GeV2. So the formula (50) is convenient when used for quick estimates
of Γ. In Fig. 3, the dependence of the function Φ(Ẽ0, λ) on level energy Ẽ0 are
represented for several values of mixing parameter λ. As is shown in Fig. 3(a),
(σ < 0), Φ(Ẽ0, λ) increases with sinking of the level Ẽ0 and decreases when the
mixing coefficient λ (1/2 < λ ≤ 1) increases. The last fact can be easily explained:
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(a)

(b)

Fig. 3. The function Φ(Ẽ0, λ) that defines the dependence of the exponential factor in the ion-
ization probability (50) on the level energy E0 (in GeV): (a) for σ < 0, (b) for σ > 0.

by increasing the relative weight λ (from 1/2 up to 1) of the Lorentz-vector Vlr(r) in
the long-range part of U(r, E0) the attraction increases at large distances and the
effective width of a barrier decreases. It results in the fact that at |σ| ∼ 10−6–10−4

GeV2 the increasing of the parameter λ (1/2 < λ ≤ 1) leads to the increasing of the
ionization probability Γ and, on the contrary, decreases Ẽ0 or, in other words, the
sinking of the bound level decreases Γ (at the fixed values λ and σ). In the case of
the positive values of σ the function Φ(Ẽ0, λ) decreases monotonically with increas-
ing the parameter λ (Fig. 3), therefore by decreasing the relative weight (1 − λ)
of the Lorentz-scalar Slr(r) in the long-range part v(r) of the interaction (13) one
rapidly increases the probability of ionization of quasistationary level (at the same
value of σ).

The formula (50) is asymptotically exact at the limit σ → 0. At small σ �= 0 only
the exponential factor, depending extremely rapidly on intensity of a long-range
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field and varying within many orders of value, plays an essential role in (50). How-
ever, the applicability field of the formula (50) is rather narrow: |σ| � 10−4 GeV2.

As can be seen from (50), the width of quasistationary level is proportional to the
squared asymptotic coefficient AC . It is no wonder: at σ/ξm̃2 � 1 and Ẽr < m̃ the
ionization goes from the “tail” of the Coulomb wave function and the barrier is wide.

In the case when in addition to the Coulomb field there is only the radial-
constant electric field (λ = 1), from the formula (50) at V0 = 0, σ < 0 and ξ = Zα

(Z is the nuclear charge, α ≈ 1/137 is the fine structure constant), we have obtained
(� = m = c = 1):

Γ = 2µ0|AC |2
(

2µ2
0

|σ|
) 2E0Zα

µ0

exp
[
− Φ(E0)

|σ| + 2Zα arccosE0 − 2ρ
√

1 − E2
0

]
, (52)

where E0 is the energy of a bound state in the absence (σ = 0) of an external
long-range field, and

ρ =
1

2Zα

[
E0

(
3Z2α2

1 − E2
0

− k2

)
− k

]
.

The function Φ(E0) in the exponent is given by the expression

Φ(E0) = arccosE0 − E0

√
1 − E2

0 , (53)

and possesses the obvious property Φ(−E0) = π − Φ(E0).
Consider some of the limiting cases of the derived expression (52):

(i) Let us begin with ionization of s-level bound by short-range (Z = 0) forces
under the influence of the radial-constant electric field σ < 0. In this case from
(52), we obtain the expression

Γ ∝ exp
[
− Φ(E0)

|σ|
]

, (54)

which coincides with the result of Refs. 10 and 11 for the Stark ionization of
s-level bound by short-range potential or δ-potential (which is a good approx-
imation in the case of ionization of the single charged negative ions, such as
H−, Na−, etc.) within exponential accuracy.

(ii) In the presence of the Coulomb field, it is worthwhile to consider the various
limiting cases for the quantities appearing in the formula (52):

arccosE0 =



(1 − E2
0)1/2 +

1
6
(1 − E2

0)3/2 + · · · , E0 → 1 ,

π

2
− E0 − 1

6
E3

0 + · · · , E0 → 0 ,

π − (1 − E2
0)1/2 − 1

6
(1 − E2

0)3/2 + · · · , E0 → −1 ,

(55)
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Φ(E0) =



25/2

3
(1 − E0)3/2

[
1 − 3

20
(1 − E0) + · · ·

]
, E0 → 1 ,

π

2
− 2E0 +

1
3
E3

0 + · · · , E0 → 0 ,

π − 25/2

3
(1 + E0)3/2 + · · · , E0 → −1 .

(56)

In the nonrelativistic limit (E0 → 1, α → 0), the formula (52) transforms into
the known expression28 for width of below-barrier resonances in spherical model of
the Stark effect for hydrogen atom:

Γ = 2µnr|Anr|2
(

2µ2
nr

|σ|
)2n

exp
(
− 2µ3

nr

3|σ|
)

, (57)

where µnr = Z/n, n is the principle quantum number, Anr is the asymptotic coeffi-
cient (at infinity) of the Coulomb wave function of the free (σ = 0) nonrelativistic
hydrogen-like atom.

The correction of the order of α in the exponent of (52) slightly increases the
probability of ionization when compared with the corresponding nonrelativistic
formula (57). The factor Φ(E0) in the exponent of (52) increases monotonically
with sinking level (it is equal to π/2 and π at E0 = 0 and E0 = −1, respectively)
which leads to rapid decreasing the probability of ionization.

At E0 → −1, that is for the level which has sunk to the edge of the nega-
tive energy continuum, the leading (exponential) factor in (52) becomes equal to
exp(−π/|σ|) and coincides with the corresponding factor in the Schwinger formula29

(obtained within the quantum field theory) for the probability of creation of the
electron–positron pairs from vacuum in the constant electric field.

By means of the formulae obtained above, the spectrum of quasistationary levels
is described for the accepted hybrid version of SMSE. Such model qualitatively
reproduces the following characteristic features of quasistationary states in an mix-
ture of scalar and vector potentials of barrier type (13): (i) very strong (at small
σ) dependence of Γ on the binding energy of tunneling fermion and on the mixing
coefficient λ; (ii) nonanalytic dependence of shift and width of level on the “force”
σ of scalar and vector long-range interactions.

In conclusion, we note that the version of SMSE considered above could seem
to be rather artificial and having no relation to real problems. Let us emphasize
thereupon that the Dirac equation with the potentials (13) at 1/2 < λ ≤ 1 can
serve as the etalon equation for the relativistic theory of quasistationary states with
the scalar-vector variant of interactions. As is known, now there are all grounds to
consider that such interactions exist between composite objects (quarks and gluons)
of QCD. Also, in the nuclear reactions of the tunnel type the peculiar features of
a scalar-vector variant of interactions, that should be taken into account when
calculating the penetration probability of tunneling fragments through potential
barriers, can be fully manifested.
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Examples of strong influence of a scalar field on spectra of resonance states
of strongly interacting particles are given in the recent analysis (see, for example
review, Ref. 30) of experimental data from the Crystal Barrel Collaboration on
the in-flight proton–antiproton annihilation into mesons of the final state below
2400 MeV. In particular, in Ref. 30 the following assumption has been made. The
existence of light σ-meson can be caused by singular behavior of quark–antiquark
interaction ∼ 1/q4 at the small transmitted momentums. In the coordinate space,
it corresponds to linear increasing of the potential v(r) at large distances.

Appendix A. Some Notations

The quantities introduced in Sec. 2 have the form

ν =
a − b

a − c
, ν± =

λ± − c

λ± − b
ν ,

χ =

√
ν

(c − d)
(b − d)

, � = (1 − ν)(χ2 − ν) ,

(A.1)

N1 =
χ2(b − c)

4
− 3ℵ(b − c)

8(1 − ν)
− (χ2 − ν)(f + 3c)

2

+
�(c3 + c2f + cg + h + l/c)

(b − c)2
, (A.2)

N2 = −ν

2

[
f + 3c +

3
4

(b − c)ℵ
�

]
, (A.3)

N3 =
1
2

{
3(b − c)ℵ2

4� +
2�(3c2 + 2cf + g)

(b − c)

+ (b − c)
[
(1 + χ2)ν − 3χ2

]
+ ℵ(f + 3c)

}
, (A.4)

N4 = − �
(b − c)

l

bc
,

N5 = [(b − λ+)(λ+ − c)]−1 ,

N6 = [(b − λ−)(λ− − c)]−1 ,

(A.5)

N7 =
2

(λ+ − c)(λ− − c)

(
c +

Ẽ + m̃

2(1 − 2λ)σ

)
,

ℵ = χ2(3 − 2ν) + ν(ν − 2) .

(A.6)
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