УДК 519.8

P.P. Antosyak, Ph.D.

About one new principle of rational collective choice

A new principle of rational group choice is proposed for the group choice problem in the Arrow's formulation. The question of consistence of some well-known collective choice rules was explored according to this principle.

Key Words: group decision making, Condorcet's principle, the group choice rules.

National University of Uzhgorod, 88000, Uzhgorod, Pidgirna str., 46,
e-mail: antosp@ukr.net

Статтю представив д.т.н., проф. Волошин О.Ф.
Introduction. One of the main problems of group decision making is the problem of best alternative choosing. At the end of XVIII century French philosoper and matematician Condorcet was the first to draw attention to the failure of best alternative definition according to relative majority rule [1]. In return he offered his rule of the best alternative definition: the best is that alternative (Condorcet's alternative, the best alternative according to Condorcet, Condorcet winner), which outperforms all other alternatives according to relative majoity rule. The author himself noticed the existence profiles for which there is no Condorcet winner. until now the same name principle proposed by in one way or other (in various variations) is included in all rational models of rational group decision making [1-3], and the rules that comply with this principle are called reasonable (wealthy) Condorcet. That is why one of the most critical problems is the problem to generalize the concept of reasonability according to Condorcet.

In this paper we propose a new principle for the best alternative choice in the group decision making, which is consistent with the already known generalizations of Condorcet principle. The research results of some well-known a group choice rules as to their consistency according to the proposed principle are also offered.

A group choice problem in the Arrow's formulation. Let a finite set of alternatives be $A=\left\{a_{1}, \ldots, a_{n_{A}}\right\} \quad\left(n_{A}-\right.$ number of alternatives $)$, and

Антосяк П.П., к.ф.-м.н.

Про один новий принцип раціонального колективного вибору

Для задачі колективного вибору в постановиі К.Ерроу запропоновано новий приниип раціонального колективного вибору. Вивчено питання обгрунтованості за цим принципом деяких відомих правил колективного вибору.

Ключові слова: колективне прийняття рішень, приниип Кондорсе, правила колективного вибору.

Ужгородський національний університет, 88000, м. Ужгород, вул. Підгірна, 46, e-mail: antosp@ukr.net
also a set (profile) $\Pi=\left\{P_{1}, \ldots, P_{n_{E}}\right\}$ of estimations of alternatives set A, where P_{l} is strict linear order on a set A, given by individual l of collective (group) and which corresponds to their individual preferences on a set of alternatives A ($l \in N_{E}=\left\{1, \ldots, n_{E}\right\}, \quad n_{E}-$ quantity of individuals). The problem of collective (group, resulting, etc.) order definition which in the "best" possible way displays the preferences on set A of group of individuals in general is set.

The only possible and correct solution on the set
he two alternatives is a collective choicerding to the relative majority rule: the best alternative is that one which was given a strong preference for at least half of individuals. On the set of three or more alternatives arises a problem of constructing of collective choice rule, which would be adequate continuation of voting according to majority principle for a couple of alternatives.

Definition 1. Let's denote for any profile of individual $\quad c_{i j}=\operatorname{Card}\left(\left\{l \in N_{E}:\left(a_{i}, a_{j}\right) \in P_{l}\right\}\right)$, $\forall i, j \in N_{A}=\left\{1, \ldots, n_{A}\right\}$. Value $c_{i j}-$ is the number of individuals which gave strong prefernence to alternative a_{i} over alternative a_{j} in corresponding profile.

Definition 2. For any profile of individual preferences value $m_{i j}=c_{i j}-c_{j i}$ is called majority margin of alternatives a_{i} over aternative a_{j},
$\forall i, j \in N_{A}$, and matrix $M=\left(m_{i j}\right)_{i, j=1, \ldots, n_{A}}$
is called matrix of majority margin.

In the futher if you need to point out correspondence of mentioned notations to certain profile $\Pi \in \mathrm{P}$ (P - set of all possible profiles), then we will write down $c_{i j}(\Pi), m_{i j}(\Pi)$ and $M(\Pi)$.

Definition 3. Relation of simpe majority (majority relation), which was generated by profile $\Pi \in P$, is called connected binary relation $R_{M(\Pi)}$ on a set A, which is defined as following

$$
\left(a_{i}, a_{j}\right) \in R_{M(\Pi)} \Leftrightarrow m_{i j}(\Pi) \geq 0, \quad \forall a_{i}, a_{j} \in A .
$$

Prudent principle. For each alternative $a_{i} \in A$, $i \in N_{A}$ we introduce a set of indexes:

$$
\begin{aligned}
& N_{i}^{-}=\left\{z \in N_{A}: m_{i z}<0, z \neq i\right\}, \\
& N_{i}^{+}=\left\{z \in N_{A}: m_{i z}>0, z \neq i\right\} .
\end{aligned}
$$

Taking into consideation the definition 1,2 for each alternative $a_{i}, \quad \forall i \in N_{A}$ the following interpretations are justified:

- $m_{i j}, j \in N_{i}^{+}$- number of winning units or just winning of alternative a_{i} from alternative a_{j};
- $\left|m_{i j}\right|=-m_{i j}, \quad j \in N_{i}^{-}$- number of loss units or just loss of alternative a_{i} from alternative a_{j};
- $S_{i}^{+}=\sum_{z \in N_{i}^{+}} m_{i z}-$ total winning of alternative $a_{i} ;$
- $-S_{i}^{-}=-\sum_{z \in N_{i}^{-}} m_{i z}-$ total loss of alternative a_{i}.

The following principle of rational choice is suggested in the context of above mentioned interpretations.

- if winning of alternative a_{i} from alternative a_{j} is more than its total loss, then in collective preference alternative a_{i} should be better than alternative a_{j};
- if loss of alternative a_{i} from alternative a_{j} is more than its total winning, then in collective preference alternative a_{i} should be worse then alternative a_{j}.

It is easy to see that the above mentioned principle is quite prudent and is not contrary to the well-known principle of Condorcet.

Let's consider the rules that are used in group decision making, most of which are classic, well-
known, and often used in practice, others, according to some authors [4], are only theoretical. We formulate some of them on the language of binary relations which are necessary for further their analyzing concerning the satisfaction of principles suggested by us.

Kemeny rule. Let $R_{1}, R_{2} \in \Omega \quad$ (Ω-set of all connected, asymmetric, transitive binary relations) are two arbitrary strict linear orders. Let's define the distance between theese two relations as the distance beween the sets:

$$
\delta\left(R_{1}, R_{2}\right)=\frac{\operatorname{Card}\left(\left(R_{1} \backslash R_{2}\right) \cup\left(R_{2} \backslash R_{1}\right)\right)}{2}
$$

Binary relation $R_{\text {Kemeny }}$ is called collective order of Kemeny (Kemeny's median) if and only if $R_{\text {Kemeny }}=\arg \min _{R \in \Omega} \sum_{l=1}^{n_{E}} \delta\left(R, P_{l}\right)$.

Egalitarian Simpson's rule. To win according to this rule it is necessary that alternative does not collect against it a large majority according to this rule. Simpson's score of alternative $a_{i} \in A$ is called value

$$
\begin{equation*}
S\left(a_{i}\right)=\min _{z \in N_{i}^{-}} m_{i z} \tag{1}
\end{equation*}
$$

Simpson's collective order is called ordening $R_{\text {Simpson }}$, which is defined as follows:

$$
\left(a_{i}, a_{j}\right) \in R_{\text {Simpson }} \Leftrightarrow S\left(a_{i}\right) \geq S\left(a_{j}\right), \forall a_{i}, a_{j} \in A
$$

Utilitarian Tideman's rule. As alternative to the rule (1) it is possible to define the rule which is based on an utilitarian criterion. Utilitarian score of alternative $a_{i} \in A$ is called value $U\left(a_{i}\right)=\sum_{z \in N_{i}^{-}} m_{i z}$.
Utilitarian collective order is called ordening $R_{U C}$, which is defined as follows:

$$
\left(a_{i}, a_{j}\right) \in R_{U C} \Leftrightarrow U\left(a_{i}\right) \geq U\left(a_{j}\right), \quad \forall a_{i}, a_{j} \in A
$$

Prudent order.
Suppose $\lambda \in\left\{-n_{E},-n_{E}+2, \ldots, n_{E}-2, n_{E}\right\}$ and let's define relation $\quad R_{>\lambda}: \quad\left(a_{i}, a_{j}\right) \in R_{>\lambda} \Leftrightarrow m_{i j}>\lambda$, $\forall i, j \in N_{A}, i \neq j$. Prudent oreder is called strict linear order $R_{P O}$, which completes acyclic relation $R_{>\beta}$, that is $R_{>\beta} \subseteq R_{P O}$,
$\beta=\min \left\{\lambda \in\left\{-n_{E},-n_{E}+2, \ldots, n_{E}-2, n_{E}\right\}\right.$:
$\left.R_{>\lambda}-\operatorname{acyclic}\right\}$.

Theorem 1. Strict Kemeny's median, egalitarian Simpson's rule and utilitarian Tideman's rule comply with the prudent principle. There is always a prudent order, which complies with the prudent principle.

Proof. The problem of collective strict linear order finding in the form of Kemeny's median is equivalent to the problem of linear ordering of alternatives. [5] That is why the validity of the strict Kemeny's median according to the prudent principle is a special case of a more general result [6].

Let for some fixed (but arbitrary) profile $m_{i j}>-S_{i}^{-}$. Let's assume opposite, that is let $\min _{z \in N_{j}^{-}} m_{j z} \geq \min _{z \in N_{i}^{-}} m_{i z}$. From inequality $m_{i j}>-S_{i}^{-}=-\sum_{z \in N_{i}^{-}} m_{i z}$ and property of matrix of majority margin it follows that $-m_{j i}=m_{i j}>-m_{i z}$, $\forall z \in N_{i}^{-}$. That is $m_{j i}<m_{i z}<0, \forall z \in N_{i}^{-}$. Then inequality $\min _{z \in N_{j}^{-}} m_{j z} \leq m_{j i}<m_{i z^{*}}=\min _{z \in N_{i}^{-}} m_{i z} \quad$ is obvious, where $z^{*} \in \operatorname{Arg} \min _{z \in N_{i}^{-}} m_{i z}$, which contradicts our assumption. For utilitarian Tideman's rule the opposite assumption would mean in particular that $0>\sum_{z \in N_{j}^{-}} m_{j z} \geq \sum_{z \in N_{i}^{-}} m_{i z}$. Then from condition $m_{i j}>-S_{i}^{-}>0$ and properties of matrix of majority margin it follows $m_{j i}<0$, that is $i \in N_{j}^{-}$. Then from proposition we get $0>m_{j i}+\sum_{\left.z \in N_{j}^{-} \backslash i\right\}} m_{j z} \geq \sum_{z \in N_{i}^{-}} m_{i z}$, whence it follows that $0 \geq \sum_{\left.z \in N_{j}^{-} \backslash i\right\}} m_{j z} \geq \sum_{z \in N_{i}^{-}} m_{i z}-m_{j i}$ or $0 \geq \sum_{z \in N_{\bar{j}} \backslash(i)} m_{j z} \geq S_{i}^{-}+m_{i j}>0$. So we have $0>0-$ contradiction.

Let $m_{i j}>\beta$. Then for any prudent order: $\left(a_{i}, a_{j}\right) \in R_{>\beta}$ (it follows directly from the rule). And since every acyclic relation is asymmetric [1], then $\left(a_{j}, a_{i}\right) \notin R_{>\beta}$. Let's consider a case when $m_{i j} \leq \beta$. Then from $m_{i j}>-S_{i}^{-} \geq 0$ and $m_{i j}=-m_{j i}$ it follows $m_{j i}<0<m_{i j} \leq \beta$, whence $\quad\left(a_{i}, a_{j}\right) \notin R_{>\beta} \quad$ and $\left(a_{j}, a_{i}\right) \notin R_{>\beta}$. Let's take arbitrary $k \in N_{A}, k \neq i$, $k \neq j$. Let's schow that $\left(a_{k}, a_{i}\right) \notin R_{>\beta}$. Having assumed $\left(a_{k}, a_{i}\right) \in R_{>\beta}$ then we get $m_{k i}>\beta>0$.

From property $m_{k i}=-m_{i k}$ it follows that $k \in N_{i}^{-}$. Then estimation $m_{i j} \geq-S_{i}^{-} \geq-m_{i k}>\beta$ is valid, which contradicts the situation considered by us. So, in this case it is always possible to add strict partial order $R_{>\beta}$ to strict linear order $R_{>}$so that $\left(a_{i}, a_{j}\right) \in R_{>}$, in particular, in order that a_{i} to be the best. The theorem is proved.

Borda's rule puts in order alternatives according to the sum of the ranks of alternatives in a profile of individual preferences. We use equivalent method of points calculation which is based on the majority margin. Borda's score of alternative $a_{i} \in A$ is called value $B\left(a_{i}\right)=\sum_{z=1}^{n_{A}} w_{i z}$. Borda's collective order is called ordening $R_{\text {Borda }}$, which is defined as follows:

$$
\left(a_{i}, a_{j}\right) \in R_{\text {Borda }} \Leftrightarrow B\left(a_{i}\right) \geq B\left(a_{j}\right), \forall a_{i}, a_{j} \in A .
$$

Copland's rule. In order to defeat Copland's rule it is necessary to win on the basis of simple majority from the greatest number of other alternatives. Copland's score of alternative $a_{i} \in A$ is called value

$$
\begin{aligned}
& C\left(a_{i}\right)=2 \operatorname{Card}\left(\left\{z \in N_{A} \backslash\{i\}: w_{i z}>0\right\}\right)+ \\
&+\operatorname{Card}\left(\left\{z \in N_{A} \backslash\{i\}: w_{i z}=0\right\}\right) .
\end{aligned}
$$

Copland's collective rule is called ordening $R_{\text {Copeland }}$, which is defined as follows:

$$
\left(a_{i}, a_{j}\right) \in R_{\text {Copeland }} \Leftrightarrow C\left(a_{i}\right) \geq C\left(a_{j}\right), \forall a_{i}, a_{j} \in A .
$$

Slater's rule is to find collective orders, which are closest to the corresponding relation of simple majority. Let R_{M} be relation of simple majority generated by some profile. Binary relation $R_{\text {Slater }}$ is called Slater's collective order if and only if

$$
\begin{equation*}
R_{\text {Slater }}=\arg \min _{R \in \Omega} \delta\left(R, R_{M}\right) . \tag{2}
\end{equation*}
$$

Lemma 1 [7]. Let given matrix $M=\left(m_{i j}\right)_{i, j=1, \ldots, n_{A}}$ is such, that $m_{i j}+m_{j i}=0, m_{i j}-$ is odd (even), $\forall i, j \in N_{A}, i \neq j$. Then there exists a profile $\Pi \in \mathrm{P}$ of strict linear orders n_{A} of alternatives, for which M is matrix of majority margin.

Theorem 2. Prudent principle is violated at the definition of collective preference according to Borda's rule, if $n_{A} \geq 3$; according to Copland's and Slater's rules, if $n_{A} \geq 4$. On the set of the three alternatives there is always a strict linear order, constructed according to Slater's rule that complies with the prudent principle.

Proof. Let's construct integral matrix M, requiring odd or parity (in paticular equal zero) of all elements, according to the following rule:

$$
\begin{gathered}
m_{12}=r, m_{13}=-u, m_{23}=g, \\
r>u>0, g>2 r-u, \\
m_{1 j}=m_{2 j}=x \geq 0,3<j \leq n_{A}, \\
m_{i j}-\text { arbitrary integer, } 3<i<j \leq n_{A} .
\end{gathered}
$$

According to lemma 1 there exists a profile of individual preferenes, for which matrix M will be matrix of majority margin. For this profile of inequality $r=m_{12}>-S_{1}^{-}=u$ it is necessary to require compliance with the prudent principle for alternative a_{1} relative to alternative a_{2}. On the other hand we have the following Borda's scores for alternatives $a_{1} \quad$ и $a_{2}: \quad B\left(a_{1}\right)=r-u+\left(n_{A}-3\right) x$, $B\left(a_{2}\right)=g-r+\left(n_{A}-3\right) x$, whence because of introduced restrictions on the value g, r, and u, we have $B\left(a_{1}\right)<B\left(a_{2}\right)$, that is $\left(a_{1}, a_{2}\right) \notin R_{\text {Borda }}$.

Let's consider matrix M with following elements: $\quad m_{12}=r, m_{21}=-r$,

$$
\begin{gathered}
m_{1 j}=-x, m_{2 j}=x, x \geq 1,3 \leq j \leq n_{A} \\
r>\left(n_{A}-2\right) x \\
m_{i j}-\operatorname{arbitraryinteger}, \quad 3 \leq i<j \leq n_{A}
\end{gathered}
$$

For the corresponding profile from inequality $r=m_{12}>-S_{1}^{-}==\left(n_{A}-2\right) x$ it is necessary to require compliance with the prudent principle for alternative a_{1} relative to alternative a_{2}. The following Copland's scores for alternative a_{1} and a_{2} : $C\left(a_{1}\right)=2, C\left(a_{2}\right)=2\left(n_{A}-2\right)$ are valid, whence due to restriction $n_{A} \geq 4$ we have $\left(a_{1}, a_{2}\right) \notin R_{\text {Copeland }}$.

Let's define matrix M as follows:

$$
\begin{gathered}
m_{12}=r, m_{13}=-u, m_{14}=-g, \\
r>u+g>0, u>0, g>0 \\
m_{23}>0, m_{24}>0, m_{34}>0, \\
m_{1 j}>0, m_{2 j}>0, m_{3 j}>0, m_{4 j}>0,4<j \leq n_{A}, \\
m_{i j}-\text { arbitraryinteger }, 4<i<j \leq n_{A} .
\end{gathered}
$$

For alternative a_{1} relative to alternative a_{2} due to inequality $r=e_{12}>-S_{1}^{-}=u+g$ it is necessary to require compliance with the prudent principle. For the profile which corresponds to matrix M which is under consideration we have the following matrix of majority relations:

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\cdots	$a_{n_{A}}$
a_{1}	0	1	0	0	1	\cdots	1
a_{2}	0	0	1	1	1	\cdots	1
a_{3}	1	0	0	1	\vdots	\ddots	\vdots
a_{4}	1	0	0	0	1	\cdots	1
a_{5}	0	0	\cdots	0			
\vdots	\vdots	\vdots	\ddots	\vdots		\tilde{R}_{M}	
$a_{n_{A}}$	0	0	\cdots	0			

where \widetilde{R}_{M} is matrix of majority relations on a set of alternatives $\left\{a_{5}, \ldots a_{n_{A}}\right\}$. The results of work [5] at $n_{E}=1$ remain valid also for problem (2), according to which problem (2) is equivalent linear ordening problem of alternatives with the following matrix prices:

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\cdots	$a_{n_{A}}$
a_{1}	0	1	-1	-1	1	\cdots	1
a_{2}	-1	0	1	1	1	\cdots	1
a_{3}	1	-1	0	1	\vdots	\ddots	\vdots
a_{4}	1	-1	-1	0	1	\cdots	1
a_{5}	-1	-1	\cdots	-1			
\vdots	\vdots	\vdots	\ddots	\vdots		\tilde{E}	
$a_{n_{A}}$	-1	-1	\cdots	-1			

where \tilde{E} is matrix prices on a set of alternatives $\left\{a_{5}, \ldots a_{n_{A}}\right\}$. According to decompositional procedures [6] for linear ordening problem of alternatives with matrix is needed decomposition $\left\{N^{(1)}, N_{A} \backslash N^{(1)}\right\}, \quad$ where $N^{(1)}=\{1,2,3,4\}$. The only solution for such problem on the set of indexes $N^{(1)}$ will be variant $p^{*}=(2,3,4,1)$, whence due to definition of necessity concept of analyzed decomposition [6], in particular we get $\left(a_{1}, a_{2}\right) \notin R_{\text {Slater }}, \forall R_{\text {Slater }} \in \operatorname{Arg} \min _{R \in \Omega} \delta\left(R, R_{M}\right)$.

Let $n_{A}=3$. Let's take arbitrary profile of individual preferences on a set of three alternatives.

Let's choose arbitrary alternative $\left.a_{i}, a\right)$ $i \in N_{A}=\{1,2,3\}$. If alternative a_{i} is the best according to Condorcet, then a_{i} is also the best according to Slater because Slater's rule is reasonable according to Condorcet [2]. Let's consider a case when a_{i} is not the best according to Condorcet and let $m_{i j}>-S_{i}^{-}>0, j \in N_{A} \backslash\{i\}$. In this case following situations for matrix of majority margin are possible.

$$
\begin{array}{l|cccc}
a) & a_{i} & a_{j} & a_{k} \\
\hline a_{i} & 0 & r & -u \\
a_{j} & -r & 0 & g \\
a_{k} & u & -g & 0 \\
b) & a_{i} & a_{j} & a_{k} \\
\hline a_{i} & 0 & r & -u \\
a_{j} & -r & 0 & 0 \\
a_{k} & u & 0 & 0 \\
c \mid c c c
\end{array}
$$

at arbitrary even (odd) integers $r>0, u>0, g>0$. We have the following matrixes of majority relations for these profiles.

$$
\begin{array}{c|ccc}
a) & a_{i} & a_{j} & a_{k} \\
\hline a_{i} & 0 & 1 & 0 \\
a_{j} & 0 & 0 & 1 \\
a_{k} & 1 & 0 & 0 \\
b) & a_{i} & a_{j} & a_{k} \\
\hline a_{i} & 0 & 1 & 0 \\
a_{j} & 0 & 0 & 1 \\
a_{k} & 1 & 1 & 0 \\
c \mid c c c \\
c & a_{i} & a_{j} & a_{k} \\
\hline a_{i} & 0 & 1 & 0 \\
a_{j} & 0 & 0 & 0 \\
a_{k} & 1 & 1 & 0
\end{array}
$$

Whence we get the following strict preferences according to Slater.

$$
\begin{array}{lll}
a_{i} \succ a_{j} \succ a_{k}{ }^{\text {b) }} & & a_{k} \succ a_{i} \succ a_{j} \\
a_{j} \succ a_{k} \succ a_{i} & a_{k} \succ a_{j} \succ a_{i} & \\
a_{k} \succ a_{i} \succ a_{j} \succ a_{j} \succ a_{j} & &
\end{array}
$$

The theorem is proved.
Conclusions. The new principle of rational collective choice is proposed in this paper for the problem of collective choice in the classical formulation of Arrow. If there is a strong Condorcet winner for some profile of individual preferences, this principle coincides with the very principle of Condorcet, and in the case of its absence it is its reasonable substitution (continuation). Study of the consistency question according to this principle of some well-known rules of collective choice proves once again the complexity and paradox of the theory of collective decision-making.

Bibliography

1. Voloshin O.F. Models and methods of making decision: / O.F. Voloshin, S.O. Maschenko.-K: Publisher center the «Kiev university», 2010. (in Ukrainian)
2. Moulin H. Axioms of cooperative decision making. - M.: Mir, 1991.- 464p. (in Russian)
3. Totsenko V.G. Methods and decision making system. - K.: Naukova Dumka, 2002. 381 c. (in Russian)
4. Larichev O.I. Theory and methods of making decision.- M.: Logos, 2002. - 392 p. (in Russian)
5. Antosyak P.P. Generalization of median approach is in case of fuzzy individual preferences // Bulletin of Kyiv University. Series: Physical and Mathematical Sciences. - 2010. - № 2. - P. 81-86. (in Ukrainian)
6. Antosyak P.P. Decomposition procedures in the problem of finding a resultant strict ranking in a form of Kemeny-Snell's median // Scientific Bulletin of the Uzhgorod University. Series. Math. and inform. 2008. - Vol. 17. - P. 27-35. (in Ukrainian)
7. Debord B. Caracterisation des matrices des preferences nettes et methodes d'agregation associees // Mathematiques et Sciences Humaines. - 1987. - Vol. 97. - P. 5-17.

Надійшла до редколегії 12.03.2013

