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Abstract 
 

The method of interacting configurations in complex numbers representation 
is formulated on the basis of Siegert’s complex energy formalism. The method 
is applied to the problem of electron impact ionization of atoms. The wave 
function of the atomic ground state is taken as multi-parametric variational 
one. The wave functions of the resonant electron-atom scattering are 
constructed. These functions take into account the excitation of arbitrary 
quantity of interacting quasi-stationary states of the ”electron plus ion” 
system. Such states may decay into arbitrary number of open bound channels. 
Within the formulated method the curves of differential generalized 
oscillator’s strengths are parameterized. The results of calculations of the 
positions, total and partial widths for the problem of helium atom ionization 
above the second ionization threshold of atom are presented. 
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Introduction 
The resonant ionization is the multi-particle process in its nature. Its correct 
theoretical description needs taking into account the mixing of discrete and 
continuous spectrum configurations. Therefore, even in relatively simple cases of 
photoionization the corresponding mathematics is too much complicated. Despite the 
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existence of a large number of resonant photoionization calculations the number of 
papers on the problem of atom ionization by electron impact is rather small. The 
problem of electron-impact ionization of atoms in Born approximation is as follows.  

     Consider atom ionization by a fast electron with the momentum 0k
r

, which is 

scattered to the angle χ with the momentum k
r

. Let the atom in the initial state be 
characterized by quantum numbers of total orbital angular momentum, spin and their 
projections 0000 ,,, sMMSL . The state of the system after interaction is determined by 

quantum numbers of residual ion sffff MMSL ,,,  and ejected electron, having the 

momentum k
r

 and spin projection sm . We use the atomic system of units and the 

energy is measured in Rydbergs (Ry). 
     In Born approximation, the amplitude of ionization is given by the expression: 
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and transferred momentum has the form 

kkQ
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−= 0 .                                           (3) 

Denote the scheme of reaction under consideration for helium atom as 
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     where 0k
r

, 1k
r

, k
r

 are the momenta of incident, ejected and scattered electrons, 
respectively. In Born approximation, the generalized oscillator strength for transition 
(GOS) has the form [1]: 
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     In this formula, 22
0 kkE −=  is the energy loss; kkQ

rrr
−= 0  is the transferred 

momentum; 01 : LSElnl  is the wave function of helium atom with total angular 

momentum L  and spin 0S .  

    Further, the electron with momentum l  and the energy E  is in the field of Не+ ion 
with electron having the quantum numbers nl . The helium ground state wave 

function is 00 LSn . The formulae for calculating GOS transitions in the continuous 

spectrum are given in the paper [2]. The ground state wave function was taken as the 
41-parametric Tweed’s wave function [3]. The summation over total angular 
momentum of helium was restricted by the contribution with 3≤L . 
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Mathematical formulation 
Usually the multi parametric wave function is taken for the description of helium 
atom ground state. It is due to the fact that the presence of only two electrons in only 
one atomic shell leads to the importance of correlations in the ground state. The 
criterion of choosing one or another wave function is the value of energy of the 
atomic ground state, which is obtained in the calculations on the basis of one or 
another wave function. Usually the Hylleraases multi-parametric wave functions (6-, 
8- or 56-parametric) [4], Tweed’s 41-parametric [3], or multi-configuration Hartree – 
Fock wave function [5] are used for systematic exact calculations. For simplified 
calculations the single configuration Hartree – Fock approximation, the Eccart’s wave 
function, etc., are used. 
     We have take the 41-parametric Tweed’s wave function for the description of He 
atom ground state. This wave function has the form: 
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,
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nm

nm
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Here, according to [3], l, m, n, k are the parameters. 
     The four channels of direct ionization are opened in the region between the second 
and third thresholds. These channels are related to the electron over ground and first 
exited state of residual ion Не+. The investigations of the processes of inelastic 
electron scattering on He ion [6,7] and photoionization processes [8-10] demonstrate 
that the coupling of these open channels is close. Therefore, the wave function of 
ionized helium is calculated within the framework of integral formulation of the open 
channel close coupling method in the description of direct ionization of helium by fast 
electrons in the region above the threshold of excited ions formation. In order to 
determine the K-matrix of the electron scattering on the ion Не+ the system of three 
integral equations is solved for 0=L  and the system of four integral equations is 
solved for 3;2;1=L . The explicit form of such equations is given in the paper [9]. In 
solving the system of equations for the K-matrix the solutions of single channel 
Schrödinger equation with shielded Coulomb potential are used as the basis functions 
for the description of electron in the continuous spectrum. 
     The helium atom states in the region of continuous spectrum, where the 
autoionizing states (AIS) which converge to the third threshold are located, are 
described by some wave function. This wave function takes into account all inter-
configuration interactions from finite number of basis configurations, which 
correspond to two electron excitations in the region between the second and third 
thresholds (closed channels) and the electron with positive value of energy above the 
ground and the first excited state of Не+ (open channels). The states with total angular 
momentum of the helium 3≤L  are taken into account. 
     The subspace of closed channels is filled by twenty configurations for every 
angular momentum L  and the Coulomb wave functions with the charge 2=z  are 
used as the basis functions for their description. After that the subspace of these states 
is preliminary diagonalized. The subspace of open channels includes three 
configurations for 0=L  and four configurations for other angular momenta L . It 
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corresponds to the inclusion into calculation of the channels, which are related to the 
ground and the first excited state of Не+ ion ( Lsε1 , Lsε2 , )1(2 −Lpε , )1(2 +Lpε ). 
     The problem of description and interpretation of cross section structure for the 
resonant processes is reduced to the determination of the curves of the corresponding 
cross sections and resonant-state characteristics. The estimation of contribution of 
each quasi-stationary state into the curve formation is the main problem in the atomic 
spectra interpretation in the region above the ionization threshold. The overlapping 
sets of resonances are found in the spectra of many atoms. Although the experimental 
resonant structure consists of separate asymmetric peaks, the identification of such 
peaks with the isolated resonances is sometimes not enough justified [10]. The 
parameters, which characterize the calculated resonant structure and which are 
obtained by the FUMILI fitting method, sometimes are not related to the real states of 
the given system. 
     Consider the description of the formalism of the method of interacting 
configurations in complex number representation for the problem of atom resonant 
ionization by electron impact.  
     We suppose that the state of the N-electron system in the field of the nucleus 
having the charge Z is described by the set of wave functions obeying the stationary 
Schrödinger equation: 

),...,,(),...,,(ˆ
2121 njEnjE rrrErrrH

rrrrrr Ψ=Ψ .                                                           (7) 

     In this formula, Ĥ is the Hamiltonian of the system, which explicit form is 
determined by each particular physical problem, ir

r
 is the set of coordinates of i-

marked electron, Е is the total energy of the system. 
     In this section, we will find such solutions of the equation (7), which corresponds 
to the states of the atom with one electron in the continuous spectrum. Consider the 

Hamiltonian Ĥ  of the system as the sum of two operators 0Ĥ  and rV̂ . Let 0Ĥ  be the 

model Hamiltonian of the system. The set of eigenfunctions of the operator 0Ĥ  may 
be presented in a form of unification of two subspaces, which determine the sets of 
states of discrete and continuous spectra, respectively. Let us denote these subspaces 

as D and C. The matrix of the Hamiltonian Ĥ  in the representation of the 0Ĥ  

operator may be written in the following form: 
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H
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     where DDĤ  and CCĤ  operators are the projections of the Hamiltonian Ĥ  on the 

subspaces D and C. The matrices of the operators DCV̂  and CDV̂  characterize the 
interaction between the subspaces of discrete and continuous states. 
     Denote the sets of the wave functions of discrete spectrum as n  and as Eλ  that 

of the continuous spectrum as Eλ . Let these functions obey the following condition:  
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nmn
DD EnHm δ=ˆ ; )(ˆ EEEEHE CC ′−=′′ ′δδλλ λλ .                                (9) 

     Using the technique of Feshbach’s projective operators [11,12] one may show that 
the solutions of the equation (9) have the following properties: 

EHnHEn DDCC λλ ˆ;0ˆ;0 == =0;                                                          (10a) 

;nmmn δ=                                                                                                 (10b) 

).( EEEE ′−=′′ ′δλλλ λλ                                                                           (10c) 

     It follows from here that the set of the wave functions n ∪ Eλ  is the complete 

orthonormalized system and satisfies the Fano conditions [13,14]. In the 
representation of this basis the matrix of the Hamiltonian Ĥ  is written in the 
following form: 
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     The comparison of this formula with (8) gives the possibility to separate the 

interaction in the form of the sum of model Hamiltonian MH 0
ˆ  and so-called residual 

interaction r
MV̂ . Therefore one obtains 
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     The Schrödinger equation with the Hamiltonian Ĥ  in the representation (12) 
transforms into the system of integral-algebraic equations: 
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     where і is the index of linearly independent solution of the system of equations 
(13); we will omit this index below. Index λ marks the channel of the scattering 
reaction and determines the asymptotic of the wave function and quantum numbers of 
the “ion + electron” system in the continuous spectrum. E

maλ  and )(Eb E ′′λλ  are the 

coefficients of the wave function ),( 21 rrE rr
λΨ  expansion in the basis of the states of the 
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discrete n  and continuous Eλ  spectra. λnV  is the matrix element of CDV̂  operator; 

)(EVnλ = )(* EVnλ . 

Recall that according to Fano [13,14]: 
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     It is shown also in the well-known Fano’s paper that the problem of finding the 
coefficients E

maλ  and )(Eb E ′′λλ  is solved analytically, if one restricts oneself to the 

single member in the expansion (14).  
     In order to provide the calculation of quasi-stationary states characteristics the 
fulfilling of the normalization condition for the function ),( 21 rrE rr

λΨ  on the δ-function 

over energy should be demanded. Moreover, the problem of description of the partial 
oscillator strengths of transition (or the ionization cross sections) needs taking into 
account the corresponding asymptotic boundary conditions. These conditions allowed 
putting into correspondence to the index of linearly independent solution of the 
system (13) such set of the quantum numbers, which characterizes the channel under 
consideration. According to the Burke’s paper [15] the system of the wave functions 
in the representation of the total angular momentum, which have the following 
asymptotics 
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corresponds to the ionization problem. Here −ff MLj ,,  are the quantum numbers, 

which characterized the ion; −μλ,  are the quantum numbers of the ejected electron; 

−Ψ − ),...,( 11 NMjL rr
ff

rr
is the wave function of ion; 
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f

f
S

λ
λ′′′  is the scattering S-matrix, 
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+=θ  z' is the ion charge in the infinity. 

     In order to construct the set of the wave functions ),( 21 rrE rr
λΨ  with the asymptotic 

behavior (15) one has to determine the asymptotic properties of the basis Eλ  

functions and to chose the corresponding method to go around the poles for the 
solutions of the system (13). It is known from the quantum scattering theory (see, e. g. 
[16]) that the method of going around the poles below corresponds to the set of wave 
functions with the asymptotics (15). 
     Using the formula for calculating the Cauchy type contour integral, we can present 
the formal solution of the system of equations (13) in the following form:  
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     The choice of the sign near ( πi± ) determines the method of going around the 
poles “behind” or “below”. The matrix λλ ′A  depends on the asymptotic properties of 

the basis Eλ  functions. The difference with Fano’s method is as follows. Fano put 

the real quantity instead of the square brackets. 
     The substitution of the expression (16) into the system of equations (13) leads to 
the system of inhomogeneous algebraic equations with the complex matrix of 
coefficients: 
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     The procedure of solving this system is as follows. First we determine the 
eigenvectors and eigenvalues of the symmetrical complex matrix, which belongs to 
the left-hand part of the system (17). We denote this matrix as )(EWnm . 

)(EWnm = )()( EiEFE nmnmnmn γδ −+ .                                                            (18) 

     Since the elements of the matrix )(EWnm are the functions of the total energy Е, its 

eigenvalues and eigenvectors also depend on Е. Let )(EBnm  be the matrix of 

eigenvectors and )(Enη  be the vector of eigenvalues of the matrix )(EWnm . The 

matrix (18) is not Hermitian. Therefore, )(EBnm  and )(Enη  are the complex values. 

Denote: 
)(~)()( EiEEE nnn γη += ,                 (19) 

where .
2

)(~ EГ n
n =γ  

     It is known from the theory [17] that the following relation is valid for the 
eigenvectors of the symmetrical complex matrix: 

∑ =⋅
k

jijjkik EEBEB )()()( βδ ,                                                                       (20) 

where −)(Ejβ  is the complex vector, which depends on the normalization condition 

for the eigenvectors. Further we shall suppose that normalization for )(EBik is such 

that .1)( =Ejβ  

     The next step after determining the eigenvectors and eigenvalues for the matrix 
)(EWnm  is as follows. We shall find the coefficients E

maλ  of expansion and the 
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solution of the system of equations (17) in the form of linear combination of 
eigenvectors )(EBnm . Thus, 

E
maλ =∑

′
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m
mmm EMEB ).(
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)( λ                                                                       (21) 

     Substituting (21) into the system (17), together with taking into account that 
)(EBnm  are eigenvectors of the matrix )(EWnm , we determine the system of linear 

equations with respect to the coefficients of linear combination (21). Therefore, 
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     Multiplying left and right sides of the system (22) by matrix )(EBnm  and taking 

into account the property (20), we find the expression for )(
~

EM mλ : 
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λλ solution (23) determines the coefficients of the 

expansion with the accuracy to the matrix λλ′A . Further, the properties of the matrix 

λλ′A  depend on the asymptotic properties of the functions of the basis Eλ . The 

expressions for the coefficients of the expansion have the following form:  
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Taking into account (23), we have: 
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     It is convenient to introduce the matrix )(EM mλ , which is related to the matrix 
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~

EM mλ  by the relationship: 
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Thus, the link between the matrix )(EM mλ  and matrices λλ′A , )(EBnm , )(EVnλ  will 

be presented by the formula: 
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Moreover, 
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which is not valid for the matrix )(
~

EM mλ . 

     Let us determine the matrix λλ ′A . Substitute (23) and (24) into the expansion (14) 

for this purpose. In this case the explicit form of the solution of the Schrödinger 
equation is as follows: 
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If we consider now more convenient basis of the wave functions 
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then we get the expression (27) in the form: 

∑ ×
+−

+=Ψ −

m mm

mEE

EiГEEE

EM
rrrr

2/)()(

)(
),(),( 2121

)( λ
λλ ϕ rrrr

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′

′−
′

+× ∑ ∫
′

′′
′

′

∞
′

λ
λλλ

λ
λ ϕπϕϕ ),()(),(~)(

),(~
2121

0

21 rrEMiEdrr
EE

EM
rr E

m
EmE rrrrrr

.         (29) 

     The wave functions Eλ  and, therefore, ∑
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channel functions, so the expression for their asymptotics may be presented in the 
form 
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     The matrices a~  and b
~

 are determined from the normalization condition for the 

function Eλ  on the δ-function over energy. With respect to these matrices the 

normalization condition will have the following form: 
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     If the wave functions Eλ  obey the condition (14), the matrix iAλ  will have the 
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     Here the set of quantum numbers, which is determined by the relation (15), is put 
into correspondence to the λ index. In order to calculate the oscillator’s strength (or 
cross section) for ionization the amplitude of ionization should be determined. As it is 
known the amplitude of ionization may be written in general case in the following 
form: 
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which determines the wave function of atom in the initial state, С(Е) is the kinematic 
factor. 
     The substitution of expressions (33)-(34) into (35) determines the partial 
amplitudes of resonant ionization: 
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The following relations determine the quantities, which are written in (37): 
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     The partial differential oscillator strength of the transition to the channel of 
ionization λ is proportional to the square of the module of the expression (37). The 
summating all partial contributions over the index λ fulfills the calculation of the total 
ionization cross section λ. We select some group of channels among all the channels 
taken into account in the problem. Let Δ be the set of the channels of the reaction, and 
α be some subset of the set Δ, so that α∈Δ. Differential oscillator’s strengths for 
transition with excitation of channels, which are characterized by λ∈α index, are 
written as follows: 
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     where )(EG  is the normalization factor, linking the cross section with the 
differential oscillator’s strength for transition in the following way: 
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or 
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     Further, we transform the expression (42) to the form, which is similar to Shore’s 
parametric formulae [18] in the non-overlapping resonance approximation 
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     The real functions of the total energy )(EPmλ  and )(EQmλ  are the double parts of 

the real and complex parts of the complex function )(ENmλ , where the last one has 

the following form:  
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     Therefore, the resonant ionization cross section is determined by the set of the 
following functions of the total energy: )(Edir

λσ ; )(EN mα ; )(Emε ; )(EГm . 

 the basis of the formula (43) one may come to the system of characteristics of 
interacting AIS, which are similar to the parameters introduced by Fano [13,14] for a 
single isolated resonance, i. e.: 
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     Thus, the argument of the complex function )(ENmα  is determined in different 

ways, with the accuracy to kπ (where k is integer real number, k>0). Therefore, two 
sets of characteristics given by relations (45), (46) correspond to each value of the 
function )(ENmα . The functions (45), (46) may be easily presented over 

)(ENmα =2( ))()( EQEP mm αα + . Then the parameters will have the following form: 
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     In the case of isolated resonance both systems of functions )()( Eqm
±
α  and )()(2 Em

±
αρ  

have a simple geometric sense. The quantities )()( Eqm
±
α  determine the distance 
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between the extremums of the resonant curve and the resonance position Еm )
~

( mE . 

The quantities )()(2 Em
±

αρ  are determined with respect to background of the amplitude 

of extremums. In the case of few interacting autoionizing states such interpretation of 
the functions (47), (48) is approximate. The set of functions (47), (48) in Fano’s 
theory is determined exactly from the condition 02 >ρ , which in our notation 
corresponds to the choice (+) of the sign. Therefore, the expression for the calculation 
of cross sections will have the following form: 
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     Dependent of the definition of the subset of the channels α the formula (49) will 
describe either total or partial characteristics of excitation of atomic quasi-stationary 
states. 
     Consider the spectroscopic characteristics of interacting quasi-stationary states in 
total and partial differential oscillator’s strength for transition. It follows from the 
expressions (40), (41) і (49) that the excitation and decay of m-number quasi-
stationary state over the group of channels α∈Δ is characterized by two complex 

functions: )(EN mα  і )(
2

)()( EГi
EEE mmm −=η . The functions )(Emη  enter the 

expression for the S matrix of resonant scattering. The zeros of these functions on the 
complex energy plane determines the poles of the scattering S-matrix, which 
correspond to the excitation of the quasi-stationary states of scattering matrix 
corresponding to the quasi-stationary state excitation. According to the results of 
Siegert’s paper [19], the real part of the complex energy pole determines the position 
of the resonance and the complex part determines its width. Hence, the problem of 
finding the positions and widths of resonances is reduced to finding the solutions of 
the system of non-linked complex equations: 

0)(
2

)( =+− EГi
EEE mm .                                                                            (50) 

     The equality (50) is valid only for the complex energy values Е. Solving the 
equations (50) needs analytical extension in the problem of construction of 
eigenvectors and eigenvalues of the complex matrix )(EWnm  (18) with the complex 
values of the energy Е. The real and imaginary parts of this matrix are linked between 
each other by the Gilbert transformation. Therefore, the following matrix  

)(EW z
nm = ∫

∞

∞−

′
′−+

′
+ Ed

EiEE

E
E nm

nmn
21

)(γδ                                                           (51) 

will be the analytical extension of )(EWnm  on the whole complex plane of the energy 
Е=Е1+іЕ2. 
Using the relations for the closed path integral of Cauchy type we show that 
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)(EW z
nm 02 ±→→E )()( 1 EiEFE nmnmnnm γδ ±+ .               (52) 

     The positions of the poles are determined by the values Е1 and Е2, at which the 
matrix )()( 2121 iEEWiEE z

nmnm +−+δ  degenerates.  

     The condition of the matrix degeneration is the equality to zero of its determinant. 
From this condition the system of equations for determining the complex energies of 
quasi-stationary states follows. 
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     Hence, the system of equations (53) must be solved in order to determine the 
position and width of m-resonance.  
     As it was mentioned above introduction of the system of spectroscopic parameters, 
which characterize the profiles of autoionizing states in the ionization cross section, 
corresponds to the possibility of using the resonant approximation in the formulae 
(42) - (48).  
     In the case when this approximation may be used, the positions and widths of the 
resonant states may be found from (53) in the first order of perturbation theory. Let us 
find the solutions of the following equations: 
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     We consider the solutions of these equations as the positions of the autoionizing 

states. The widths are determined as the value of the function Гm(E) with mEE
~= . 

The parameterization of the functions )(ENmα  is also fulfilled at mEE
~= . From here 

we find the expressions  
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for the differential oscillator’s strengths. 
     The validity of parameterization introduction should be analyzed in each particular 
physical problem by exact calculation of the functions )(ENmα  and )(Emη . It is often 

necessary to determine the partial widths of quasi-stationary states decay via few 
decay channels in the calculation of autoionizing states excitation differential 
characteristics.  
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     In diagonalizing approximation the partial width is introduced over the matrix 
element of decay in the following way: 
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αλ

α λεπ
є

m VmEГ
)
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     The total width corresponds to ))()(
~

( EГEГ mm Δ=Δ=α . In the case of interacting 

quasi-stationary states we introduce the partial widths similarly to the diagonalizing 
approximation (58), i. e.: 
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     The above- formalism is realized in the special program complex using the 
programming language FORTRAN-77. It consists of the following parts. 
     1. The programs of calculations of the matrix elements ( ),  ( )nm nV E V Eλ  and 

( )V Eλλ′  are created and used. The Coulomb and Hartree – Fock functions may be 

chosen in these programs as the wave functions for the calculation of the matrix 
elements. The functions of the continuous spectrum are calculated in the shielding 
potential. 
     2. The program of constructing the previous diagonalizing states of the continuous 
spectrum of the atom is realized. The working algorithm of this program is based on 
the solution of the system of integral equations like (13) by means of the successive 
approximation method or on the reduction of this system to the system of algebraic 
equations. We have found the amplitudes describing the direct process of atom (or 
ion) excitation with the inclusion of the coupling of the channels, see (38). (39). 
     3. The next block of programs consists of the algorithms of calculation of the 
energy dependence of the parameters of ( ),  ( ),  ( ),  ( )n n m mE E Γ E N E H Eλ λ . Further, 

Fano’s and Shore’s parameters are calculated for any AIS, the GOS are found and the 
cross sections in the resonant approximation are obtained. 
     The connection between the programs is provided via the database, which is 
located on the hard disk with direct access and is specified for the work with such 
complex of programs. 
 
 
Results of calculations 
Below we demonstrate that this formalism enabled us to fulfill precise calculations of 
the positions (as well as of the total and partial widths) of AIS in the problem of 
electron-impact ionization of atoms and ions. 
     For example, we present the calculated positions, total and partial widths for the 
problem of helium atom ionization above the second ionization threshold, i. e. 
between the second and the third helium ionization thresholds. In this region, the AIS 
are located, which decay into three open channels for the S-terms and into four open 
channels for the P, D, F- terms. 
The numerical values of calculated quantities are presented in tables 1 – 4. 
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Table: 1 
 

N п/п Er , eV Гr , eV 1sεs 2sεs 2pεp 
1 69.39400 0.08235 0.00264 0.07904 0.00067 
2 70.48503 0.17282 0.00659 0.04469 0.12154 
3 71.40519 0.04091 0.00269 0.03755 0.00067 
4 71.91078 0.04045 0.00226 0.01187 0.02632 
5 72.07814 0.01973 0.00155 0.01767 0.00053 
6 72.24057 0.01974 0.00002 0.00038 0.00006 
7 72.33661 0.01643 0.00117 0.00487 0.01038 
8 72.40086 0.01048 0.00087 0.00926 0.00035 
9 72.48489 0.00058 0.00001 0.00047 0.00010 
10 72.54845 0.00812 0.00067 0.00259 0.00486 

Positions, total and partial widths of ten lowest 1S resonances. 
 

Table: 2 
 

N п/п Er , eV Гr , eV 1sεp 2sεp 2pεs 2pεd 
1 69.91937 0.16584 0.00033 0.03206 0.09450 0.03899 
2 71.24768 0.00101 0.00001 0.00063 0.00027 0.00011 
3 71.47437 0.06436 0.00011 0.00240 0.00368 0.05817 
4 71.66483 0.06522 0.00033 0.01596 0.04076 0.00818 
5 71.78036 0.00066 0.00001 0.00007 0.00003 0.00057 
6 71.02307 0.00070 0.000001 0.00042 0.00023 0.00005 
7 72.20032 0.02446 0.0000001 0.0000001 0.00543 0.01903 
8 72.25068 0.03066 0.00025 0.00937 0.01938 0.00166 
9 72.26011 0.00040 0.0000001 0.00006 0.00006 0.00028 
10 72.37193 0.00046 0.000001 0.00006 0.00017 0.00023 

Positions, total and partial widths of ten lowest 1P resonances. 
 

Table: 3 
 

N п/п Er , eV Гr , eV 1sεd 2sεd 2pεp 2pεf 
1 69.66939 0.15198 0.00001 0.00342 0.14499 0.00356 
2 70.50481 0.12298 0.00076 0.00837 0.11141 0.00244 
3 71.22368 0.01108 0.00227 0.00306 0.00332 0.00244 
4 71.54640 0.21438 0.00571 0.00076 0.20598 0.00193 
5 71.56122 0.03308 0.00018 0.00776 0.02507 0.00008 
6 71.91431 0.02680 0.00111 0.00740 0.01595 0.00234 
7 72.12195 0.02845 0.00445 0.01443 0.00679 0.00278 
8 72.14948 0.06274 0.0000004 0.00327 0.05909 0.00038 
9 72.18266 0.00749 0.0000003 0.00111 0.00631 0.00007 
10 72.25821 0.04451 0.00032 0.00012 0.04336 0.00071 

Positions, total and partial widths of ten lowest 1D resonances. 
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Table: 4 
 

N 
п/п 

Er , eV Гr , eV 1sεf 2sεf 2pεd 2pεg 

1 70.88120 0.08686 0.00006 0.03679 0.02921 0.02079 
2 71.48071 0.00495 0.0000001 0.00185 0.00244 0.00065 
3 71.99411 0.02403 0.00002 0.00749 0.01043 0.00608 
4 72.13817 0.00074 0.0000004 0.00054 0.00016 0.00004 
5 72.13959 0.00347 0.000002 0.00160 0.00128 0.00058 
6 72.37193 0.01244 0.00001 0.00334 0.00594 0.00314 
7 72.43971 0.00085 0.0000003 0.00075 0.000001 0.00011 
8 72.44394 0.00182 0.0000006 0.00070 0.00066 0.00046 
9 72.47220 0.00001 0.000003 0.00001 0.000001 10-8 
10 72.59225 0.00862 0.00001 0.00168 0.00559 0.00134 

Positions, total and partial widths of ten lowest 1F resonances. 
 
 
Conclusions 
1. The method of interacting configurations in the complex number representation is 
formulated. The basis Fano’s general assertions [13,14] and complex energies 
formalism of Siegert’s [19] are used in the development of the method. The method is 
applied to the description of the total and partial differential oscillator’s strengths of 
the transitions into the continuous spectrum in the problem of electron impact 
ionization of atoms. The method is formulated without any appealing to the particular 
form of inter-particle interaction operator. Therefore, this method may be applied to 
other problems, e. g., to the nuclear physics and quantum chromodynamics problems. 
     2. The choice of the helium atom ground state function is substantiated, its 
particular form is verified. The proof of necessity of using in calculations the multi-
parametric class of Tweed’s [3], Hylleraases [4], etc, wave functions is given. 
     3. The method of the wave function construction, which diagonalizes the state 
subset of the continuous spectrum of the considering system Hamiltonian in the wide 
energy range including single particle decay thresholds, is developed and realized. 
     4. The parametric expressions for GOS of transition into the continuous spectrum 
of an atom in the energy range above the threshold of the excited ion generation are 
found. Hence, the calculation of cross sections in the problem of electron impact 
ionization of atoms is essentially simplified. In particular, the dependence of 
resonance parameters from the transferred momentum in the spectra of losses are 
analyzed. 
     5. The method of interacting configurations in the complex number/energy 
representation has a high precision in the problem of determination of positions and 
widths of AIS in the processes of ionization of the atoms by photons, electrons and 
other particles. Nevertheless, the precision of the calculations depends on the choice 
of the wave function of the ground state of the target. As the analyses of the results of 
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the calculations demonstrates the wave function of the ground state of the target 
should reproduce with the high precision the energy of the ground state of the target. 
     The method of interacting configurations in the complex number representation is 
the further development and generalization of the method of interacting 
configurations in the real number representation. The advantages of this method in 
comparison with hyperspherical coordinates (HSC), closed coupling approximation 
(CCA), R-matrix and some other methods are as follows. First it is the absence of 
difficulties with the identification of resonances (of AIS), further we may mark the 
possibility of finding here the widths of quasi-stationary states, which is a 
problematical task in such methods as HSC, CCA and others. 
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