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A bithreshold approach in neural computations provide us with the more powerful neural units than 

classical thresholds ones [1, 2]. The advantage of the expressive power of multithreshold elements was estimated 

in [3]. We consider 2-layer neural networks consisting of the simplest multithreshold elements, namely, 

bithreshold units. We show that the use of bithreshold neurons instead of single-threshold units allows to halve the 

size of the hidden layer. 

A computation unit with n real inputs nxx ,...,1  and single output y is said to be a bithreshold neuron (BN) 

with the weight vector   n
nww R,...,1 w  and thresholds  2121 R, tttt   if  xw 

21,ttfy  [2], where xw   

is the dot product of the vectors w and x ,
21,ttf  is the bithreshold activation function defined in the following way: 
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The BN is completely defined by the structure vector  21,, ttw . 

 Let us consider a two-layer feedforward fully-connected bithreshold neural network (see Figure 1). It has 

n nodes in the input layer, several bithreshold neurons in the hidden layer and a single threshold neuron in the 

output layer. A bithreshold neuron can be conveniently represented graphically as shown in Figure 1. 

 

 

 

Fig. 1. A two-layer bithreshold neural network with a single output 

 

 We are interested in finding a computationally efficient algorithm for training network to compute an 

arbitrary dichotomy (A+, A−) of the finite set A [4]. We adopt Baum’s idea [5] in the algorithm design. 

Suppose that all patterns of the finite set A are in the general position in n-dimensional space (i.e., every 

subset of n or fewer vectors is linearly independent) and |A| = m. Without loss of generality we can assume that 

  AA , . Consider the following algorithm: 

Stage 1. Initialization 

1.1. 0k  

1.2. if 
  AA  then 
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1,,   vACAB  

   else 

1,,   vACAB   

Stage 2. Construction of the hidden layer 

 2.1. 1 kk   

2.2.  Bnr ,min  

 2.3. Extract r pattern from B to X  

 2.4. Find a solution w of the linear system riXii ,1,,1  xwx  

 2.5.  C xxw 1min  

 2.6.   1\ xwx BBB  

 2.7. Add the BN with the structure    1,1,w  in the hidden layer 

 2.8. If B , then go back to step 2.1 

Stage 3. Definition of the output neuron 

Add to the network the output threshold unit with k-dimensional weight vector  vv ,,  and 

threshold  vk 5.0 . 

In our algorithm k denotes the index of the BN, which will be added in the network. The parameter   can 

be considered as a tolerance measure of our bithreshold networks. If 10  , then the network performs well on 

training set (training error is near 0) but can be “overfitted” and less effective outside the training set. If   is 

slightly greater than 1, the network can have the better generalization ability. 

Proposition. An arbitrary dichotomy of m-set of n-dimensional vectors in general position can be computed 

by two-layer bithreshold neural network with at most  )2/( nm  neurons in the hidden layer for which there exists 

 22 mnmO  -time learning algorithm. 

It should be noted that our algorithm is not valid in the degenerate case. Numerous modification of the 

stage 2 can be proposed. For example, we can add some noise to our data for the purpose of avoiding the 

degeneracy. 

Note that our algorithm appears to be more like synthesis than learning, because we change the structure of 

the network on each iteration of the stage 2. But we can predefine  )2/( nm  nodes in the hidden layer and use the 

parallel implementation of the stage 2. 
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