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Abstract
We construct a relativistic potential quark model of D, Ds, B, and Bs

mesons in which the light quark motion is described by the Dirac equation
with a scalar-vector interaction and the heavy quark is considered a local
source of the gluon field. Within the quasiclassical approximation, we ob-
tain simple asymptotic formulas for the energy and mass spectra and for the
mean radii of D, Ds, B, and Bs mesons, which ensure a high accuracy of cal-
culations even for states with the radial quantum number nr ∼ 1. We show
that the fine structure of P-wave states in heavy-light mesons is primarily
sensitive to the choice of two parameters: the strong-coupling constant αs

and the coefficient λ of mixing of the long-range scalar and vector potentials
Sl.r.(r) and Vl.r.(r).

1 Introduction
The heavy-light quark-antiquark (Qq̄) systems, being QCD analogues of rela-

tivistic hydrogen-like atoms, are ideal objects for investigations and permit verify-
ing quantum theory results very precisely experimentally. Theoretical description
of the mass spectra and decay probabilities of such composite objects requires
constructing a consistent theory of bound states, which should be based on the
fundamental principles of local quantum field theory and use its apparatus [1].
But calculating these characteristics of composite systems directly in the local
quantum field theory is not always possible, because the only known calculation
method in this theory is still based on the perturbation theory, while the nature
of creating a bound state of interacting particles must undoubtedly be determined
by nonperturbative effects.

The Dirac equation with a mixed scalar-vector interaction plays an important
role in the contemporary development of the relativistic theory of bound states.
It is valuable because it provides an adequate mathematical model for a wide
circle of problems in hadronic physics in which it is possible to transit consistently
from a two-particle problem to the external field approximation. This equation
indicates the presence of the spin and spin moment for the quark and antiquark,
and the problems of describing fine and superfine structures in the energy spectra
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of heavy-light (Qq̄) mesons, which are the QCD analogues of hydrogen-like atoms,
arise naturally from this equation.

The mathematical theory of the Dirac equation with a scalar-vector interaction
was developed in [2] (see [3, 4, 5] for a detailed bibliography). But in most cases,
attempts to construct exact solutions of this equation for more or less realistic po-
tentials encounter difficulties that have not yet been overcome. When constructing
approximate methods for investigating bound states of the Dirac equation, non-
perturbative methods, in which the expansion parameter in the potential is not
considered small, are especially important. One of the most widely used among
these methods is the method of asymptotic expansion in the Planck constant ~,
which is called the quasiclassical approximation.

The construction of quasiclassical solutions of the spinor equation with a scalar-
vector interaction was reported in [6, 7]. The scheme of quasiclassical quantization
proposed in [7] allows to make clear a connection of quasiclassical asymptotic
behavior in spectral problems for the Dirac equation in external scalar and vector
fields with the Lorentz structure of interaction potentials corresponding to them.

2 Quasiclassical approximation for the Dirac equa-
tion with a vector and scalar interaction potential

The problem of describing the motion of a relativistic spin-1/2 particle in a
central field composed of scalar and vector external fields after the separation of
variables reduces to solving the system of radial Dirac equations (c = 1)

~
dF

dr
+ k̃

r
F − [(E − V (r)) + (m+ S(r))]G = 0,

~
dG

dr
− k̃

r
G+ [(E − V (r))− (m+ S(r))]F = 0.





(1)

Hereafter, we use the notation F (r) = rf(r) and G(r) = rg(r), where f(r) and
g(r) are the radial functions for the respective upper and lower components of the
Dirac bispinor [8], E and m are the total energy and rest mass of the particle, S(r)
is the Lorentz-scalar potential, and the potential V (r) up to a multiplier coincides
with the zeroth (temporal) component of the four-vector potential Aµ = (A0,A),
where A = 0, V (r) = −eA0(r), and e > 0. In system (1), k̃ = ~ k, where the
quantum number k = ∓(j+ 1/2) for l = j∓ 1/2, j is the total angular moment of
the fermion, and l is the orbital moment (for the upper component of F (r)), and
hence |k| = j + 1/2 = 1, 2, . . ..

In [7] the system (1) was consecutively solved using the known technique of
left and right eigenvectors of the homogeneous system. For the effective potential
(EP) of the barrier type (see Fig. 1)

U (r, E) = E

m
V + S + S2 − V 2

2m + k2

2mr2 , (2)

semiclassical expressions were obtained for the wave functions in the classically
forbidden and permitted bands and also the quantization condition determining
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U (r, E)
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Figure 1: The form of the EP U(r, E) of the barrier type; r0, r1, and r2 are roots of the
equation p2 = 0.

the energy (position) of the bound state E in the mixture of the scalar and vector
potentials:

r1∫

r0

(
p+ k w

p r

)
dr =

(
nr + 1

2

)
π, w = 1

2

(
V ′ − S′

m+ S + E − V −
1
r

)
. (3)

Here, nr = 0, 1, 2, . . . is the radial quantum number, and

p(r) =
[
(E − V (r))2 − (m+ S(r))2 − (k/r)2]1/2 (4)

is the semiclassical momentum for the radial motion of the particle in the potential
well r0 < r < r1, where r0 and r1 are the turning points, i.e., the roots of the
equation p2(r) = 0.

The new quantization rule (3) differs from the standard Bohr-Sommerfeld
quantization condition [27] by the relativistic expression for the momentum p(r)
and by the correction proportional to w(r), which takes into account the spin-
orbital interaction and results in the splitting of levels with different signs of the
quantum number k.

3 The dependence of the EP U(r, E) on the Lorentz
structure of the external field

The simplest model of the interaction of a relativistic spin-1/2 particle simul-
taneously with both scalar and vector external fields, which we meet below when
calculating the quasiclassical spectrum of relativistic bound states (see Sec. 4), is
governed by the potentials

V (r) ≡ VCoul(r) + Vl.r.(r) = −ξ
r

+ λv(r),
S(r) ≡ Sl.r.(r) = (1− λ)v(r), v(r) = σr + V0,

(5)
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U (r, E)
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Figure 2: The EP U(r, E) of Dirac system (1) with potential (5) in the case where
λ < 1/2, σ > 0, and Ẽ > m̃; a, b, c and d are the quasimomentum roots in (8).

where V0 is a real constant, ξ is the Coulomb coefficient, and λ is the parameter
of mixing between the vector and scalar long-range potentials Vl.r.(r) and Sl.r.(r);
0 6 λ 6 1. Below in this section, we do not restrict the value or even the sign of
the parameter σ.

Our goal is to investigate the behavior of the EP U(r, E) at large and small r.
Substituting V (r) and S(r) of form (5) in (2) and keeping only the most singular
terms when r → 0 only the leading terms (in r) when r →∞, we obtain:

U (r, E) ∼





(1− 2λ)σ2

2m r2 + . . . , r →∞, λ 6= 1
2 , (6a)

E +m

2m σ r + . . . , r →∞, λ = 1
2 , (6b)

γ2

2mr2 , r → 0, γ2 = k2 − ξ2. (6c)

Let us now consider behavior of EP U(r, E) and wave functions at large dis-
tances r in more detail. First note that only the quadratic term (S2 − V 2)/2m
is essential in the asymptotic domain in formula (2) for λ 6= 1/2 and has the be-
havior (1 − 2λ)σ2r2/2m when r → ∞. It is hence obvious that for any sign of
the parameter σ, the EP U(r, E) of model (5) under consideration (at sufficiently
large distances) is an attractive potential for λ > 1/2 and a repulsive potential for
λ < 1/2.

It is clear from what was said above that for λ < 1/2, the EP U(r, E) of
model (5) is an unboundedly increasing (as r increases) confining potential with
only a discrete spectrum of energy levels; it is then essential that the quadratic
dependence of the EP U(r, E) on r (and hence the confinement property) appears
because of the relativistic terms (S2−V 2)/2m. An example form of the EP U(r, E)
for λ < 1/2 is shown in Fig. 2.

But for λ > 1/2 and an arbitrary value of σ 6= 0, the effective Hamiltonian
H of the squared Dirac equation in external field (5) has complex eigenvalues of
energy because the EP U(r, E) becomes negative in this case (at sufficiently large
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distances) and less than the effective particle energy Ē = (E2 −m2)/2m, which
corresponds to attraction. Therefore, for λ > 1/2, the EP U(r, E) of model (5) has
the form of a well separated from the external domain by a wide potential barrier
(for |σ| � 1; see Fig. 1). It is obvious that the leading contribution to forming the
barrier of the EP U(r, E) comes from the Lorentz-vector component Vl.r.(r) of the
long-range potential v(r).

We point out one more important particular case realized at λ = 1/2. Sub-
stituting potentials (5) with the value λ = 1/2 in expression (2), we see that the
quadratic dependence of the “tail” of U(r, E) on r disappears and the long-range
components Vl.r.(r) and Sl.r.(r) of the first two terms dominate EP (2) at large r,
which results in a practically linear dependence of U(r, E) on r (see (6b)).

4 Quasiclassical description of the energy spectrum
of heavy-light quark-antiquark systems

To use the potential approach to describe properties of heavy-light mesons, we
must construct the quark-antiquark interaction potential. As is known from QCD,
because of the asymptotic freedom property, the Coulomb-type potential of the
one-gluon exchange gives the leading contribution at small distances (r < 0.25 Fm).

As the distance increases, the long-range confining interaction (the confine-
ment), whose actual form has not yet been established in the QCD framework,
prevails. The confining potential may have a complicated Lorentz structure (see
[10, 11, 12, 13]). Therefore, we assume that the Qq̄ interaction is a combination
of the following potentials:

a. the one-gluon exchange potential VCoul(r) = −ξ/r, where ξ = 4/3αs, αs
is the strong coupling constant αs(Q) = 12π/[(33 − 2Nf ) log(Q2/Λ2)], Nf is the
number of quark flavors, and Λ = 360MeV is the QCD parameter,

b. the long-range linear scalar confining potential Sconf(r) =(1−λ) v(r), where
v(r) is determined by expression (5), and

c. the long-range linear vector potential Vconf(r) = λ v(r).
The total effective quark-antiquark interaction is then described by a combi-

nation of the perturbative one-gluon exchange potential VCoul(r) and the scalar
and vector long-range confining potentials Sconf(r) and Vconf(r). Therefore, the
potentials S and V are given by (5), where σ = 0.18GeV2 is the string tension,
V0 is the constant of the additive shift of the bond energy, and the coefficient
λ of mixing between the vector and scalar confining potentials is the adjustable
parameter, 0 6 λ < 1/2.

Choosing the mixing coefficient in the range 0 6 λ < 1/2 corresponds to the
scalar confinement prevailing. In this case, the EP U(r, E) of our model has the
form of a standard oscillator well with a single minimum (at the point rmin ≈
γ2/Ẽξ) and no maximums (see Fig. 2). The equation p2 = 2m(Ē − U(r, E)) = 0
determining the turning points then results in the complete fourth-degree algebraic
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equation r4 + f r3 + g r2 + h r + l = 0 with the coefficients

f = 2[m̃ (1− λ) + Ẽλ]
(1− 2λ)σ , g = − Ẽ

2 − m̃2 − 2ξσλ
(1− 2λ)σ2 ,

h = − 2Ẽξ
(1− 2λ)σ2 , l = γ2

(1− 2λ)σ2 ,

(7)

where Ẽ = E−λV0, m̃ = m+(1−λ)V0 are the characteristic parameters with the
respective meanings of the “shifted” energy and the “shifted” mass. This equation
has four real roots d < c < b < a determined by the equalities

a = −f4 + 1
2 (Ξ + ∆+) , b = −f4 + 1

2 (Ξ−∆+) ,

c = −f4 −
1
2 (Ξ−∆−) , d = −f4 −

1
2 (Ξ + ∆−) .

(8)

Here, we use the notation

Ξ =
[
f2

4 −
2g
3 + u

3

(
2
Z

) 1
3

+ 1
3

(
Z

2

) 1
3
] 1

2

, ∆± =
√
F ± D

4Ξ , D = −f3 + 4fg − 8h,

Z = v +
√
−4u3 + v2, F = f2

2 −
4g
3 −

u

3

(
2
Z

)1/3
− 1

3

(
Z

2

)1/3
,

u = g2 − 3fh+ 12l, v = 2g3 − 9fgh+ 27h2 + 27f2l − 72gl.

For the potentials under consideration, the quasiclassical momentum is deter-
mined by equalities (4) and (5). Using formulas (8), we represent it in the form
convenient for what follows (σ > 0 and σ < 0)

p(r) = |σ|
√

1− 2λ R(r)
r

= |σ|
√

1− 2λ
√

(a− r)(r − b)(r − c)(r − d)
r

. (9)

We integrate in quantization condition (3) over the classically allowed domain
between the two positive turning points r0 = b < r1 = a, while the other two
turning points (d < c < 0) are in the nonphysical domain r < 0. Using formula
(9), we transform quantization integrals (3) into the sum of the integrals

J1 =
a∫

b

p(r)dr = −|σ|
√

1− 2λ
a∫

b

(
r3 + fr2 + gr + h+ lr−1)

R
dr,

J2 =
a∫

b

k w

p(r)r dr = −k
2|σ|
√

1− 2λ




a∫

b

dr

(r − λ+)R +
a∫

b

dr

(r − λ−)R


 ,

(10)

where we introduce the notation

λ± = −
Ẽ + m̃∓

√
(Ẽ + m̃)2 − 4σξ(1− 2λ)
2σ (1− 2λ) .
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The particle energy spectrum is determined by quantization condition (3),
which, after quantization integrals (10) are evaluated (see Appendix in [14]), be-
comes the transcendental equation

− 2
√

1− 2λ√
(a− c) (b− d)

{
|σ| (b− c)2

<
[
N1F (χ) +N2E (χ) +N3Π (ν, χ) +N4Π

(c
b
ν, χ
)]

+ k

2 (1− 2λ) |σ| [(b− c) (N5Π (ν+, χ) +N6Π (ν−, χ)) +N7F (χ)]
}

=
(
nr + 1

2

)
π, (11)

where F (χ), E(χ), and Π(ν, χ) are the complete elliptic integrals of the respective
first, second, and third kind (see [15, 16]). The expressions for ν, χ, ν±, <, and
Ni (i = 1, . . . , 7) are collected in Appendix because they are rather cumbersome.

Finding an “exact” solution of Eq. (11) in the general case is, of course, impos-
sible. To construct the asymptotic behavior of the heavy-light meson energy levels
Enrk, it is necessary to apply asymptotic methods of calculation of quantization
integrals just as in Sec. 4 of [14]. This imposes some restrictions in calculation of
shifts of quasistationary levels and its widths for both small values of intensity s
of radial-constant (scalar-vector) long-range field and not too large ones. Namely,
the quantity m̃ = m + (1 − λ)V0 divides the range of Ẽ = E − λV0 into the two
domains, in which the energy levels has a various asymptotic behavior. Consider
some of the most typical situations connected with the relative values of the energy
Ẽ and level m̃.

Case A: Let σ > 0 and the conditions σ � ξm̃2 and Ẽ < m̃ be satisfied.
Estimating expressions (8) for the turning points in the approximation σ/ξm̃2 � 1,
we can easily obtain

a, b ≈ Ẽξ ± θ
µ2

[
1− Ẽξ ± θ

µ4

(
η1 ±

m̃ξη2
µ

)
σ

]
,

c ≈ −m̃− Ẽ
σ

− ξ

m̃− Ẽ
, d ≈ − m̃+ Ẽ

σ(1− 2λ) + ξ

m̃+ Ẽ
. (12)

Hereafter, we use the notation

θ=
√

(Ẽ k)2−(m̃ γ)2, µ=
√
m̃2−Ẽ2, η1=(1−λ)m̃+ λẼ, η2=λm̃+ (1−λ)Ẽ. (13)

It is also obvious from (12) that for small positive values of σ, the turning points
c and d are sufficiently far from the two points a and b and tend to −∞ in the
limit as σ → 0.

In this case, the derivation of asymptotic expansions of quantization integrals
(3) in a small parameter σ/ξm̃2 is carried out just as in item A of Sec. 4 of [14]
and gives the expression for the level energy

Enrk=̃E0+λV0+
σ

2ξm̃2

[(
ξ2m̃2

µ2
0
−k2
)
η10+

(
2ξ2m̃Ẽ0
µ2

0
−k
)
η20

]
+O

((
σ

ξm̃2

)
2
)
, (14)
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where Ẽ0 = m̃
[
1 + ξ2/ (n′r + γ)2

]−1/2
, n′r = nr+(1+sgn k)/2, and the quantities

µ0, η10, and η20 are obtained from µ, η1, and η2 by substituting Ẽ for Ẽ0. The
previously accepted condition σ > 0 is unnecessary here because this result remains
applicable also in the case of negative values of the parameter σ.

Case B: In the domain Ẽ > m̃ and σ > 0, which is of actual importance for
the physics of heavy-light mesons, a small dimensionless parameter σγ/Ẽ2 appears
in the spectral problem. Imposing the condition σγ/Ẽ2 � 1, we can easily obtain
the approximate expressions for the turning points from exact formulas (8):

a ≈ Ẽ − m̃
σ

+ ξ

Ẽ − m̃
, b, c ≈ −Ẽξ ± θ

Ẽ2 − m̃2
, d ≈ − Ẽ + m̃

σ(1− 2λ) + ξ

Ẽ + m̃
. (15)

As can be seen from these formulas, the turning points a and b are rather distant
from each other.

Further we shall give only the recipe of evaluation of the quantization integrals
J1,2. Just as in the item B of Sec. 4 of [14], we now find a point r̃ that divides
the integration domain b 6 r 6 a into the domain b 6 r 6 r̃ where the Coulomb
potential prevails and the domain r̃ 6 r 6 a where the long-range potential
v(r) prevails. The most natural seems to find a point r̃ where the long-range
potential v(r) is equal to the Coulomb potential. From this requirement, we have
r̃ ≈ (Ẽξ/η1σ)1/2. We calculate integrals (10) by expanding the quasimomentum
p(r) in a power series in the parameters r/a � 1 and r/|d| � 1 in the domain
b 6 r 6 r̃ and in the small parameters b/r � 1 and |c|/r � 1 in the domain
r̃ 6 r 6 a. When we add the asymptotic expansions of integrals over b 6 r 6 r̃
and r̃ 6 r 6 a, the final result will not contain the quantity r̃. So, we have
obtained the equation

η1
√
Ẽ2 − m̃2

2σ(2λ− 1) − η
(

η2
2

2σ(2λ− 1) + λ ξ

)
− Ẽξ√

Ẽ2 − m̃2
log
(

σ η2θ

4 e (Ẽ2 − m̃2)2

)

−γ arccos
(
−Ẽξ
θ

)
− sgn k

2 arccos
(−m̃ξ

θ

)
=
(
nr + 1

2

)
π. (16)

where η = (1 − 2λ)−1/2 arccos(η1/η2). If we expand the left-hand side of (16) in
m̃/Ẽ � 1 up to the terms of the third order, then we obtain the transcendental
equation for the level energy Enrk which we solve by the method of consecutive
iterations. Thus, we arrive at the expression for the energy (within O(σγ/Ẽ2))

E
WKB(as)
nrk

=ζ−1

{
B+
(
B2+ζ

[
2σ(1− 2λ)

(
ξ log σ|k|(1− λ)

4Ẽ(0) 2 + 3ξ + λξA+ πN
)

+λm̃2(1− λA)
])1/2

}
+ λV0, (17)
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where

ζ = (1− λ)2A− λ− 2σξ(1− 2λ)
Ẽ(0) 2 , B = (1− λ)(1− λA)m̃− 4σξ(1− 2λ)

Ẽ(0)
,

A =
arccos

(
λ

1−λ

)

√
1− 2λ

, N = nr + 1
2 + sgn k

4 + 1
π

(
γ arccos

(
− ξ

|k|

)
− ξ
)
,

and Ẽ(0) = E(0) − λV0. Here, E(0) is the zeroth approximation for the energy on
which the quantity Enrk depends rather weakly, and we can set E(0) ≈ Enrk(ξ)|ξ=0
in most cases.

We have obtained formula (17) for the energy levels Enrk, which depend non-
analytically on the string tension σ and which therefore cannot be obtained in the
perturbation theory framework.

The results of calculating the energy levels EWKB
nrk

and E
WKB(as)
nrk

based on
transcendental equation (11) and asymptotic formula (17) together with the exact
values of Enrk obtained by solving the Dirac equation numerically are presented
in Table 1 for nr = 0, 1, 2 and k = ±1,±2. In these calculations, we set the values
of αs, λ, V0, mu,d, and ms to those used in QCD to describe the states of B(bu or
bd) and Bs(bs) mesons. As can be seen in Table 1, the quasiclassical values EWKB

nrk

and EWKB(as)
nrk

ensure the respective 1% and 2% accuracies (except the energy of
states with the radial quantum number nr = 0, for which the accuracy of both
formulas is about 8%). The accuracy of determining Enrk from quasiclassical
formula (17) is therefore such that the first-order approximation usually suffices
for practical purposes.

5 The mass spectrum of heavy-light quark systems
In the leading order in 1/mQ, the mass spectrum of meson states with one

heavy quark is given by the expression [3, 17, 18, 19]

M theor
nrk (Qq̄) = Enrk +

√
E2
nrk
−m2

q +m2
Q, (18)

where mQ and mq are the masses of the heavy quark Q and the light quark q̄
constituting the Qq̄ meson. Calculating the mass spectrum of Qq̄ mesons therefore
reduces to consistently calculating the energy eigenvalues of Dirac equation (1) in
composite field (5) whose source here is the heavy quark Q.

Because the Hamiltonian of Eq. (1) does not contain terms describing the
interaction of the spin of the Q quark with the orbital and spin moments ~l and ~sq
of the light antiquark, both the spin moment ~SQ of the heavy quark Q and the total
moment ~j = ~sq + ~l of the light antiquark q̄ are two separate integrals of motion.
This allows classifying the states by the quantum numbers j = 1

2 ,
3
2 , . . . of the

operator of the total moment of the light antiquark q̄, while the states of the total
moment of the composite Qq̄ system ~J = ~j+ ~SQ are degenerate with respect to the
orientation of the spin ~SQ of the heavy quark Q. Two almost degenerate states of
the composite Qq̄-system with J = j ± 1/2 in the spin symmetry approximation
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Table 1: The results of calculating the level energies EWKB
nrk (based on transcendental equation

(11)) and EWKB(as)
nrk

(based on quasiclassical expression (17)) and also the exact values of Enrk

calculated at the parameter values αs = 0.3, λ = 0.3, V0 = −0.45GeV and mu,d = 0.33GeV,
ms = 0.5GeV (the energies are measured in GeV).

bu, bd bs

Lj (nr, k) Enrk EWKB
nrk

E
WKB(as)
nrk

Enrk EWKB
nrk

E
WKB(as)
nrk

S1/2 (0,−1) 0.4327 0.4408 0.4729 0.5248 0.5322 0.5623
(1,−1) 0.8796 0.8838 0.8943 0.9750 0.9791 0.9912
(2,−1) 1.1978 1.2009 1.2066 1.2946 1.2976 1.3049

P3/2 (0,−2) 0.7355 0.7373 0.7504 0.8376 0.8392 0.8460
(1,−2) 1.0880 1.0892 1.0947 1.5790 1.5900 1.1927
(2,−2) 1.3658 1.3667 1.3699 1.4650 1.4659 1.4685

P1/2 (0, 1) 0.7249 0.7293 0.7030 0.8235 0.8278 0.7985
(1, 1) 1.0701 1.0733 1.0594 1.1696 1.1728 1.1572
(2, 1) 1.3470 1.3496 1.3405 1.4466 1.4492 1.4390

D3/2 (0, 2) 0.9661 0.9671 0.9343 1.0655 1.0665 1.0315
(1, 2) 1.2588 1.2596 1.2385 1.3583 1.3591 1.3369
(2, 2) 1.5058 1.5066 1.4914 1.6052 1.6059 1.5901

[20] therefore correspond to each state of the Dirac equation with the given j and
with the spatial parity P = (−1)l+1.

The values l = 0 (S states in the quark-antiquark model) and j = 1/2− corre-
spond to the ground state of the Qq̄ meson. This doublet consists of two states
JP = (0−, 1−). In the case l = 1 (the P state in the quark model), we have two
states with j = 1/2+ and j = 3/2+ and two corresponding doublets JP = (0+, 1+)
and JP = (1+, 2+).

In actual Qq̄ systems, the degeneracy of doublet states corresponding to differ-
ent moments J = j ± 1/2 at the given j is broken primarily because of the ~sq ~SQ
interaction. Therefore, to be able to compare our theoretical predictions with ex-
perimental data, we present the observation values for the centers of masses of the
hyperfine structure (HFS) multiplets in Tables 2, 3; these centers of masses are
calculated by the known formula

Mexp =

∑

J

(2J + 1)MJ

∑

J

(2J + 1)
, (19)

where MJ is the experimental value of the mass of state with the given J .
Based on these observations, we have tried to describe the spectra of masses

of low-lying states of the heavy-light B(bū or bd̄), Bs(bs̄), D(cū or cd̄), and Ds(cs̄)
mesons considering σ and λ to be universal quantities and setting the values of
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the parameters αs and V0 constant in every family of heavy-light mesons allowing
them to vary slightly only when passing from one family to another.

We use only one a priori restriction: the value of the coefficient λ must lie in
the interval 0 6 λ < 1/2. Comparing the results of calculations based on formulas
(11) and (18) with the experimental data [21, 22], we find that the best agreement
is reached at λ = 0.3 and for the parameter choices

σ = 0.18GeV2, αs(cū or cd̄) = 0.386, αs(bū or bd̄) = 0.3,
V0(cū or cd̄) = −375MeV, V0(bū or bd̄) = −450MeV.

For the masses of u, d, s, c, and b quarks, we used their constituent masses
mu,d = 330MeV, ms = 500MeV, mc = 1550MeV, and mb = 4880MeV. The mass
spectra of D and Ds mesons calculated in this approximation are presented in
Table 2.
Table 2: The mass spectrum of D and Ds mesons obtained in the WKB approximation for
potentials (5) (masses are expressed in MeV).

D Ds

Lj (nr, k) Mnum Mtheor Mexp Mnum Mtheor Mexp
S1/2 (0, -1) 1989.1 2001.5 1971.1 2057.2 2069.0 2072

(1, -1) 2624.5 2632.3 < 2637 2729.4 2737.4 –
P3/2 (0, -2) 2440.1 2443.2 2447.3 2550.1 2552.1 2559.2(I) 2530.7(II)

(1, -2) 2979.7 2981.9 – 3105.2 3107.2 – –
P1/2 (0, 1) 2395.2 2403.7 2407.8 2499.7 2508.5 2423.8(I) 2480.9(II)

(1, 1) 2926.8 2933.4 – 3051.7 3058.5 – –

The agreement between the model and experiment is in the 3–5% range, ex-
cept for the masses of states P3/2 and P1/2 of the cs̄ system for which the mis-
match depends on the interpretation of the Ds1(2536)± meson with the mass
2535.35±0.34±0.5 MeV and is 10% if we consider it to be the vector state JP =
1+ belonging to the doublet j = 3/2+ (values (I) for Mexp in Table 2) (see
[23, 24, 25, 26, 27]) or 4% if we consider it to be the state JP = 1+ of the doublet
j = 1/2+ (see [28, 29]) (values (II) in Table 2). We note that our calculations
agree better with the second possibility.

For bū and bs̄ systems, we obtained a good agreement of our results with
the experimental data for the ground state with j = 1/2− and for the P state
with j = 3/2+ (see Table 3). For states in the doublet j = 1/2+, we have only
theoretical predictions of other authors. For the bū system, our results agree
with the data obtained in [30], and a remarkable agreement with the results in
[24, 25, 31] was obtained for the bs̄ system.

In the leading approximation (in 1/mQ), the wave functions and excitation
energies of the strange quark in the field of a heavy c or b quark reproduce the
corresponding characteristics of heavy-light mesons with light u and d quarks with
high accuracy. Therefore, up to an additive upward shift of masses on the value
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Table 3: The mass spectrum of B and Bs mesons obtained in the WKB approximation for
potentials (5) (masses are expressed in MeV).

B Bs

Lj (nr, k) Mnum Mtheor Mexp Mnum Mtheor Mexp
S1/2 (0, -1) 5320.7 5329.5 5313.5 5407.4 5415.6 5404.8

(1, -1) 5827.3 5832.2 – 5926.3 5931.2 –
P3/2 (0, -2) 5659.6 5661.6 < 5698 5763.7 5765.6 < 5853

(1, -2) 6076.9 6078.4 – 6185.5 6186.8 –
P1/2 (0, 1) 5647.4 5652.4 5751.6 [24] 5747.2 5752.2 5751.8 [24]

5624 [30] 5753.3 [25]
5700.5 [30]
5755.0 [31]

(1, 1) 6055.1 6059.0 – 6162.8 6166.8 –

of the current mass of the strange quark

ms ≈M [Ds]−M [D] ≈M [Bs]−M [B] ≈ 0.1GeV

the level systems for Ds and Bs mesons coincides with the respective level systems
for D and B mesons if we do not take the level splitting depending on the spin of
the heavy quark into account. Further, the spin-orbital splitting of lower states of
Ds and Bs mesons for the levels P3/2 and P1/2 is 35% larger than that of the D
and B mesons.

Summary
The most important results of investigation performed can be summarized as fol-
lows:

1. The relativistic potential quark model of Qq̄-mesons in which the light quark
motion is described by the Dirac equation with a scalar-vector interaction
and the heavy quark is considered a local source of the gluon field is con-
structed. The effective interquark interaction is described by a combina-
tion of the perturbative one-gluon exchange potential VCoul(r) = −ξ/r and
the long-range Lorentz-scalar and Lorentz-vector linear potentials Sl.r.(r) =
(1 − λ)(σr + V0) and Vl.r.(r) = λ(σr + V0). It is established that the quark
confinement arises always when the Lorentz-scalar part Sl.r. of the long-range
interquark interaction prevails the Lorentz-vector one Vl.r..

2. Approximative analytical expressions for energy spectrum of heavy-light
mesons obtained within quasiclassical approach at σγ/Ẽ2 � 1 are asymptot-
ically exact in the limit nr →∞ and ensure a high accuracy of calculations
even for states with the radial quantum number nr ∼ 1.

3. In the framework of the considered model we have obtained the satisfactory
description of the mass spectrum of D-, Ds-, B-, and Bs-mesons. We show
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that the fine structure of P-wave states in heavy-light mesons is primarily
sensitive to the choice of two parameters: the strong-coupling constant αs
and the coefficient λ of mixing of the long-range scalar and vector potentials
Sl.r.(r) and Vl.r.(r). There is the best agreement between the theoretical
predictions and experimental data when the mixing coefficient λ = 0.3.

Appendix
The quantities introduced in transcendental equation (11) have the form

ν=a− b
a− c , ν± = λ± − c

λ± − b
ν, < = (1− ν)

(
χ2 − ν

)
,

N1=
χ2 (b− c)

4 − 3ℵ (b− c)
8 (1− ν) −

(
χ2 − ν

)

2 (f + 3c)

+ <
(b− c)2

(
c3 + c2f + cg + h+ l/c

)
, ℵ = χ2 (3− 2ν) + ν(ν − 2),

N2=−
ν

2

[
f + 3c+ 3

4
(b− c)ℵ
<

]
,

N3=
1
2

[
3
4

(b− c)ℵ2

< + 2<
(b− c)

(
3c2 + 2cf + g

)

+ (b− c)
((

1 + χ2) ν − 3χ2)+ ℵ (f + 3c)
]
,

N4=−
<

(b− c)
l

bc
, N5 = [(b− λ+)(λ+ − c)]−1, N6 = [(b− λ−)(λ− − c)]−1,

N7=
2

(λ+ − c)(λ− − c)

(
c+ Ẽ + m̃

2(1− 2λ)σ

)
.
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