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An attempt to incorporate relativistic kinematics in the description of light
quark systems is made. It seems that the way of such an incorporation sug-
gested by R.Gaida and his collaborators is very promising. Comparison of
these results with the experimental data concerning a boson mass spec-
trum shows that this approach is among the best theoretical interpretations
of the data.
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Surprising success of non-relativistic quark models with a funnel or oscillator
potential in describing hadron mass spectra for heavy quark systems has inspired
the hope that at least some aspects of strong interactions are finally understood. A
good insight into the previous works concerning this subject is given in [1-3]. But
evidently the picture is not complete until it incorporates the light quarks u, d and
s. But this means that the problem is shifting into a quantum chromodynamical
sector. In this respect a search for the alternative possibilities of incorporating
relativistic kinematics is quite actual. A very promising approach to the solution
of the relativistic problem of interaction of two particles was recently suggested
by R.Gaida and his collaborators [4-7]. Their results can be directly applied to
our problem of calculating the mass spectrum of quarkonium as a system of two
quarks. A somewhat different approach was simultaneously developed by I.Todorov
and P.Bogolyubov [8-9], and later by E.Predazzi et al. [10]. In this work we shall
investigate the results concerning the application of their findings to light-quark
systems.
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First, let us follow the way suggested by Predazzi et al. [10-12]. Following the
ideas expressed in [10,11] and later developed in [12], let us start with the classical
expression for the relativistic total energy of a two-particle system with masses m
and M, respectively,

E:\/p%+m2+\/p%+M2, (1)
were p; = —p2 = p in the c.m. system. The main problem here is the mode of

inclusion of the interaction between the two particles. On the basis of (1) and
passing to quantum mechanics, Lucha and Schoberl [13] write for equal masses

(2\/p2 m? 4 v) U (r) = BV (r) 2)

which they call the spinless Bethe-Salpeter equation. They cunningly solve this
equation in the configurational momentum representation but do not obtain very
good results which we shall discuss later. But in any case we can state that it is the
way of introducing the interaction which is responsible for their failure. Therefore,
we propose here another way of introducing the interaction. Namely, following
Predazzi et al. [12] we linearize the expression

<E2+m2—]\/[2

2
2 2
e R 6

which follows from (1) after simple algebraic transformations and obtain

<E2—|—m2—]\/[2

s ) W (x) = (acp + fmc + T ) (1), (1)

where o and [ are the usual Dirac matrices, ¥ is a four-component wave function
for which we shall use the two-component representation ¥ (r) = ( i E;g ) . In the
general case we would have to decide on this stage what kind of Lorentz-transform
properties we shall ascribe to the interaction.

In general, the interaction can transform either like a Lorentz-scalar (like mass)
or be a 4th component of a Lorentz-vector, i.e. transform like energy. Then we shall
consider the interaction V' as a mixture

V =4S -(1—¢)+1V -¢, (5)

where ¢ is some mixing parameter. In what follows we shall simplify the expression
for V by taking ¢ = 1/2 (which is suggested by the experimental data (see e. g.
[14] and [15]) which means that (5) can be written in the form:

V=lenwes) (©

This form is chosen in order to obtain the simple nonrelativistic result V=Vif
there is no difference between S and V. Such a potential was introduced previously
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by V.Kukulin, M.Moshinsky et al. [16,17] and was named an averaged potential. It
allows one to reduce the system of Dirac equations to a single relativistic oscillator
equation. In this particular case, when the scalar part S and the vector part V of
potentials are equal, we shall consider the following possibilities:

r—%+A-r2+vo (7a)
. —75+k-r+v0 (7b)
LR B (1 enr) - 10 o b o (7e)
9 _ ..
L Oyt 25 1 In <b+ (%,)2)

Today all of these potentials are used to describe the quark-antiquark interaction.
The discussion concerning the advantages and handicaps of these potentials is
given in [18]. Our aim is to apply these potentials to describing the meson mass
spectra with relativistic kinematics which is built into equation (4). In comparison
with [18], a search for the best description by minimizing x? will be presented.
For an averaged potential (6) the equation (4) reduces to a single equation for the
“large” wave function ¢(r)

(E=V)’o(r) = [4p” +4m® + 4mS + §?| ¢ (v) = [4p2+4 <m+ 5)1 o (r).

2
(8)
For this purpose we have to solve numerically the following equation:

[pz+<§+m>.g_(E;_m?)](p(r):o. (9)

Passing to operators and carrying out substitutions for the unknown function
¢ (r) = ® (r) /r, one obtains the equation

L;‘_;_l(l;l)_<§+m>.%JFE;—mZ]cp(r):o. (10)

In the simple approximation S+ V = § (Ar? 4+ V;) one obtains

[p2 + (% 4 m) (%Aﬁ + %%) - (E; - mQ)] p(r) =0, (11)

which leads to the equation for a relativistic isotropic oscillator

2 I(l+1) (E 1 E? E 1

< (= A2+ 2-(- )-—  (r) = 0.

ldTQ 2 <2+m> At g tm) Y 2 =0
(12)

Now with the standard change of variables 4/ (% + m) %A .72 = 22 one obtains

2 Ui+ 2+%2—m2—§vo(§+m)
da? x2 (E+m)‘4
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The physical solution of (6) is satisfied when

E? 9 A E+2m
—_— —m° = —

4 2 2

E A Ve
S —m=/ AN + 21 20 1
5 "=\ g, N A+ (15)

In the nonrelativistic limit, when E ~ 2m, one has

Vo (E/2+m)
2

(AN + 20+ 3) +

or

A
Ez2m+\/a(4]\7+2l+3)+vo (16)

in full accordance with the nonrelativistic case (see e.g. [18]).

Actually, for large total energies E, from (15) it follows that E? ~ [*/3 i.e.
almost a linear Regge-trajectory as it should follow from general considerations.
As we shall see, the application of other variants of the potentials gives even better
results.

As we mentioned above, a very promising approach to the problem of the rela-
tivistic description of a many-particle system was elaborated along with the ideas
presented by Gaida in [4] and elaborated by Tretyak, Shpytko and Duviryak [5-7].
They used the Weyl quantization method and succeeded in solving the problem
for a relativistic oscillator between two particles.

Considering oscillator-type interaction

1
V= 50021311)27“2,

where pyps = mrep = m,/2, they obtain the nonrelativistic approximation for
the mass of a two-particle system

4

M:J(qu+\/mzq-(4j\f+2l+3)>2+m%+% (17)

if we express (17) in the form of a string tension A and generalize their results to
our boundary condition of an isotropic oscillator.
The same approximation was taken in [18]. But, if we suggest that in general

w 2,2\ 2
M:{[2mq+§(4]\7+2l+3)] +—} + Vo,

or

E +m,
4 bl

P1Pp2 =

then the Lviv group’s result

2A
E+m,

2A ) 1/2
M:{l2mq+ -(4N+2l+3)] + } +Ve  (18)

E +m,
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will resemble very much our relativistic approach. The results of calculations ac-
cording to (18) are given below. The parameters are taken to be A= 0.01 GeV ?,
Vo = —0.436 GeV. Certainly, this approximation is valid if one considers the energy
dependence of p; only at the final stage of the calculations.

It is interesting to note that the similar to (18) result for M%-operator was ob-
tained in the relativistic approach by Ishida-Oda based on a special assumption of
the covariant relativistic approach. Even the numerical values of their parameters
[19] are close to the result of (18). Their value A=0.05 GeV? is of the same order
as ours. A more precise comparison is impossible because of the ambiguity of other
parameters.

Usually such potential models, like the one we used here, are called naive quark
models. But our model is not so naive. Firstly, the relativistic kinematics not only
renders it more complicated, but shows a possible way of building the model of
interaction of two relativistic particles. Secondly, the potentials like (7) incorporate
asymptotic freedom, the strong coupling constant aj is calculated according to the
“classical” expression

127 1
0 (1) = g I (5 )17 (19)
where A is taken to be equal to A=0.14 GeV. And, finally, the model allows us
to include a spin-spin interaction either by passing to the Breit-Fermi equation or
by using the Dirac equation straightly. In table 1 oy is taken exactly according to
(19).

It is interesting to note that the definition of mass can be given in a different
way. Considering one particle as moving in the field of another, and vice versa,
and adding the obtained masses we obtain the results with the parameters which
correspond very closely to our table 1. Namely, one can write down the Dirac
equation for one particle moving in the outer field, reduce it to the equation for
the “large” component x (r) and obtain [20]:

(B2 = m?) x (r) = pX (r) + (B +m) VX (r) . (20)
Applying the virial theorem to this equation,

(xw) [p*®)|xw)) = % <x(y) ry%—z X(y)> = (x) |v*|xW)) - (21)

Combining (20) and (21) for the oscillator interaction one obtains

E?* —m?=2,/C(E+m)Bx + (E+m)V, (22)
where
By = (xX() |v*|x(v)) = 2N +1+3/2

This expression resembles very much (18). So we have five most realistic from
our point of view possibilities of calculating masses according to (7a)-(7c), (17),
(18).
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To obtain the masses of a multi-quark system according to these expressions,
it is necessary to define the values of the parameters. The masses of quarks were
taken to be m, = 0.33 GeV, m, = 1.675-1.75 GeV, my, = 5.05-5.1 GeV, as usual
in quark models. Parameters for different potentials are shown in table 1.

Table 1. The parameter values for different potentials.

Potential ay Qe an k,A Vo, GeV
(7a) 0.5 0.325 0.3 k= 0.27GeV? —0.8356
(7b) 0.5 0.386 0.3 A=0..GeV? —0.527

(7c) % =0.3795GeV? 1 =0.054GeV K =0.75GeV A = 0.35GeV,b=4 —1.103

Table 2. Variation of x? for different parameters of potential (7b).

k Xum Xce XbE %

GeV ? GeV

0.1826 514 1.15-10° 1.3-10* —0.628
0.25 98 6.2-10° 2-10* —0.791
0.26 67 2.2-10* 1.6-10* —0.813
027 436 3-10* 2.9-10° —0.835
029 126 7-10* 8.5-10%° —0.878
0.305 1.8 1.36-10° 4.3-10* —0.908

The value of Vj reflects the fact that the potential is the Fourier-transform of
the scattering amplitude, Vj being the constant of the interaction. Gromes [21]
evaluated this constant for a linear confinement and obtained the value of 1}

Vo~ —2VEk - e (0709, (23)

where k is a string tension, v = 0.57721... is the Euler-MacLoraint constant. Ac-
cording to our values k = 0.18 — 0.305 GeV?. And according to (23), it has to
vary within the limits V5 = — (0.77 <+ 1.02) GeV, which is quite close to the values
cited in table 2. Let us stress that the set values are not colour-dependent, which
reduces the number of adjustable parameters.

The results of the calculation, together with the experimental data, are shown
in tables (3-6). The experimental values were taken from [22]. For choosing the
parameters the minimum of the y?—criterion was used, with the definition of x?
given in [18]. In this definition N is the number of meson masses, n is the number
of parameters (in our case two parameters, namely, a confinement parameter and
Vo), A is an experimental error in the definition of experimental mass Mpxp of a
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two-quark system [22]. Since V; is chosen to match the experimental value of the
ground-state mass, we are actually left only with one adjustable parameter A (or
k). Since we do not include LS-forces, we have to take the average center of gravity
(COQG) value of P-resonances which is calculated according to the formula:

J

J

Mcog = (Z (25 + 1)-Mj) / (Z (25 + 1)) .

As one can see from both the radial and orbital excitation calculation, the
variant which incorporates in one or another way the relativistic kinematics gives
a better description of the Regge trajectories which are believed to be linear in [
for M?2.

It is well known that even in a non-relativistic limit one can obtain a good
description of ui—dd-systems on account of spoiling the ¢¢ of bb-description.

Indeed, in table 2 we show y? obtained for the Eichten parameters. Due to a
high precision of defining J/¥ and YT-mesons, large x? are considered good for these
mesons and bad for a p-meson trajectory. On the other hand, the nonrelativistic
Badalyan [23] results are good for ut, but bad for J/W¥. Fabre [24], in order to obtain
good results for light quarkonium, had to change the potential itself. Instead,
using our way or incorporating relativistic kinematics we obtain good results for
all the data. Table 2 demonstrates this statement. Table 3 contains a comparison
of different potentials. The discussion concerning the choice of the potentials is
given in [18]. We shall choose in what follows the Cornell-potential (7b) which
seems to be preferrable, though potential (7c) is also quite good. The parameters
as here are taken from table 1. The utu-data are fantastically good, but ¢¢ and
bb-data could be better. Therefore, in tables 4-6 we give the results for k& = 0.29
GeV 2. We consider these results the best. It is interesting that the values which
give these results are close to those of Lucha and Schoberl [3]. We want to stress
that all the above results are obtained by the numerical solution of (10). The last
columns in (4 — 6) are calculated according to (18). With the choice A = 0.071
GeV 3, Vy = —1.0077 GeV, m, = 0.33 GeV, m. = 1.75 GeV, my, = 5.13 GeV the
results are quite comparable with other entries. But still we have to conclude that
a pure oscillator potential is too rough to give the final result. A more sophisticated
potential is to be taken here too. But it clearly demonstrates that the inclusion of
relativistic kinematics is crucial.

We would like to emphasize one interesting feature of relativistic models,
namely, that the slope of a linear (or close to linear) Regge trajectory in this
case is constant, while in nonlinear models it is neither constant nor linear. The
experiments show this slope to be equal to ~ 1.2 GeV?. In our cases it varies from
1.15 to 2.5 GeVZ2. As Tutik et al. [25] have indicated, the Regge trajectories for
low-lying states coincide, while for large values of orbital momentum [ the screened
potential (7¢) leads to a limited Regge trajectory in contrast to infinitely rising
tragectories for other potentials, like (7a) or (7b).
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Table 3. Mass spectrum of ut-system with some realistic potentials.

State designation Mexp My, (7Ta) My, (70) Mgy, (7¢)

GeV GeV GeV GeV
1S 0.768 = 0.0005 0.77 0.77 0.77
1P 3PEO 1.262 + 0.03 1.26 1.296 1.3
2S5 p 1+(1__) 1.465 +0.025 1.609 1.573 1.561
2P ao 1*(2++) 1.935+0.015 2.003 1.932 1.889
35 p 1+(1**) 2.150 £0.01 2.3 2.155 2.103
1D p3 17(37 ) 1.691+0.013 1.665 1.689 1.687
2D ps 1+(3__) 2.250 £ 0.01 2.348 2.235 2.1845
1F a4 1_(4++) 2.037+£0.036 2.03 2.021 2.003
1G  ps 1+(5__) 2.350 £0.015 2.366 2.312 2.275
1H ag 1*(6+Jr 2.450 +0.13 2.685 2.576 2.514
x? - — 53.3 1.8 19.6

Table 4. The best mass spectrum of u@-system with Cornell-potential (7b) in
formula (18).

State designation Mexp Myy, (76) My, (18)

GeV GeV GeV
1S p17(1 ) 0.768+0.0005 0.768 0.768
1P ?’Péog 1.262 £0.03 1.281 1.198
2S  pl1t(17) 1.465+0.025 1551  1.577
2P ay 17(27%) 1.935+0.015 1.902 1.923
3 pl1t(1~™) 2.150+0.01 2.12 2.244
ID p; 17(377) 1.691+0.013 1.665  1.577
2D p3 17(377) 2.250+0.01 2.197 2.244
IF a4 1-(4*%) 2.037£0.036 1987  1.923
1G ps 17(577) 2.350 £0.015 2.278 2.244
IH ag 17(671) 2.45040.13 2.529 2.547
\2 - 12.6 35.68
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Table 5. The same for cc-system.

State  designation Mexp My, (70) My, (18)
GeV GeV GeV
1S J/¥0~(177) 3.096 4+ 0.00009 3.07 3.014
1P xep 07(17%) 3.510£0.00012 3.5118  3.331
1D U ?'(177) 3.7704+0.0025  3.837 3.632
2S U0 (177) 3.688+0.0001 3.732 3.632
oD U ?(177) 41594002  4.296  4.195
35 W?'(17T) 4.040+0.01 4227 4195
3D W ?N(177) 4.4154+0.006 4.692  4.717
2 - 7-10  8.4-10°
Table 6. The same for bb-system.
State designation Mexp Myy, (70)  Myy, (18)
GeV GeV GeV

1S Y ?7(177) 9.460+0.00022 9.479  9.542
1P 3P2‘30g 9.892 + 0.0007 9.883 9.741
28 Y ?°(177) 10.023 4+0.00031 10.037  9.932
2P 3P20g 10.268 4+ 0.00057 10.299 10.121
38 YT ?7°(177) 10.35540.0005 10.433 10.308
48 T ?77(17) 10.580 +0.0035 10.776 10.675
55 T ?°(17) 10.865 %+ 0.008 11.062 10.034
6S T ??(177) 11.019 £ 0.008 11.332 11.385
X2 - 85-10° 7.4-10%
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