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Abstract

Relevance. The tunnelling effect is used in various modern devices, such as quantum interference devices and
superconducting qubits of quantum computers, therefore, the theoretical calculation and experimental observation of
the parameters of the quantum diffusion of atoms during tunnelling are of particular relevance.

Purpose. Theoretical evaluation of the parameters of the quantum diffusion of rubidium, hydrogen, and deuterium
based on a simple quantum-mechanical model of atomic tunnelling.

Methods. The study uses quantum mechanical calculations and diffusion equations of solid-state physics.

Results. It is shown that the probabilities of detecting a particle in different regions of space change with time, and an
equation is proposed for calculating the time after which the probability of the particle remaining outside the potential barrier
would exceed the probability of its localisation inside the potential well. It is established that the time of Bose-condensed
rubidium atoms in a potential well when tunnelling through a barrier of 1.3 microns in size is a macro-value of 0.43 s.
The model parameters for the quantum diffusion of hydrogen and deuterium on the ice surface are calculated.

Conclusions. For Bose-condensed rubidium atoms, the estimated time of their stay in the potential well and the
experimental time of overcoming the optical barrier with a width of 1.3 microns have similar values. It is found that the
estimated time of the hydrogen atom in the potential well is 1.61010%s., and for deuterium —0.57°10"° s., and the estimated
coefficient of quantum diffusion of hydrogen is almost two orders of magnitude greater than that for deuterium, which
corresponds to the experimental results. It is shown that thermally activated diffusion does not affect the diffusion of
hydrogen, but makes a certain contribution to the total diffusion of deuterium on the ice surface at a temperature of 10°K
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Introduction

Tunnelling is one of the most unusual phenomena in
quantum physics, where particles are able to overcome
barriers that are classically impossible to overcome. The
tunnelling effect manifests itself, for example, in quantum
diffusion [1], in the process of photosynthesis and is used
in various modern devices, from superconducting quan-
tum interference devices (SQUID) to superconducting
qubits for quantum computers. Therefore, the theoretical
calculation and experimental observation of tunnelling
parameters, such as the time spent by the particle in the
potential well and potential barrier, are extremely relevant.

It is known that the group delay [2] is the time of
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arrival of the peak of the transmitted wave packet on the
far side of the barrier, which can be less than the barrier
thickness divided by the speed of light, without violating
the causal relationship. This has been confirmed by many
experiments [3-10], and in [11] it is stated that the tunnel-
ling of particles occurs almost instantly. On the contrary,
in 1980, M. Buttiker and R. Landauer calculated the time
spent by the particle in the potential barrier through
which it tunnels [12], which is close to the classical time
of its movement. In [13-19], models were proposed that
specify the time when a particle is located in a potential
well and passes through a potential barrier. In [20-23],
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Bose-condensed ¥Rb atoms tunnelling through the optical
barrier were directly studied and its time was measured.

At the same time, the estimation of particle lifetime
in a potential well is usually considered to be related to
the estimation of the tunnelling time [24-27]. On the other
hand, in the formulation of the problem with two poten-
tial barriers, this time is calculated as the inverse of the
attenuation coefficient (decay constant) with a coeffi-
cient of 2 [26-27]. However, as direct calculations for real
physical systems show, these theoretical estimates can be
much less than the classical time of passage of a potential
well by a particle, which is also a contradiction. There-
fore, the question of the probability and residence time
of particles in a potential well during tunnelling remains
open. This study considers another theoretical estimate of
these parameters.

In solid-state physics, the corresponding quantum
mechanical models are widely used in calculating the pa-
rameters of the interaction of particles with a crystal lat-
tice [28-31]. These models contain interaction parameters
in the form of potential pits of different heights and widths.
On their basis, the main regularities of the interaction of
neutral atoms with the crystal lattice of a solid body are
explained. At the same time, in models with several po-
tential wells or barriers, it should be taken into account
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that tunnelling leads to a shift in the energy levels of the
particle by a certain amount [24; 30-31]. At the same time,
in [24], small additives were discarded, which lead to a
shift in the energy levels of the particle during tunnelling,
which affected the accuracy of the model and made it dif-
ficult to calculate the parameters of quantum diffusion. It
is of great interest to modify a simple tunnelling model so
that the resulting relations can then be used to perform
specific calculations on quantum diffusion.

The purpose of this study is to theoretically evalu-
ate the parameters of the quantum diffusion of rubidium,
hydrogen, and deuterium based on a simple quantum
mechanical model of atomic tunnelling.

Materials and Methods

To describe the tunnelling of an impurity atom through
a potential barrier, the study uses a quantum mechanical
model of a particle with mass m, located in a rectangular
potential well with width a, bounded on one side by an
infinitely high wall (x=0), and on the other (x=1) by a po-
tential barrier with height U, and width a=L[ -1. If at some
time t <O the width of the potential barrier a—, then the
particle is localised inside the “space” (0, [) and its wave
function inside the potential well has a discrete spectrum
E =E, (Fig.1).
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Figure 1. Model of quantum diffusion of an atom through a potential barrier

Source: [24]

The wave function of a particle at an arbitrary time
t=0 for three regions: 1(0<x<I), 2 (I<x<l,), and 3 (I,<x)
will have the form [24]:

¥, =A,sin kx 1.1
¥, = Aze"?("‘” + Bze”("‘” 1.2)
¥Y,=A 3e""(x’”) (1.3)

where ;2 = 2__120 E h—Planck constant,
h

2 2mg

Nt =4 (Up—E)>0

The solution ¥, for the first region is chosen in such
a way that at x=0 it turns to zero, and in the solution in the
third region, only the wave leaving the barrier is left. This
leads to the appearance of a quasi-discrete spectrum con-
sisting of quasi-levels in the system [24-27]. From the con-
dition of continuity of the wave function of the particle
at the boundaries of the barrier, the docking conditions
are found:

When x=I:

A, sinkl=A,+B, Q.1

A, coskl = (B,-A,) k/n (2.2)

When x=1:
A"+ Be =4, 3.1
A~ Be"=-ikA, /n (3.2)

where a=1[ -1
From the last two equations, the relations follow:

1—ik
y = 2K ey, 4D
2
1+ ik
X 2‘ /M g-nag, (4.2)

Substituting the relations (4.1-4.2) into the equa-
tions (2.1-2.2) leads to the equation for determining the
energy:

1+ik/n

o-210 = tgkl+ k/n
1-—ik/n

T tgkl—k/n ©)

At the initial moments of time (t=0), the amplitude
of the outgoing wave A, will be much less than the ampli-
tude of the standing wave in the well A , i.e., the probability
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of detecting a particle in region 3 is much less than in
region 1:

JA [~ A e (6)

For a— o, the solution in region 3 turns to zero
(A,=0), following by equation (5) to determine the
discrete energy levels in the potential well in region 1:

tg kl=-k,/n, 7

where the index 0 denotes the values k and 1 for a — .

Taking into account exponentially small terms of
the order A e under the condition na>>1 and nl>>1,
the solution of equation (7), as is known [24-27], describes
quasi-levels. To calculate them, a small imaginary part of
k’in the value k is selected, and in the real part, in contrast
to [24], the resulting additives are taken into account:

k=k,- ik ®)

where ko is related to the discrete energy spectrum E, of
the particle in region 1 by the usual relation:
2m
ko? = E—ZOEO O
Then, substituting the value k in the form (8) in
equation (5), taking into account (7) and the condition
nl>>1, in the first order of magnitude e~", the value k’
is found:

Kl = 4(ko/10)* e
[1+ (ko/m0)?1?

In this case, for the energy E of the particle, is
found, taking into account (8):

—2na

(10)

h?k?

h? ' - .

E="- =m—0[k02 — k2 =2ik'ko| =E'-ih4, (1D
— quasi-discrete spectrum of the particle energy,
E'=Ep-AE =22 [k? — k7] (12)
=FE =Ko
A =2wk’'= D, ';—‘l’exp [—Za /2’% Uy — EO)] (13)
— kg

Vo= (14)

— the velocity of the particle corresponding to the
discrete energy spectrum in the region 1:

- 16(ko/10)*
0 = T+ (ko/mo) 12 (15)

Results and Discussion

The presence of the addition of AE in the expression for
the particle energy (12) means that in the quasi-discrete
spectrum, the particle energy decreases by the value
of AE compared to the discrete spectrum. This state of
the system corresponds to the velocity of the particle in
region 3:

v'=LVkT=%? (16)

0

Therefore, when passing the energy barrier, the
atom loses speed and, therefore, radiates, reducing its
energy by AE. The presence of the imaginary part in the
expression for the energy (11) indicates that the wave
function of the particle in the potential well will decrease
exponentially over time. In this case, for the square of the
modulus of the wave function:

[p|* = Ae™* an

where A — the so-called decay constant — characterises
the decreasing probability of finding a particle inside a
potential well. However, beyond the potential barrier in
region 3, the solution should increase with distance from
the barrier due to a small addition to the wave number k”:

lhs|? = Ae?ex (18)

And therefore, the normalisation integral for the
function ¥, should be modified for large values of x.
However, the growth of the function outside the barrier at
Xx— o is compensated by its exponential decrease at t—o
according to equality (17), which ensures the fulfilment of
the continuity equation [24]:

dp 0j
o o
where p — probability density, j — current density.

Next, the study considers the implementation of
the continuity equation for three domains. In the first
area, the equation has the form:

19

g _  op ok
i Vo Foi vok'p (20.1)
dp
5= —Ap (20.2)
—Ap + 2vok'p = 0 (20.3)

In the second area, the change in the energy of
the system by the value of AE (and hence the velocity of
the particle) is taken into account. Then the continuity
equation can be represented as:

9  dp . v |
a—va+pa—2vkp+pvx (21.1)
dp
— =—Ap =-2uk'
T Ve P (21.2)
—Ap + 2vk'p+ pv, =0 (21.3)
From (21.3) it follows:
v =2(vy —vV)k' = 24v -k (22)

When x=[v =0, when x=1 v =2AvK’.
In the third domain, then, it should be assumed:

g—i = v’g—i =2v'k'p (23.1)
ap :
Frin -A'p (23.2)
—Ap+2v'k'p=0 (23.3)

Thus, the attenuation coefficients in regions 1 and
2 (inside the crystal lattice) and 3 (outside the crystal
lattice) differ by a small amount, equal to v =24vk’ This



means that the probability of detecting a particle in region
1 changes with time, as |y, |*=A %™, and the probability
of detecting a particle in region 3, as | ¥, |*=A,’e™", where
A'=2v’k’ — decay constant for region 3.

Using the expression (6), the following equality is
obtained:

|1/)1(T)|2 = |1/)3(T)|2 = A126_M = /‘!12‘5'_2’73'3_/1’T 24)

After finding the time t, the amplitudes of the wave
functions in regions 1 and 3 will have the same value:

(25)

Therefore, after the time 7, determined by
equation (25), the probability of the particle staying in
region 3 outside the potential barrier will be equal to the
probability of its localisation inside the potential well.
Therefore, the time 7 can also be called the period when
the atom is in the potential well.

Returning to the discussion about the passage of
a potential barrier by a particle, the “classical” time of its
tunnelling can be introduced in a simple model. Indeed, if
in region 1, before passing the barrier, the velocity of the
particle is v, and after passing it —V’, then the “classical”
time of the particle passing through the potential barrier
of width a is:

T = 2na/vy

2a
fe= v +7v)

In contrast to data from [3-11], this time has a
significant value. The above simple model is largely
applicable to the description of the quantum diffusion
of atoms of elements (hydrogen, nitrogen, carbon) at a
sufficiently low temperature. Next, the study considers
this issue with some concrete examples.

Parameters of quantum diffusion of Bose-con-
densed rubidium atoms. The developed model was ap-
plied to calculate the parameters of a physical system con-
sisting of Bose-condensed *Rb atoms tunnelling through
an optical barrier with a thickness of 1.3 microns, given
in [23]. Next, the study considers the case E/U =0.5, the
velocity of the rubidium ion v=3.7 mm/s.

From these data, the energy value of the Bose-con-
densed rubidium ion is found:

(26)

mev? 87 x 1.66 - 10727 x (3.7 - 1073)?

E =
2 2

~1-10739
and the parameter k corresponding to this energy value:

moev 87 x1.66- 10727 x 3.7-1073

p ce3 10 =8.06 - 105m™1

k0:

From the conditions (1.1-1.3) it is also found that in
this case n=k,.

Assuming further that the width of the potential
pit is equal to the width of the potential barrier, from the
equation (10) the value of the parameter k’is found:

e—2na

k= =9.4-10*m™!

The velocity of the particle after passing the
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potential barrier is found from equation (16):

2
v =, /1 - ’;—2 =3.674-1073m/s

Using this velocity value, it is possible to find the
probable time of finding rubidium atoms in a potential
well. Substituting the expression v_from (22) into (25),
obtain: »

__na
Tk

Thus, it is established that the time spent by
Bose-condensed rubidium atoms in a potential well
when tunnelling through a barrier with a size of 1.3 um
is a macro-value of 0.43 s. For a Bose particle system,
this parameter also shows the likely time that 50% of
the particles will be outside the potential barrier during
tunnelling. This result may well pass a practical test.

The “classical” time of the particle passing through
the potential barrier in a simple model was also calculated:

=0.43s

27

2a
- (wv+v") (28)

This time, within the error of calculations and exper-
iment, corresponds to the experimental result given in [23].

Parameters of the quantum diffusion of hydro-
gen and deuterium on the ice surface at a temperature
of 10°K. Next, the study calculates the quantum diffusion
parameters for hydrogen atoms located on the ice surface
at a temperature of 10°K [32]. For the estimation, a simple
one-dimensional model is used and it is assumed that the
dimensions of the potential pit 1 and the potential barrier a
are equal to half the period of the ice crystal lattice (0.23 nm).

The energy of hydrogen atoms at a temperature of

T = 0.353 ms

10°K is equal to:
3kT 3x138-1072x 10
E= = > ~ 2.07-107%2]

This energy value corresponds to the value of the
velocity of the hydrogen atom and the parameter k :

v=42E/m =500m/s
mov _ 1.66- 10727 x 500
“h 6631073
For a simple model, the condition nl>1 must
be satisfied, from where 71>4.4-10°. Assuming that
n=4k =5-10" m" and the width of the potential well 1
is equal to the width of the potential barrier, from the
equation (10) the value of the parameter k”is found:

4(ko/m)?
[1+ (ko/m)2]2L

The velocity of the particle after passing the
potential barrier is found from equation (16):

2
v =, /1 — 2 =499.25m/s

Using this value of the atomic velocity difference, it
is possible to find the estimated time of equal probability
density of finding hydrogen atoms inside the potential
well and outside the barrier. The following is obtained:

ko = =1.25-10°m"!

k' = e 2" = 0.97-108m™!
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= -=1.6-1078
Ty vk 10~°s

For hydrogen atoms located on the ice surface, this
period characterises the probable time of the particle’s stay
in the potential well. Formally, the diffusion coefficient of
hydrogen on the surface of a two-dimensional ice lattice
can be calculated using the classical equation (4 in the nu-
merator occurs when diffusion occurs on the surface) [33]:

D= d?/4t (29)

Substituting in (29) the numerical values of the
d - period of the ice crystal lattice and the time of the
hydrogen atom in the potential well 7, an estimate of
the quantum diffusion coefficient of hydrogen on the ice
surface is obtained:

Dp=3.2"10"12m?2/s= 3.2108 cm?/s

For comparison, the study calculates the quantum
diffusion parameters for deuterium atoms located on
the ice surface at a temperature of 10°K. The energy of
hydrogen atoms at a temperature of 10°K is equal to:

34T
T2

~2.07 -1072%]

This energy value corresponds to the value of the
velocity of the hydrogen atom and the parameter k :

v =42E/m =353m/s

moV  2-1.66-107%7 x 353
h 6.63 - 1034

ko = =1.77-10°m™?

Assuming that in this case n=4k, and the width of
the potential well is equal to the width of the potential
barrier, from the equation (10) the value of the parameter
k’is found:

4(ko/m)?
k'=—— """ 7212 = 037-10%m™?

[1+ (ko/m)?]21

The velocity of the particle after passing the

potential barrier is found from equation (16):

2
v =, f1 — o =352.923m/s

Using this velocity value, it is possible to find the
estimated time of equal probability density of finding
deuterium atoms inside the potential well and outside the
barrier. The following is obtained:

T = % =0.57-107%s

It is found that the period of the deuterium atoms
in the potential well is 570 ms. Substituting in (29) the
numerical values of the period of the ice crystal lattice
and the time of the hydrogen atom in the potential well
T,, an estimate of the quantum diffusion coefficient of
hydrogen on the ice surface is obtained:

Dp=0.91013 m2/c= 0.910° cm?/s

The value of the quantum diffusion coefficient of
deuterium is almost two orders of magnitude less than
the quantum diffusion coefficient of hydrogen, if the
energy barrier of these elements is the same. This has
been experimentally confirmed in [32].

Comparison of the parameters of quantum
and thermally activated diffusion of hydrogen and
deuterium atoms. A comparison of the parameters of
quantum diffusion and thermally activated diffusion is
of interest. In [34], an expression for the zero-diffusion
coefficient is obtained:

Do =114-d ”72 TZem?/s (30)

where, for the hydrogen atoms on the water surface,
the atomic weight is N =1, the ice crystal lattice period
is d=0,454 nm, and the ice density is p=0.9 g'm3. At
a temperature of 10°K, the calculated value of D for
hydrogen is:

Dor=0.58107 cm?/s

If the activation energy of hydrogen is assumed to
be equal to the value of the energy barrier per 1 mole of
hydrogen, then:

Up =4E = 6kTy, E: = 6RTy
Eq
DF =058-10"7 - e rr = 1.44- 10~ °cm?/s

This value is two orders of magnitude less than the
quantum diffusion coefficient, and thermally activated
diffusion makes almost no contribution to the diffusion of
hydrogen at 10°K.

Similar calculations are performed for deuterium.
The calculated value of D, for deuterium is 4 times greater
than that of hydrogen:

Don=2.32"107 cm?/s

If the activation energy of hydrogen is assumed to
be equal to the value of the energy barrier per 1 mole of
hydrogen, then:

Eq
DI =232-1077 - rr = 0.58 - 10~°cm?/s

This value is close to the value of the quantum dif-
fusion coefficient of deuterium, and, therefore, thermally
activated diffusion makes a certain contribution to the
diffusion of deuterium on the ice surface at a temperature
of 10°K.

Conclusions

1. A simple quantum-mechanical model of tunnelling an
atom through a potential barrier is developed. It is shown
that the decay constants in the region inside the potential
well and outside the potential barrier differ by an amount
equal to v =2Avk’ and, consequently, the probabilities of
detecting an impurity particle in these regions change
with time.

2. An equation is proposed for calculating the time T,
after which the probability of a particle remaining out-
side the potential barrier would exceed the probability of
its localisation inside the potential well. It is shown that



for Bose-condensed rubidium atoms, this time of their stay
in the potential well when tunnelling through a potential
barrier of 1.3 um is 0.43.

3.The model parameters for the quantum diffusion
of hydrogen and deuterium on the ice surface are calcu-
lated. It is found that the estimated time of the hydrogen
atom in the potential well is 1,61010° s, and for deuterium
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-0.57'10%s, and the estimated coefficient of quantum diffu-
sion of hydrogen is almost two orders of magnitude greater
than that for deuterium.

4. It is shown that thermally activated diffusion does
not affect the diffusion of hydrogen, but makes a certain
contribution to the total diffusion of deuterium on the ice
surface at a temperature of 10°K.
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Cepriii BosiogumupoBud bo6ups
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49050, 1. Akagemika Ctapozay6osa, 1, M JHinipo, YkpaiHa

AHoranig

AxTyanbHicTh. EdeKT TyHeqOBaHHA BHUKODHCTOBYETHCS y PI3HUX CyYaCHMX TIPUCTPOSX, TAKUX SK KBAHTOBI
inTepdepeHIiiiHi mpUCTpoi i HAANPOBiZHI KybiTM KBAHTOBUX KOMITIOTEDIB, TOMY TEOPETUYHHUIN pO3PaxXyHOK i
eKcIleprMeHTaIbHe BU3HAUYEHHs TapaMeTpPiB KBaHTOBOI [1dy3ii aTOMIB € HaZI3BUYAMHO aKTyaJIbHUMU.

MeTta. TeopeTryHa OLliHKA ITapaMeTpiB KBaHTOBOI Andy3ii pybiziro, BogHIO i eliTepito Ha OCHOBI TPOCTOI KBAHTOBO-
MeXaHiqHOi MoZiesli TyHe/Il0OBaHHA aTOMiB.

MeToau. Y po60Ti BUKOpUCTaHi KBAHTOBO-MeXaHiYHi pO3paxyHKH U AudysifiHi piBHAHHA Gi3UKH TBEPOTO Tijla.

PesynbpTaTu. [TokazaHo, o0 HMOBIpHICTb BUABJIEHHS YaCTKU Y Pi3HUX 00JIACTAX IMPOCTOPY 3MIiHIOIOTHCA 3 4acOM i
3amporoHoBaHa QopMmysia Ui po3paxyHKy 4acy, IS 3aKiHYeHHSA SKOTO WMOBIpHICTh IepeOyBaHHSA YacTKU 3a
MeXKaMU TIOTEeHIifHOTO Gap’epy Oyze MepeBUINYBaTU WMOBIpHICTh ii JIOKami3allii BcepeAMHi MOTEHI[IHOI SMU.
BcraHOBJIEHO, 1110 Yac 3HaXO/KeHHs 603e-KOHEHCOBAaHUX aTOMIB Py0i/iifo y TOTeHLiHHIN AMi 32 TyHeII0BaHHSA Yepe3
6ap’ep po3mipom 1,3 MKM cTaHOBUTH MakpoBennuuHy 0,43 c. Po3paxoBaHi mapameTpu Moziesi /isi KBaHTOBOI Audya3ii
BOJIHIO i ZIefiTepito Ha MTOBEPXHi JIbOAY.

BucHOBKHU. /lisi 603e-KOHIEHCOBAHUX aTOMIB pPy0i/iifo pO3paxyHKOBUM Yac ix mepebyBaHHS y MOTEHI[iMHIN sAmi Ta
€KCIIepUMEeHTAIbHUH Yac II0J0TaHHA ONTUYHOrO 6ap’epy MKUPHUHOIO 1,3 MKM MaloTh O6;113bKi 3HaU€HH:. BcTaHOBIEHO,
II0 PO3paxXyHKOBUH Yac nepebyBaHHA aToMa BOAHIO Y MOTEHIiiHIH aMi ctaHoBUTS 1,6'10° ¢., a gelitepito — 0,57°10° c.
OuinHunii koedillieHT KBaHTOBOI Audy3ii BOAHIO Maike Ha JiBa MOPSAAKH OLIbIlle TAKOTO IS IelTepito, 110 BiAMOBigae
eKCIIepUMeHTaJIbHUM pe3ysnbTaTaM. [IokasaHo, 110 TepMiYHO aKTHBOBaHa AMQY3isa He BIUIMBAaE Ha AUQY3ito BOJHIO,
ajle BHOCUTBH IIEBHUH BKJIAJ Y 3arajbHy Audy3ito fefiTepito Ha HOBepXHi IboAy 3a TeMmneparypu 10 °K
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