


V Ukrainian Polish - Lithuanian
Meeting
on Physics of
Ferroelectrics

Programme & Abstract



18-20 September, 2018 Uzhhorod, Ukraine

## Наукове видання

## Тези міжнародної науково-практичної конференції «V УКРАЇНСЬКО-ПОЛЬСЬКО-ЛИТОВСЬКА КОНФЕРЕНЦІЯ З ФІЗИКИ СЕГНЕТОЕЛЕКТРИКІВ»

Формат 60х84/8. Умовн. друк. арк. 11,16. Зам. № 87. Наклад 100 прим. Видавництво УжНУ «Говерла». 88000, м. Ужгород, вул. Капітульна, 18. Е-mail: hoverla@i.ua

Свідоцтво про внесення до державного реєстру видавців, виготівників і розповсюджувачів видавничої продукції — Серія 3т № 32 від 31 травня 2006 року

## Temperature Sensor Based on Sn<sub>2</sub>P<sub>2</sub>S<sub>6</sub> Crystal

## Yu. Tyagur<sup>1</sup>, I. Tyagur<sup>2</sup>

1- Uzhhorod National University, Narodna Square, 3, Uzhhorod, 88000, Ukraine 2- Technical University of Liberec, Halkova 6, 461 17 Liberec 1, Czech Republic

irena.tjagur@centrum.cz

In our work, the model of a low temperature sensor is suggested based on temperature dependences of the alternating current at various frequencies of field. For further analysis and calculations measurements of impedance as a function of temperature Z(T) in the interval (5-300) K were used [1].

Temperature dependences of the specific impedance  $Z_0(T)$  were calculated at frequency 10 kHz:

$$z_0(T) = Z(T) \cdot \left(\frac{S}{d}\right) \tag{1}$$

where Z(T) are experimental values, S is the electrodes area, d is samples thickness (in the direction of  $P_s$ , [100]). The value of electric field is:

$$E = U_{\bullet} / d \tag{2}$$

where  $U_e = U_m/\sqrt{2}$  is effective value of electric current,  $U_m$  is voltage amplitude. Voltage as a function of time is described mathematically by the following equation (at f = 10kHz):

$$U(t) = U_m \cdot \cos(2\pi f t + \varphi_0) \tag{3}$$

In the further interval, values of the specific impedance sharply decrease with increasing temperature for all three investigated samples in ferroelectric phase. We described experimental dependences of  $log(z_0(T))$  in ferroelectric phase using fourth-order polynomial:

$$\log(z_0(T)) = A(f)_{fe} + B1(f)_{fe} \cdot T + B2(f)_{fe} \cdot T^2 + B3(f)_{fe} \cdot T^3 + B4(f)_{fe} \cdot T^4$$
(4)

where  $A(f)_{fe}$ ,  $B1(f)_{fe}$ ,  $B2(f)_{fe}$ ,  $B3(f)_{fe}$ ,  $B4(f)_{fe}$  are coefficients of the equation.

Values of these coefficients are calculated by approximation of experimental dependences of  $log(z_0(T))$ . Based on impedance investigations and obtained dependence  $log(z_0(T))$ , temperature dependences of the alternating current I(T) are determined for crystals  $Sn_2P_2S_6$ ,  $Sn_2P_2(Se_{0.05}S_{0.95})_6$  and  $Sn_2P_2Se_6$ . Let the effective voltage  $U_e = 10V$  is applied to the model sample - a square plate with thickness d = 1mm, with circle Au electrodes (D = 5mm), f = 10 kHz, then, temperature dependence of the current is calculated by the following equation:

$$I(T) = \frac{U_e}{Z(T)} = \frac{U_e}{51 \cdot \left(10^{(A(f)_{fe} + B1(f)_{fe} \cdot T + B2(f)_{fe} \cdot T^2 + B3(f)_{fe} \cdot T^3 + B4(f)_{fe} \cdot T^4)}\right)}$$
(5)

The value of current sharply increases from  $\mu$ A to mA values with increasing temperature for all three samples. The character of I(T) dependences is non-linear in the whole investigated range of temperatures (5–300) K. From our investigations we would like to conclude that  $Sn_2P_2S_6$ ,  $Sn_2P_2(Se_{0.05}S_{0.95})_6$  and  $Sn_2P_2Se_6$  crystals are competitive and promising materials for low temperature sensors and sensors of thermal radiation in a wide temperature range from 5 K to 300 K.

| perature range from 5 K to 300 K.                                                   |                    |                                      |                                      |                                     |                                      |
|-------------------------------------------------------------------------------------|--------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
| -                                                                                   | A(f) <sub>fe</sub> | Bl(f) <sub>fe</sub>                  | B2(f) fe                             | B3(f) <sub>fe</sub>                 | B4(f) <sub>fe</sub>                  |
|                                                                                     | [10-2]             | [10 <sup>-4</sup> ], K <sup>-1</sup> | [10 <sup>-6</sup> ], K <sup>-2</sup> | [10 <sup>-8</sup> ],K <sup>-3</sup> | [10 <sup>-11</sup> ],K <sup>-4</sup> |
| Sn <sub>2</sub> P <sub>2</sub> S <sub>6</sub> ,                                     |                    |                                      |                                      |                                     |                                      |
| $100K \le T \le 300K,$                                                              | $(371.1 \pm 2.5)$  | $(178 \pm 6)$                        | $(-168 \pm 5)$                       | $(65 \pm 5)$                        | $(-96 \pm 3)$                        |
| f = 10kHz                                                                           | 11                 |                                      |                                      |                                     |                                      |
| Sn <sub>2</sub> P <sub>2</sub> (Se <sub>0.05</sub> S <sub>0.95</sub> ) <sub>6</sub> |                    |                                      |                                      |                                     |                                      |
| 0K≤T≤300K,                                                                          | $(472.5 \pm 0.1)$  | $(-19.3 \pm 0.5)$                    | $(-26.3 \pm 0.7)$                    | $(16.5 \pm 0.3)$                    | $(-34.6 \pm 0.5)$                    |
| f = 10kHz                                                                           | -                  |                                      |                                      |                                     |                                      |
| Sn <sub>2</sub> P <sub>2</sub> Se <sub>6</sub> ,                                    |                    |                                      |                                      |                                     |                                      |
| $0K \le T < T_C = 192K$                                                             | $(458.6 \pm 0.3)$  | $(-174 \pm 2)$                       | $(173 \pm 3)$                        | $(-89 \pm 2)$                       | $(133 \pm 6)$                        |
| f = 10kHz                                                                           |                    |                                      |                                      |                                     |                                      |

Tab. I. Approximation coefficients of  $log(z_0/T)$  dependences by fourth-order polynomial in ferroelectric phase for samples at 10 kHz

<sup>[1]</sup> I. TYAGUR. Piezoelectric and Dielectric Studies of Ferroelectric Phase Transitions in Sn<sub>2</sub>P<sub>2</sub>(Se<sub>2</sub>S<sub>1-2</sub>)<sub>6</sub>. Liberec: Technical University of Liberec, 2012.