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This paper presents the results of calculations of spectroscopic parameters of three-particle quantum
systems, in particular the exotic helium atom (3He2+, e, 3H). These calculations were made within the
framework of a nonrelativistic quantum-mechanical model for the problem of three bodies interacting
according to the Coulomb’s law.
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1. Introduction

The matter and antimatter interaction is one of
the most interesting problems of modern quantum
physics. This opens up the possibility of observing
and theoretically predicting new phenomena, pro-
cesses, quantum systems, molecules, as well as solv-
ing relevant experimental and applied problems. It
is known that in 1947 Fermi and Teller [1] consid-
ered the role of the dipole interaction of matter and
antimatter. After experimentally obtaining the an-
tihydrogen and antihelium atoms, it is of consid-
erable interest to find spectroscopic parameters of
quantum systems with antiparticles participation.
Such systems in the standard model are described
by the nonrelativistic Schrödinger equation [2]. For
the two-body problem, this equation can be solved
analytically. At the same time, the analytical solu-
tion for three bodies exists only for a certain kind
of interaction potentials between particles, and in
the general case of this problem, the solution can
be found only by a numerical method. One of the
effective numerical methods is the method of mixing
configurations [3].

2. Theoretical approach

Let us consider three-particle molecules (ions),
which consist of isotopes of helium atoms (3He,
4He) and isotopes of atomic hydrogen (1H, 2H, 3H)
and their antiparticles. In particular, we are talking

about an exotic helium atom (3He2+, e, 3H) — iso-
tope of a 2+ helium ion, electron, and hydrogen
isotope (tritium).

The non-relativistic Schrödinger equation for
a system of three particle with the arbitrary masses
(mi) and charges (zi) that interact by a pair
Coulomb interaction, has the following form (in the
atomic system of units)[

1

2

(
∂2

m1∂x21
+

∂2

m2∂x22
+

∂2

m3∂x23

)
+V (x1, x2, x3)− E

]
Ψ (x1, x2, x3) = 0, (1)

where xi is the position of i-th particle, E and
Ψ(x1, x2, x3) are the total energy and the to-
tal wave function of the system, respectively,
V (x1, x2, x3) is the potential energy operator. It has
the form

V (x1, x2, x3) =
z1z2
|x1−x2|

+
z1z3
|x1−x3|

+
z2z3
|x2−x3|

.

(2)
Since we consider only a pair interaction of parti-
cles, (1) allows the separation of the motion of the
center of mass of a system. For this purpose, it is
necessary to introduce the relative Jacobi coordi-
nates [4],

ρ = x2 − x3, τ = x1 −
m2x2 +m3x3
m2 +m3

,

R =
m1x1 +m2x2 +m3x3

m1 +m2 +m3
. (3)
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Entering the relative Jacobi coordinates (3) and
separating the variables in (1) is equivalent to the
following system of equations
[
− 1

2µ1

∂2

∂ρ2 −
1

2µ2

∂2

∂τ2 + V (ρ, τ)− ε
]
ψ (ρ, τ) = 0,

− 1
2M

∂2

∂R2φ (R) = (E − ε)φ (R) ,
(4)

where M = m1 + m2 + m3, Ψ = ψ(ρ, τ)φ (<).
The first equation of the system (4) describes the
relative motion of the system, and the second one
— the motion of the center of mass of the system.
The constant ε is the energy of the relative motion
of the system, and µ1 and µ2 are the relative
masses given as, respectively,

µ1 =
m1m2

m1 +m2
and µ2 =

m1(m2 +m3)

m1 +m2 +m3
.

(5)
By separating the motion of the center of mass of
the system in (1), we thus reduced the problem
from three to two independent variables that
describe the relative motion of the system and the
motion of the center of mass of the system. The
equation of relative motion in the variables defined
in (3) will take the form[

− 1

2µ

(
1

R

∂

∂R

(
R
∂

∂R

)
+

1

R2

∂2

∂α2

)
+V (R,α)− ε

]
ψ (R,α) = 0. (6)

Partial solutions of the relative motion equation
(6) are convenient to find in an elliptical coordinate
system. In this system, the angular variable α
varies in the limited interval [0, β], and the radial
variable R belongs to the semi-limited interval
[0,∞). These variables are expressed as

R =

√
µ1

µ
ρ2 +

µ2

µ
τ2 (0 ≤ R <∞)

with µ =
√
µ1µ2,

tan(α) =

√
µ1ρ√
µ2τ

,

(
tan(β) =

√
µ1µ2

m2

)
. (7)

Adiabatic potentials (Uν(R)) are obtained by
solving a generalized boundary value problem on
eigenvalues and eigenfunctions (χν(R,α)) of the
operator received from the Hamilton operator for
the relative motion of particles at a fixed radial
variable. To eliminate the differences in the matrix

TABLE I

Characteristics of the minimum adiabatic potential of
the system (3He2+, e, 3H).

State
Characteristics of the minimum

adiabatic potential
Energy [a.u.] Coordinates [a.u.]

1Soe −1.038913337× 1013 5.496447630× 10−7

1See −5.879911607× 1013 6.803870053× 10−8

elements of the potential energy operator, the idea
of scalable multiplier proposed by Hiroshi Nakatsui
was used [5]. The scalable multiplier is a function
of only the angular variable α and has the following
form

g (α) =
∣∣∣sin(α) sin(α+β) sin(α−β)∣∣∣. (8)

Adiabatic potentials and channel functions are ob-
tained by solving the generalized boundary value
problem (6) with fixed radial variable[
∂2

∂α2
− 2µR

(
z1z2 sin(β)

|sin (α+β)|
+
z1z3 sin(β)

|sin (α−β)|
+

z2z3
|sin(α)|

)
+2µR2Uν(R)

]
χν (R,α) = 0. (9)

In (9), the channel functions χν(R,α) are pre-
sented as a linear combination of the basic functions
(ϕn(R,α)), which are solutions of the relative mo-
tion equation (6) at zero value of the radial variable
(R = 0)

ϕn (α) =

{
sin ((4n− 2)α) , n = 1, 2, 3 . . .

cos (4nα) , n = 0, 1, 2 . . .
(10)

These periodic functions are solutions of the angular
equation for the radial variable R = 0 that satisfy
the Dirichlet and Neumann boundary conditions.
Thus, we have two sets of basic functions — odd
and even.

The numerical values of the adiabatic potentials
Uν(R) [6, 7] are obtained for different dimensions
of the base (10), by which the channel functions
χν(R,α) are decomposed, and which parametrically
depend on radial variable as

χν (R,α) =

N∑
n=1

Cnν (R)ϕn(α). (11)

Using the decomposition (11), from (9) we obtain
a system of algebraic homogeneous equations, the
solution of which allows to receive the values of
the adiabatic potentials Uν(R) and the coefficients
Cnν(R), and thus the channel functions (11). Hav-
ing adiabatic potentials, we can find the energies of
the ground and excited quantum states and their
radial wave functions that satisfy the equation[

1

R

∂

∂R

(
R
∂

∂R

)
+ Uν (R) + 2µε

]
fν (R) = 0.

(12)
The spectroscopic parameters of the considered
three-particle systems were calculated from the
determined adiabatic potentials in the Born–
Oppenheimer approximation in the two-channel ap-
proximation.

3. Results of numerical calculation

The numerical values of the spectroscopic param-
eters for two singlet series of an exotic helium atom
are obtained using the essential tools for mathemat-
ics — MAPPLE (2017). These results are presented
in Table I and II. The left column in Table I in-
dicates the odd–even (oe) and the even–even (ee)
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TABLE IIThe results of numerical calculations: spectral characteristics of the (3He2+, e, 3H) system.

State
Energy value of
the state [GeV]

Interval of radial
variable [a.u.]

Mean radius of
the state [a.u.]

The average radius
of the system [m]

1Soeε00 1395.27479 [0, 1/200000] 1× 10−6 5.29× 10−17

1Soeε01 535.8780388 [0, 9/1000000] 2.5× 10−6 1.3225× 10−16

1Soeε02 244.496226 [0, 13/1000000] 5× 10−6 2.645× 10−16

1Soeε03 124.8114457 [0, 19/1000000] 6.05× 10−6 3.20045× 10−16

1Seeε00 2089.200523 [0, 1/250000] 9× 10−6 2.116× 10−17

1Seeε01 412.3373748 [0, 1/125000] 2× 10−6 1.058× 10−16

1Seeε02 128.7652912 [0, 9/500000] 5× 10−6 2.645× 10−16

Fig. 1. Radial wave function of the ground state
of the antitritium helium (3He2+, e, 3H).

series, and the right column shows the character-
istics of the minimum adiabatic potential for two
series. Parameters of the spectral characteristics
for the ground and excited states of the system
(3He2+, e, 3H) are presented in the Table II.

As it follows from the presented data, the energy
values for the ground state and for the excited states
of the even series (ee) are higher than for the excited
states in the odd series (oe). In this case, the energy
value for the third excited state of the series (oe)
— 124.81 GeV — coincides with the Higgs boson
mass obtained experimentally at the Large Hadron
Collider in 2012 (MH = 125.09±0.24GeV). It is also
interesting to note that in the 1See singlet series,
the second excited state with a relative error of 3%
coincides with the Higgs boson mass.

The radial wave functions of the ground and third
excited states of 1Soe antitritium helium are pre-
sented in Figs. 1 and 2, respectively.

There are several experimental and other the-
oretical investigations. For example, A. Arbey
et al. [8] used scans of the 19-parameter space
of the so-called phenomenological minimal super-
symmetric Standard Model. This approach allows

Fig. 2. Radial wave function for the third excited
state of the antitritium helium (3He2+, e, 3H).

the evaluation of different missing parameters of
bosons. In other investigation (H.Y. Cheng et al. [9],
2022) the quasi-two-body D → SP decays and the
three-body D decays proceeding through interme-
diate scalar resonances were studied [9].

4. Conclusions

We have calculated the spectral characteristics
for two singlet series (1Soe,1See) of the antitritium
helium (3He2+, e, 3H). Our approach makes it pos-
sible to calculate both particles and antiparticles in
physical systems, which opens up the possibility of
expanding the field of application of the method,
for example, to organic molecules.
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