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Abstract

This paper provides an overview of the systematic application of the B-
splines R-matrix method (BSR) to calculate of electron-atom collision pro-
cesses. This method allow to use the term-dependent nonorthogonal orbitals
along with B-splines as basis functions. Thus, it provides the effective ac-
counting of electron correlation. The cases of the slow electrons scattering on
the Ca, Mg, Sr, Si, F, Al, and B atoms have been considered. The obtained
calculations results are in good agreement with a large set of experimental
data in a wide range of collision energies.

1 Introduction

Over the past decade, the physics of electron-atom (EA) collisions has been de-
veloped quite intensely. This is caused by both fundamental nature of the investi-
gated processes and application needs. The elementary processes of electron-atom
interaction, that accompanying such collisions, are extremely diverse. Therefore,
the main problem is the deep-level understanding of the behavior of submicro-
scopic and often strongly correlated quantummechanical many-body systems. This
knowledge allows to obtain a large massive of data needed to simulate the behavior
of various types of plasmas and discharges, and to evaluate their properties. It con-
cerns, firstly, the characteristics of the atomic structure; secondly, cross-sections
and collision velocities of electrons and photons collisions with atoms and ions. A
considerable number of common computer programs have been developed for these
purposes (see., eg, [1]). Using these program codes the numerical calculations of
EA-scattering characteristics with rapidly increasing complexity were performed.
Comparison with experimental data shows the reliability of computer programs
used in these calculations. This is especially important when the theory is the
only source of the systematic data sets.

This article is devoted to the B-spline R-matrix method (BSR) [2]. Extensive
information about usage of this approach is given in [1]. However, many aspects
of the the BSR-method application still are not closed. In this paper, we will
focus on the most important points of BSR-calculations of electron processes with
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Ca [3, 4], Mg [5], Sr [6], Si [7], F [8], B [9], and Al [10] atoms, that were performed
by our research group.

2 The research method

BSR method [2] is quite versatile. It has been successfully applied for the
structural calculations of atomic systems, and for the interpretation of the pro-
cesses of elastic and inelastic electron-atom collisions. It is desirable to calculate
all of these processes within the framework of the same comprehensive approach.
Appropriate clarification made using boundary conditions for the close coupling
(CC) equations. In addition the different physical effects are taken into account:
the electronic correlations, threshold phenomena, channels coupling. Although the
BSR method can be applied to heavy atoms, we will work here exclusively with
the light atomic targets.

Note that most of the available theoretical methods can work only with rela-
tively simple quasi-one-electronic (hydrogen-like) and quasi-two-electronic (helium-
like) targets. In contrast, BSR method allows consideration of the complex targets
with open shells. The B-spline R-matrix method [2], that we used in the calcu-
lations [3]-[10], is different from the other approximations by the presence of two
innovations. First one is the usage of non-orthogonal orbitals for representation
of radial parts of one-electron wave functions. This applies both to the bound
atomic states, and to the states of the scattered electron. Second one is the usage
of felicitous R-matrix basis, which is defined by a full finite set of the B-splines
with compact carriers in the inner region.

So, in [2] the standard methods of close coupling of channels and R-matrix
(see.Burke [11]) were in fact generalized for the case of low-energy electron in-
teraction with arbitrary complex atom. In the CC-approximation the problem of
low-energy electron scattering on the N-electron atom is reduced to the solution
of the Schrodinger equation

N+1 N+1
1 A 1
(Hyi1— B)VL (X, 2n 1) =0, Hy = > <—§V§ - ;) +Y — ()

7o
i=1 i>j=1 Y

with appropriate boundary conditions. Here £/ and Hy 1 are the total energy and
the Hamiltonian of the (N +1)-electron system ,target atom -+ projectile electron”,
Z is nuclear charge. The Hamiltonian Hy (1) is diagonal with respect to the
total orbital angular momentum L, the total spin S, their projections My, Mg on
a given axis and parity 7. The function WL (X, zx 1), which is usually called ,the
collision wavefunction”, is a fully antisymmetrized wavefunction of the (N + 1)-
electron system; X = (x1,...,zn) and z; = (v, 0;) refers to the set of spatial 7;
and spin o; coordinates of the ith electron. Furthermore, I' = (yLSMpMgn) is a
complete set of quantum numbers of the (N + 1)-electron system. The subscript
« characterizes the initial conditions and usually denotes the incoming scattering
channel. Without ionization the expansion of the total collision wavefunction
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WL (X 2n 1) can be written as

n
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The index 4 includes all quantum states of the system, and 5; is a channel
function that is obtained by vector coupling of N-electron target wavefunction
¢, (X) = & (x4, ...,xn) with angle Yi,m, (Fy11) and spin Yl (on+1) parts of
wavefunction (N + 1)th scattered electron. In the formula (2) A - is the antisym-
metrization operator with respect to the exchange of any pair of electrons, while
FL (rn1) is the radial component of the scattered electron wavefunction when
the target is in the ith state. The X? (X, zn41) is a set of square integrable an-
tisymmetric correlation functions. Together with ®; (X), they considered known.
The challenge is to find the radial functions of scattered electron F, (ryy1) and
the expansion coefficients ¢;. In the case of complex atoms the wave functions
®,; (X)) are constructed in the form of multiconfiguration expansion

q)i (x177xN):ZqJ<p] (x17"'7xN)7 <3>
J

where the known configurations ¢; are constructed from a one-electron bound or-
bital basis, usually consisting of physical self-consistent field orbitals plus possibly
additional pseudo-orbitals. The latter are included to represent correlation effects.
The coefficients ¢;; in (3) are determined by diagonalizing of the N-electron target
Hamiltonian:

(P; [Hn|®5) = Ei (Z,N) by5. (4)

Typically, the first sum in the right part of the expansion (2) include only the
state of the target, which at given energy I = E; + k?/2 correspond to so-called
open channels. In the first sum can also be included some pseudo-states. They
are approximate states of the continuous spectrum. Selection of the pseudo-state
is carried out on the basis of an accurate accounting of the polarizability of the
ground and several excited states of the target. In addition to using the pseudo-
states, the contributions of selected channels can be partially taken into account
through accounting a finite number of correlation functions X? (X, zn+1), included
in the second sum of expansion (2).

The basis functions ¢; and x; in expansions (2), (3) are constructed of the
single-electron atomic orbitals ¢,,, that in the central field approximation have
the form

Poug (:L’) - 1/7” : Pnilz' (7”) }/lzmz (7/”\) X (m5|0) y &= (7?7 0) <5>

where o; — is a short designation for a set of quantum numbers n;, I;, m; and mg.
In the standard approach (see Burke [11]) for the convenience of computing, the
radial wave functions of the scattered electrons F are chosen orthogonal to all
atomic orbitals P, of the same target symmetry, that is,

/ P, (1) Ejy (r)dr =0, 1; = 1;. (6)
0
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It is clear that this condition is purely mathematical, and not a physical require-
ment. This condition does not follow from the general quantum-mechanical prin-
ciples, because the radial orbitals F,,;, and F}; are eigenfunctions of different
Hamiltonians. Condition (6) actually means, that the incident electron can not
be virtually trapped in one of the unoccupied subshells, that are accounted in the
target states expansion (3). In the standard approach framework [11] the pos-
sibility of such capture is provided by inclusion in second sum of expansion (2)
of the special additional correlation functions X? This leads to a non-physical
pseudo-resonant structures in cross sections. It also causes a significant increase
the number of integral-differential equations, that must be are solved. In our stud-
ies [3]-[10] it has been shown that these difficulties can be eliminated. It is enough
to waive the requirement of orthogonality (6) functions F}., to target orbitals Pr,.
This allows to take into account the possibility of a virtual capture of an electron
into unfilled subshell of the target.

Let’s substitute the expansion (2) into the equation (1) and sequentially multi-

. =T . . . .
ply on the functions ¢, and X? After integration in all the variables, except 7y 1,
we obtain a system of integral-differential equations for the functions F; = FJL:

(d2 ~ MJr?Jrkg)pi(f) :QZ(%jJrWijJrXij)Fj(r)? (7)

dr? 72

where k? = 2[E — E;(Z,N)], and V;;, W;;, X;; — is the local direct, non-local
and non-local exchange correlation potentials, respectively. In the case of EA-
scattering the explicit form of these potentials is automatically generated by BSR
program [2].

In our studies [3]-[10] to solve the system of CC-equations (7) was applied the
B-splines R-matrix method. It is based on the use of non-orthogonal orbitals.
As the basis functions are used B-splines. R-matrix method implies the split of
the configuration space of the system ,atom -+ electron” into two areas: the inner
r < a and external » > a. The radius of the inner region of » = a is chosen so that
the exchange and correlation effects were quite small for » > a. Full wavefunction
of (N + 1)-electron system in the inner region at a given energy F is given by
expansion

UE = ARV, ®)
)
where \Ifl,; — is the energy-independent discrete basis set:
V(X ang) = AZ(I){(X§IA'N+17UN+1)%TC%,€ +
,j
+ ZX{(K Tn1)dy. (9)

—T

Here ®, and x! are defined the same way as in the formula (2). Function F},
describe the radial movement of the scattered electron in the 4-th channel. We
have presented them in the form of a linear combination of a finite number of basis
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functions u;, which satisfy boundary conditions: w; = 0, (a/u;)du;/dr|.—a = b,
where b is an arbitrary real constant. For such basis functions, the Hamiltonian (1)
is not a Hermitian in the inner region. This is a consequence of non-zero values
(at r = a) surface terms arising from the kinetic energy operator. However, these
members can be removed using the Bloch operator Lp;q [11]. The formal solution
of Schrodinger equation (1) acquires the form of

0) = 1/2) WP (WEIR,) (B — B) ' (d/dryss — by frv1)(@F10). (10)
ki

Projecting this equation onto the channel function ®, and performing calculations
on the border of the inner region, we obtain

T = r dP}F T
Fi(a) = E Rij(E') ad?”N+1 — b F; , (11)
Jj=1 TN41=0

where we have introduced the R-matrix with elements
1 wiy(a)wjy(a)

RE(E) = — E LA LA, 12

K (E) 2a - E}; - FE (12)

the reduced radial wavefunctions £} and the surface amplitudes wj,. Diagonaliz-
ing a matrix (W} |Hy1+ Ly1|PL )ins for each set of quantum numbers of T, it is
possible to determine the energy Ej and coefficients ¢, d;; in the expansion (9),
i.e. find the wave functions \Ifl,; for the respective basic states. However, it should
be done only once, to determine the R-matrix over the entire range of collision
energies.

By inclusion in the expansion (9) of the additional correlation functions x;
one can partially take into account the effects related to the orthogonality condi-
tions (6) for functions FL, and with limitation of the first sum in (9) by a finite
number of terms. However, in most cases this leads to the appearance of a pseudo-
resonant structure in the cross sections. In addition, it excessively increases the
number of additional integral-differential equations. These equations must be left
in (9) to provide a realistic calculation of the complex atoms and the processes of
their interactions with electrons.

As noted above, the proposed in [2] BSR method is free from these difficul-
ties. It is based on the use of nonorthogonal orbitals to represent the one-electron
wavefunctions for both discrete and continuous spectra. Another key aspect of
the BSR-version of the R-matrix method is the choice of B-splines as basis func-
tions u;(r) in the R-matrix representation (9) for the inner region. This choice
u;(r) provides fast convergence R-matrix decomposition without including in the
diagonal R-matrix elements (12) of any Buttle corrections. B-splines have the
properties as if specially created for the R-matrix theory.

They constitute a complete basis on the finite R-matrix interval [0,a] and
are convenient for finding both the bound target orbitals and the orbitals of the
scattered electron. Convenience primarily consist in the fact that B-splines are
the finite functions and have non-zero values on the carrier-intervals only.
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The solution of CC-equations (9) in the outer region r > a and the crosslinking
of solutions at the boundary » = a allows to determine the K- and S-matrix, and
the phase shifts. In the outer area all exchange and correlation potentials are
practically zero. Therefore, in this area we get a fairly simple system of coupled
integral-differential equations for radial functions F;(r). It can be accurately solved
numerically using modern computers. These solutions are sewn at » = a with the
solutions from the internal region r < a. After this it is easy to determine the
K-matrix from the asymptotic relation

Fio ~ k; 2(sin(0;)6;0 + cos(6;) Kya). (13)

T
Here, the second index « indicates the channel number of the incident wave. Scat-
tering matrix ;. and transition matrix 7;, with n x n dimensions are determined
by known matrix relations S =1+ T = (1 + ¢K)/(1 — iK). These matrices are
then used to calculate the scattering cross sections and all other observable values.

The most important from a computational perspective properties of B-splines
are described in [2] (and the references therein). There’s also discussed in detail
spline algorithms for solving differential and integro-differential equations and the
bound states scattering problem. In particular, there were demonstrated their
fundamental advantages over the algorithms based on the finite-difference approx-
imation.

In the BSR approximation [2] is used a common approach to the problem
of accounting the correlation of electrons, often with the use of the results of a
multiconfiguration Hartree-Fock method (MCHF) [12, 13]. It is based on the rep-
resentation of radial orbitals P;(r) in the form of a finite expansion on a complete
basis set of B-splines {B;}.",. Multi-configurational character of expansion (3)
for total wavefunction of N-electronic system, allows you to take into account a
significant part of the correlation effects. Quantum-mechanical calculation within
MCHF method consists of two phases: constructing the many-electron CSF-basis
and solving the multiconfiguration Hartree-Fock equations.

From these equations, are determined the radial wave-functions P, (r), which
are part of Slater determinants. Calculation results of the atomic characteristics
are highly dependent on the choice of radial orbitals P,;(r) and configurations that
are included in the expansion of the target wavefunction. At the same time the
term-dependent non-orthogonal bound orbitals are used as one-electron functions.
They are optimized in the independent calculations for individual terms. The
use of such orbitals allows a detailed description of the resonant structure in the
low-energy EA-scattering cross sections.

Note that the calculations for the external region was performed using the
flexible asymptotic R-matrix (FARM) package [14].

3 Results and discussion

In [3] has been investigated the low-energy electron scattering from Ca atoms
and photodetachment of Ca~. The low-energy range from threshold to 4 eV was
explored. The multiconfiguration Hartree-Fock method with nonorthogonal or-
bital sets was used for an accurate representation of the target wave functions.
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The close-coupling expansion includes 39 bound states of neutral calcium, cover-
ing all states from the ground state to 4s8s 1S. The BSR-calculations [3] yield
good agreement with the few available experimental data for both elastic electron
scattering and photodetachment of Ca~. The prominent resonance structure in
the low-energy region was analyzed and discussed.

In the continuation of studies [3], in the paper [4] the B-spline R-matrix (close-
coupling) method was applied to study electron impact excitation of the four
lowest excited states of calcium. Results for angle-integrated and angle-differential
cross sections, as well as (pseudo-) Stokes parameters of the light emitted in the
4s4p 1Py — 45% 1S optical decay, were compared with various experimental data
and predictions from other close-coupling and distorted-wave calculations. Overall,
the agreement between our results and the experimental data is very satisfactory,
although a few discrepancies remain.

In paper [5] B-spline R-matrix (close-coupling) method was used to perform a
systematic study of angledifferential and angleintegral cross sections for electron
scattering from neutral magnesium. The calculations cover elastic scattering and
excitation of the five excited states 3s3p 13 P°, 3s3d 1 D, 3s4s 1.5 and 3sd4p 1 P°. A
multiconfiguration Hartree-Fock method with nonorthogonal orbitals was applied
for an accurate representation of the target wave functions. The close-coupling
expansion for the collision problem included 37 bound states of neutral magnesium.
Angle-differential cross sections are presented for incident electron energies from
10 to 100 eV. The calculation results have appeared very sensitive to the effects of
electron correlations in Mg target, as well as in the (N + 1)-electron system e—Mg
scattering. The use of the term-dependent non-orthogonal sets of orbitals P,
and F, allowed to describe accurately both the scattering states and the target
states of Mg atom. The valence and core-valence correlations were taken into
account by including in the multiconfiguration expansion of the wavefunctions
the target electron configurations with an excited core. Calculation results for
elastic scattering DCS (Fig. 1) at 10, 15, 20, 40, 60, 80, and 100 eV, as well
as the corresponding angle-integrated cross sections, were compared with various
experimental data and predictions from other close-coupling and distorted-wave
calculations. In spite of a few remaining discrepancies, the overall agreement
between our results and the experimental data is very satisfactory.

Consider the electronic excitation of the optically allowed transition 3s? 15° —
3s3p 1 P°. The calculated angular dependences of DCS are in good agreement with
the results of recent measurements [18] at energies of 10, 15, 20 and 40 eV. They
are characterized by the appreciable angular asymmetry with predominant scat-
tering in the region of small angles. For excitation of the spin-forbidden transition
352 15° — 353p 3P° both the experimental, as well as theoretical data are some-
what contradictory. The cross sections of this transition is very sensitive both to
minor refinements of the target wavefunctions, as well as to the effects of coupling
of channels, including the coupling with the ionization continuum. The results
of BSR37-calculations of the DCS [5] for the electron excitation of three more
3sd4s 1S, 3s3d 1D and 3sdp ' P° states of Mg atoms also are in good agreement
with the experimental data [19]. This further confirms the accuracy of the BSR
approximation.
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Figure 1: Angle-differential cross sections for elastic e-Mg scattering at impact
energies of 10, and 15 eV: 1 — our BSR37-calculation [5]; 2 — CC5 [16]; 3 — a
method of optically coupled channels [17]; 4 — experiment [15]

In paper [6] were studied the slow electron scattering processes on strontium
atoms. In this work were numerically calculated excitation energies of the 31 lower
states of the Sr atom. The calculations were performed using MCHF method
with term-dependent nonorthogonal orbitals P,;(r). We have obtained excitation
energies which are in good agreement with the experimental values. Electron
correlations were taken into account by including in MCHF-expansion basis the
functions with singly and doubly excited electron configurations. In the BSR31-
approximation there were calculated the energy and angular dependencies of DCS
and ICS for the elastic and inelastic electron scattering on Sr atom at energies up
to 10 eV. The necessity of the calibration of the experimental cross sections [20]
by shifting energy on 0.98 eV was demonstrated. In the energy dependence of the
ICS for elastic scattering and total ICS for e—Sr collision were found two maxima:
at energies 1.04 eV and 1.86 eV. The first of these corresponds to a powerful
5s24d[? D] shape-resonance in 2D®wave. The second — is the not fully manifested
(due to the opening of new channels of scattering) 5s5p?[' D] 2D resonance.

In [7] listed the results of a study of the elastic scattering and excitation of the
neutral silicon by electron impact. The range of collision energies extends from
threshold to 100 eV. Prior to our BSR34-calculations of scattering processes e—Si,
there were no data about their cross sections in the literature. For accurate repre-
sentation of the wave functions of the Si target atom we used the MCHF-method
with non-orthogonal orbitals. They were optimized in independent calculations
for each term separately. The close-coupling expansion for the collision wavefunc-
tion (9) included 34 bound states of neutral silicon derived from the [Ne| 3s%3p?,
3s3p3, 3523pds, 3523pbs, 3523pdp, 3523pbp, 3523p3d, and 3s?3p4d configurations,
plus seven pseudostates to fully take into account the dipole polarizability of the
ground state and the three lowest excited states of atomic silicon (approximation
BSRA41).

The choice of these bases allowed a fairly accurate description of the most
important transitions from the ground 3s?3p? 2P and two metastable 3s23p? 1D
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and 3s23p? 1S states of Si atom. Fig. 2 shows the energy dependence of ICS for
some major transitions from the ground state of the atom 3s23p? 3P Si. Results
were obtained using approximations BSR41 and BSR34. The curves for different
scattering approaches are close to each other. Significant differences appear only
for some transitions in high-lying states of the Si atom. These differences point
to the weak convergence of the strong coupling expansion: for transitions in a
high-lying states becomes significant the effects of target continuum excitation,
i.e. ionization. Fig. 2 shows that the inclusion of polarization and exchange-
correlation effects can lead to a significant change (up to factor 2) of the calculated
electron impact excitation cross sections on Si atom.

In [8] were studied the processes of electron scattering on fluorine atom in the
collision energy range from threshold to 100 eV. The MCHF method in combination
with B-spline expansions was used for an accurate representation of the target
wave functions. The sensitivity of the results to the coupling of discrete states and
the target continuum was checked by comparing the data, obtained in different
approximations. The latter differ by the number and selection of basis functions
in the R-matrix expansion (9). The maximum dimension of the basis in BSR39
approximation was 39 states, while the extensive BSR690 calculation included the
CC-39 expansion of the physical states and more than 650 continuum pseudostates.
Both correlation and polarization effects are found to be important for accurate
calculations of the cross sections. Coupling to the target continuum strongly affects
transitions from the ground state, but to a lesser extent the strong transitions
between excited states.

R-matrix calculations of e—F scattering were carried out using BSR-parallelized
version code [2]. To represent orbitals of the continuous spectrum FJ, in the inter-
nal region r < 30ap used a basis of 58 B-splines of order 8. Another characteristic
of these BSR-calculations was the use of orthogonal orbitals. They were used
both for construction of the wave functions of the target (3) and for presenting
the collision function (9).

Appreciable resonance structure was found in the energy dependence of the
cross sections of elastic scattering and excitation. It is caused by the formation
and decay autodetachment states (ADS) of the negative fluorine ion F~(2p*3inl’)
n=3,4,and !,/ =0,1,2,... The properties of these ADS is largely determined by
the correlations in the motion of excited electrons. Important factors are also the
polarization of the target F and the coupling of discrete states and the continuum.
The parameters (position and width) for 24 Feshbach type resonances in e”F
scattering were defined, and their spectroscopic classification was held.

The main result of [8] is extensive array of data regarding the characteristics of
the electron scattering on fluorine atom. First of all, these are the energy depen-
dencies of ICS for the cases elastic scattering, momentum transfer, excitation, and
ionization from the ground state. The excitation cross sections were obtained for
all possible transitions between the lower 26 states F; were established significant
differences (up to a factor of 2-3 in some energy ranges) between results of BSR39-
and BSR690-models. This indicates slow convergence of the CC-expansion for
e—F scattering. It has been revealed the strong influence of the interaction of
discrete states and the continuum of the target on the excitation cross section.
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Figure 2: The ICS of some transitions Figure 3: Cross section for electron-
from the ground 3s23p? 3P state of the  impact ionization of fluorine from the

Si atom: 1, 2 — calculations in approxi-  2s?2p° 2P° ground state. 1 — exper-
mations BSR41 and BSR34 [7] with and  imental data of Hayes et al. [21]; 2
without polarizational pseudo-states, re-  — the our BSR690 results [8]; 3, 4, 5
spectively; 3, 4 — calculations by other =~ — BSR690, partial cross sections for

authors in distorted waves method for  2p* *P, 'D and 'S states of F
transition 3P —1 D (see [7])

This is particularly evident at intermediate energies collision. That is, the
availability of unfilled 2p-subshell of F atom significantly affects on inelastic e—F
collision cross sections. In a study [8] we for the first time calculated the electron
impact ionization cross section of the F atom. The BSR690-calculation results
(Fig. 1) are in good agreement with the available experimental data [21].

The calculations of electron scattering on two more atoms: boron [9] and alu-
minum [10] have been performed by us in approximations BSR28 (for B) and
BSR32, BSR81, BSR587 (for Al). Unfortunately, the limited scope of this review
do not allow us to discuss the results of these studies.

4 Conclusion

We have presented the general principles and ideas, underlying in the B-spline
R-matrix method (BSR) [2] with a non-orthogonal orbitals. Various examples
of the application of BSR method to problems of atomic structure, electron col-
lisions and photodetachment processes were given. The use of non-orthogonal
single-electron orbitals eliminates orthogonal restrictions imposed in many other
theoretical approaches. These restrictions are intended only for the convenience
of calculation, rather than for reasons of physical necessity. Rejecting the orthog-
onality conditions, BSR method significantly improves the accuracy of the target

description. Accordingly, it becomes possible to further accurate calculation of the
collision processes.
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From a numerical point of view, key ingredients of the method are the B-splines
that represent the orbitals of the active target electrons as well as the projectile,
if necessary.

We also investigated the role of coupling effects between discrete states and the
target continuum at the excitation and ionization of atoms by electron impact. The
necessity of taking them into account in the calculation of scattering characteristics
(e—Si, e—F and e—Al) is showed. A strong sensitivity of the scattering cross
sections to the effects of electron correlation both in the N-electron target atom,
and in the (N + 1)-electron collision system is revealed. For each of the above
atoms was obtained a large set of systematic data related to the EA-collision
characteristics, that have considerable practical interest.
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