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METHODS FOR SOLVING PROBLEMS ON THE
DETERMINATION OF OPTICAL CONSTANTS FROM THE
ABSORPTION AND REFLECTION SPECTRA BY THE
KRAMERS - KRONIG ANALYSIS

The historical aspect of the origin of the Kramers-Kronig dispersion relations is considered. The theoretical basis of the
Kramers-Kronig analysis is shown, namely, the dielectric susceptibility function is a fundamental function of the linear
response, since it is obtained from the motion equation of the oscillator in an external field in the microscopic
electromagnetic Lorentz’s theory. Two aspects of the application of the Kramers-Kronig relationships and related ratios in
spectroscopy are shown — the determination of the optical characteristics of the absorbing medium from the absorption
(transmission) spectra and reflection spectra. A new approach to the application of the Kramers-Kronig relations is
proposed, to some extent, — a verification of known reference data on the optical constants of well-studied materials,
crystals, glasses, and other.

Keywords: Kramers-Kronig relations, Robinson relation, transmission spectra, absorption spectra, reflection spectra
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1 Introduction V0?0
September this year marked the 90th .
anniversary of the opening of the International n) = ES/J I
Congress on Physics in Italy (Como, Pavia, T %
and Rome). At the famous Congress among
many grandees of physics was and prof.
Kramers (photo in Fig. 1). Kramers made a
report “Diffusion of light by atoms” [1], which
in the future was predetermined to be as
reference in the thousands scientific articles.
The edition [1], the title page of which is in
Fig. 2, there is very rare.

So, in his report, Kramers finally
formulated the dispersion relations, which we
have been using for nearly a century with the
name of the Kramers — Kronig relations (KKR).
They state that the real and imaginary parts of

the dielectric susceptibility ¢(o) = &) + M(w) Fig. 1. George Uhlenbeck (left) and Samuel Goudsmit

are related by integral equations: (right), with Hendrik Kramers who first noticed a twofold
degeneracy in the solutions to the Schrodinger equation
with spin: the Kramers degeneracy. All three were
students of Paul Ehrenfest in Leiden.

o (o) do’ )
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where (¢ means that the integral is in the sense
of Cauchy's principal value, ® is a circular
frequency.

ONORANZE AD ALESSANDRO YV OLTA

ATTI
Fig. 2. The title page
of the Materials book
of the International
Congress on Physics
in Como, Pavia, and
Rome in 1927.

CONGRESSO INTERNAZIONALE
DEI FISICI

11=20 SETTEMBRE 1927 ~ ¥

NICOTA ZANTCHELLT
Mewxxvin

To this pair of equations the other pair is
equivalent, which follows from the parity of the
function & &(— ) = &(w), and the oddness of
the function n, n(- ©) = - (o), :

£0) =L [NV, 3)
(o) =2 [SEID )
T O -0

Formula (1) Kramers obtained two years
earlier and reported to the Royal Academy in
Copenhagen. It was also received in the
equivalent form by Kronig [2], and by Kallman
and Mark [3]. This is emphasized in the article
of Kramers [1]. The formula (2) was first
obtained by Kramers, Kronig mentions this
much more later in the article [4].

We note that the Kramers-Kronig relations
are obtained in the sequence, first (1) — (2), and
then (3) — (4), and not vice versa, as is often
stated in the literature. This is clear, because
Kramers was fascinated by the quantum theory
of dispersion, where the polarization function
has the form of type in (1) — (2) [5-7].

There are several approaches to the proof of
the KKR, and the relations themselves are
discussed in hundreds of articles, therefore in

this paper there is no way at least superficially
to analyze them. For the reader who is
interested in the subject matter, the author
recommends [8 — 18] and the literature in them.

If to be consistent, it should be noted that
Kronig dirived a different relation. He obtained
arelation for the refractive index

B c To(o)d
no) =1+ P gJ!m, )

where o =4nk/A=20k/c is the absorption
coefficient, & is the extinction coefficient, c is
the speed of light in vacuum. Thus, he applies
the Kramers procedure to a complex index of
refraction, more precisely to (n— 1) — ik

nw)-1= E@TM (6)

oy 0’ -0’

The relation (6) is not as good as (1). It is good
for the X-ray region where Kronig was
investigated, or for gas, when the real part of
refractive index is close to 1.

The Kramers relations (1) - (2) and (3) - (4)
are absolutely exact and legitimate, since the
dielectric susceptibility {(®) is a linear response
function and the fundamental causality
principle is applied to it [13, 14, 16 — 19]. This
applies in full, naturally, to the permittivity
e(w) = C(w) + 1. However, for functions related
to {(w) or &(w), i.e. elementary functions of
them, the application of the Kramers-Kronig
analysis requires additional discussions. First of
all, the refractive index is a function Ve().
Kramers himself, summing up, emphasized that
it would be interesting to check whether his and
Kronig's relations work for media that are
denser than gas. The Kronig relation (6) is also
satisfied well because only in the X-ray region
of the spectrum the refractive index is only
slightly greater than 1.

A new period in the history of the Kramers-
Kronig analysis began with the onset of an
intensive study of the properties of
semiconductors in the early 1950s, namely,
their optical properties. Then a new problem
arose: the determination of the optical constants
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of solids, mainly crystals, from their
fundamental reflection spectra. Beginning with
the works of Avery, Robinson and Price [20 —
22], the formulation of the problem was clear. It
is necessary to apply the Kramers-Kronig
analysis to the function

Inr=In|r|+o, (7)

that is, to the logarithm of the complex
reflection coefficient r=|r|e”.

Applying the Kramers-Kronig analysis to
the function (7), we obtain equations:

]n|r(m)| :—%go[eiql)zdcso,, ®)
0(0) = L [RLr@) | do’ ©)
T )

We shall call equations (8) — (9) logarithmic
Kramers — Kronig relations.

Since, with the experiment we have a
reflection spectrum |r(®)|?, then applying the
second KK relation (2) or (4) to (7), we get the
phase 6. The determination of the optical
constants is then carried out according to the
formulae:

O vy (10)

" 1+|r)? -2|r|cos®’

—Z|r|sin9 (11)

:1+|r|2 —2|r|cos0’

However, things did not go as good as they
wanted. Several years later Jahoda found the
key to the cherished casket. He, first in his
dissertation [23], and then in [24] showed how
to calculate this phase. For this Jahoda used the
theory of networks in the Bode idea [25, 26].
According to Bode and Jahoda

o'+o|dhld (12)

0(0) :%T]n -

0

o'-

This relationship for the phase in the form
of a formula (12) is densely included in many
articles, books and textbooks [27 —46]. We
note that an investigation of the optical
properties of silicon, germanium, and some
other classical semiconductor crystals was
carried out with the help of this formula.

Another approach to solving equation (13)
was suggested by Plaskett and Schatz [47, 48].
According to [47] ,

0(w) = —z—mgofw +{n— 2 arctan E} (13)
(0]

2 2
T o, o -

Here, B is the imaginary part of the frequency,
which can tend to 0 or co.

Both approaches, by Jahoda, and by
Plaskett and Shatz, are very highly theoretical.
At least, we do not see works in which it is
transparently demonstrated how from the
reflection spectrum we can get the phase, what
is the accuracy of the method, etc. As a few
exceptions, we can point to articles that discuss
the practical application of these methods and
attempts to implement them numerically [49 —
58].

The aim of this article is to show that
calculations based on Kramers-Kronig analysis
are not difficult to produce. However, it is very
important to take into account the reliability of
the initial data, primarily the width of the
measuring range, the accuracy of the
measurements and the measurement step.

2 Theory, Methods, and Calculations

The motion equation of a charge (electron) in
an external periodic field has the form [59]:

mi —y¥ +xr = E "', (14)
2¢e°

=2 15

V=33 (15)

where e, m are charge and mass of an electron,
respectively, cis the light speed in vacuum, «
is a quasielastic constant, ® is external wave
frequency. Its solution contains a complex
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amplitude through which we calculate the
dielectric  susceptibility. Kramers, in the
original, writes as follows:

é 1
_e 16
s() mo’:-o+8’ 8
where
2 3
.t 5

oo is eigenfrequency of an electron. The
equation (14) is "exact," the first term expresses
Newton's second law, the third is Hooke's law,
and the second term is necessary to fulfill the
law of conservation of energy. In practice, an
approximate equation is used, which, as it turns
out, describes dispersion very well. It is
obtained by replacing the third derivative with
the first derivative under the condition of
almost periodic motions:

int

mit + ml't + xr = Eje™’, (18)

where x/m=0? , and

)= (19)

cog —ol+ Mo

Now we'll show that relations (3) - (4) are
satisfied with any preassigned accuracy, if the
final interval of integration [-a, a is increased,
and the step of the integration is decreased. To
do this, we replace the integral by a discrete
operator, for example, according to the formula
of trapeziums

f(x)dx=

|| & ——

Ax{f(a)/2+ f(a+Ax)+ f(a+2Ax) +---+
+ fla+[N-2]Ax)+ £(B)/2}, (20)

where Ax is the integration step, N is the
number of points of integration. The points that
invert the integral into infinity, we simply miss.
It turns out that any attempts to improve the

accuracy of calculations by mathematical
methods in our case are completely
inappropriate. The accuracy is determined
solely by the accuracy of the experiment.

a)
B0 :

40

Reg
ra
=
nN
g
9o 45
-
g
08 o "

-40
-8

b)
fi —— - A=0. T=0168, ;=378
g & o 2 A<lB0, T=0.043, o =410 |

£
91} -j’.. *— 3- Silicon
D g |
af : ﬁ |
tedd
§

B0

Im&

40+

=
6 4 -2 0 2 4 ] 8

® (a. u)

-60
-8

Fig. 3. The general form of the model function of
dielectric susceptibility according to formula (19),
its real part (a), and the imaginary part (b).

Fig. 3 shows the general form of the model
function of the dielectric susceptibility
according to equation (19). The parameters A, T’
and oo are chosen in such a way as to
approximate the model function to the real
function for silicon. We took the data for
silicon from a remarkable paper [44].

Applying the Kramers-Kronig transform to
the function of the dielectric susceptibility
constructed in this way according to formula (),
we must obtain the same function. As the
numerical experiment shows, we can achieve
arbitrarily high accuracy. It is only important
choose a sufficiently wide interval of
integration and a sufficiently small step of
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integration. In Fig. 4 shows the result of the
calculation in the range from -25 to 25 (the
units of measurement are arbitrary, they
correspond to eV in the experiment). The
integration step is 0.1, since we adhere to the
data of [44].

a
kil

0

— 1

——2-databy KkR

)
g 7

ﬂ o |- initial data
|
|

o (a.u)
b)
50
ol g:
= 0
-25 g
50
25 -0 5 A0 5 0 5 0 5 2 B
o (a.u)

Fig. 4. Plots of the dielectric susceptibility, its real
part (a), and the imaginary part (b): the initial data
(1) and the Kramers-Kronig transform according to
formulas (3) - (4) with a frequency step of 0.1 (2).

Now, we formulate two tasks:

I) determine the refractive index from
extinction coefficient data. As is known,
these data can be obtained from transmission
(absorption) spectra;

II) determine the refractive index and extinction
coefficient from the reflection spectra data.
As we see, the Kramers-Kronig transformation
is performed well theoretically. In practice, a
much narrower range of measurements is
encountered. Following the same work 1, we
will apply the Kramers-Kronig transformation
for silicon in the range from 1.5 to 6 eV. Now

we must solve problem 1) directly. To do this,
we take the data for silicon from the same
article [44]. The problem is that in this work
the data is given in a range that is not enough
for us.

In the case where the range of application of the
KKR is not wide enough, the result is different
from the actual function sought. In this regard,
there is a need to introduce one or more control
points, determined by some other method. In
this case, the integral in formulas (3) or (4)
should be divided into three parts:

b r ’
X@):]ﬁ%ﬁ%ﬂm, (21)
Y 0t-o
where
2 tQY(e)do' 2 QY 0)do'
Ly=t—p|————, [ =t—p| ————.
. nga}[ o’-0® 7 Tth-,[ o'’ -o’

The value of Q = {®, ® '} is chosen according
to the sign before the integral {+, -}. It turns out
that I + L. depends weakly on ®, so we can put
a constant for the given value. We select its
value in such a way that the function X (®)
passes through the control point. Note that the
control point should not be selected in the "tail"
of the integration interval (the "tail" is about 0.5
eV). For silicon, for example, we can use the
refractive index and the extinction coefficient
as a reference point, which were obtained by
ellipsometry at a wavelength of 0.6328 pum
(1.96 eV) [Wang].

Thus, applying this approach and using the
Kronig formula (5), (6), we solve the problem
I). An alternative solution is also possible in the
general approach of Kramers. To do this, we
will have to apply the method of solving the
non-linear integral equation. A method of
successive approximations is useful. We choose
some zero approximation for the refractive
index (even a constant, n0 = const, see Fig.5)
and form a function of the dielectric
susceptibility

& (@) +ing (@) =1 (@) — k(0)]* 1. (22)
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After applying the KKR, we get a new value,
and, accordingly, the refractive index m(w),
already as a function

1 (0) — k(@) =&, (@) + i, (@) +1,
ie.
n, () =Re &, (w) + i, (@) +1. (23)

Repeating the procedure after a few iterations
yields the result. It depends, of course, on the
choice of the zeroth approximation. Therefore,
we can, as such, choose the refractive index,
which gives the Kronig formula (6). In Fig. 5
shows the result for silicon based on the
experimental data of the same work [44].

*— 0 approximation

7 [ =

8 A%

E: 9;? - </ Ist approximation
S ‘V\gf] —<— Ind approximation

£
[ y oo A
5 ; VjWF fi:;g? \‘7{ —~— 3rd approximation

=

datan

pos
[1ad

Refractive index n

o=

g

'%’?&.
: o
: \
| 7 3 4 b i 7

o (a.u)

Fig. 5. The result of calculations of the refractive
index for silicon by the method of successive
approximations.

The solution of problem II) is connected
with considerably greater difficulties than
problems I), which was already shown in the
introduction. Here we can not just put b + I, =
const. We again consider the example of silicon
from [44]. According to the data in the energy
range [1.5, 6.0] eV n and k we calculate the
complex reflection coefficient

o e—-1_ (n—ik)-1

e+l (n-ik)+1 e

r)=r|e

and In|r{. Applying the relation (), we calculate
the phase 6 (w). From formula (24) it is clear
that

. (25)
1-r

those
n—ik:ReH—rﬂ'ImH—r, (26)
1-r 1-r

whence, as we see, it is possible to obtain an
inverse transformation for finding n and 4. The
last relation is obviously equivalent to the
relations (10) — (11).

Fig. 6 shows graphically the result of
applying the Kramers-Kronig logarithmic
transformation for two variants. In the first
case, the transformation is performed for the
range, as in [44], [1.5, 6.0] eV (data 1).

a)

P
; /i
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5 JAN
# 3
= 4 o &
SN == 3
(8600000000000 \
’ )
2 ke
|
0 2 3 4
o (a.u)
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z 4
I /L = initial data |
#% —=— initial data 2
lsosessapodooomcacaolanaae by KR vith data | |
" [ ©— by KKR with data 2
§ F 3
I|] | /) 3 4 5 B
o (a.u)

Fig 6. Plots of the refractive index (a) and extinction
coefficient (b) of Silicon, obtained as a result of
applying  the  Kramers-Kronig  logarithmic
transformation; data 1 - range from 1.5 to 6.0 eV,
data 2 - range from 0 to 6.0 V.
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As can be seen from Fig. 6, the accuracy is lost
on the "tails" [1.5, 2] and [5.5, 6.0]. To improve
the result, we put in the range [0, 1.5] In|f
everywhere constant and equal to In|r(1.5)]
(data 2). As you can see, now in the low-energy
"tail" we received an excellent agreement. It
would be desirable to note, but how not to note
here, putting inaccurate data at one end of the
range, we lost accuracy at the opposite end (see
fig. 6). Apparently, this is a general property of
the integral dependence of functions.
Consideration of this aspect leads to next topic,
which we consider in the next section.

3 Discussion and Result

As was said at the beginning, the optical
constants are determined by various methods,
depending on the degree of absorption. The
Kramers-Kronig  dispersion relations are
integral relations, and they are satisfied the
more accurately, if the broader the spectral
region. It follows that only the Kramers-Kronig
relations are precisely the exact test that will
show whether the data are reliable or not, or to
what extent they are reliable. In this context, we
applied the Kramers-Kronig analysis to well-
studied crystals (Fig. 7). In article [44],
numerical data are presented for the canonical
crystals of silicon and germanium, and for
crystals of group A™BY. The obvious fact is
that, for reliable data, the discrepancy between
the initial data and the data as a result of the
Kramers — Kronig  transformation should be
observed only in the "tails" of the spectrum. As
we see this is not always the case.

E V)

4l I’l-L g f:&x_ |
] AN

Issue 41. — 20xx

6
5

;m“ - G




Uzhhorod University Scientific Herald. Series Physics. Issue 41. — 20xx 8

E (eV)

Fig. 7. Graphs of dependence of the refractive index
and the extinction coefficient on the quantum
energy for a) Silicon, b) Germanium, and crystals
of group A"MBV: ¢) Gallium Phosphide, d) Gallium
Arsenide, e) Gallium Antimonide, and f) Indium
Phosphide.

Closed marker - reference data, open marker —
values after conversion using the Kramers-Kronig
relations.

And finally, we can not get around one more
problem. Often it happens that without the
numerical data of the experiment, we would
like to use the literary data, which are shown in
a graphic form. Then, it would seem, you can
digitize the desired graphic data. For example,
it is done in the preparation of reference
publications [32]. In such cases, the Kramers-
Kronig analysis is possible in exceptional cases,
when greater accuracy of scanning and
digitization can be ensured. We will set an
example for demonstrating a measure of loss of
accuracy. We took the work [60], scanned and
digitized the data for the fundamental reflection
spectrum of AszSes glass. The result of the
application of the Kramers-Kronig analysis is
shown in Fig. Of course, in many practical
cases it is very important to have at least rough
estimates of the optical parameters of the
material.
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Fig. 8. Graphical demonstration of calculations of
the refractive index and extinction coefficient using
the Kramers-Kronig logarithmic relation with fuzzy
data for the glass As;Ses reflection coefficient: a)
the refractive index of the glass from Ref. [60]; b)
the plot of the reflectivity obtained by scanning the
graphic data from Ref. [60]; c) point plots of the
refractive index and extinction coefficient obtained
as a result of the application of the KKR.

4 Conclusions

The main conclusion of this paper is that the
application of the Kramers-Kronig relations to
determine the optical parameters of media from
the absorption and reflection spectra can be
realized wusing a simple computational
procedure. However, the most important
requirements for ensuring the reliability of
obtaining these analyzes is to ensure the
reliability of the experimental data and the
width of the frequency range of these data.
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