
�

�
�����������	 
��	�����
��

DOI: 10.2478/tmmp-2015-0000
Tatra Mt. Math. Publ. 63 (2015), 1–21

FURTHER RESULTS

ON THE INVESTIGATION OF SOLUTIONS

OF INTEGRAL BOUNDARY VALUE PROBLEMS

Miklós Rontó — Yana Varha — Katya Marynets

ABSTRACT. We give a new approach for the investigation of existence and
construction of an approximate solutions of nonlinear non-autonomous systems
of ordinary differential equations under nonlinear integral boundary conditions

depending on the derivative. The constructivity of a suggested technique is shown
on the example of non-linear integral boundary value problem with two solutions.

1. Introduction

In this paper we use the technique suggested in [1] for the investigation of ex-
istence and approximate construction of solutions of a new class of non-linear
boundary value problems with nonlinear integral boundary conditions involving
the derivative. At first, we reduce the given problem to a simpler model prob-
lem with two-point separated linear parametrized boundary conditions. Then,
the transformed problem is replaced by the Cauchy problem for a suitably per-
turbed system containing some artificially introduced vector parameters. The so-
lution of the Cauchy problem for the perturbed system is sought out by succes-
sive approximations. We give conditions sufficient for the uniform convergence
of the successive approximations. The functional perturbation term, by which
the modified equation differs from the original one, essentially depends on the pa-
rameters and generates finitely many determining equations from which the nu-
merical values of the parameters should be found. The solvability of the deter-
mining equations, in turn, may be checked by studying some approximations
that can be constructed explicitly.

c© 2015 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 34B15.
Keywords: nonlinear system of differential equations, nonlinear integral boundary condi-

tions, parametrization technique, successive approximations.
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Such an approach belongs to the few of them that offer constructive possibil-
ities both for the investigation of the existence of solution and it approximate
construction, see, e.g, [3], [5], [6], [9]–[13], [15], [17].

2. Notation and symbols

In the sequel, for any vector x = col(x1, . . . , xn) ∈ R
n the obvious notation

|x| = col(|x1| , . . . , |xn|) is used and the inequalities between vectors are under-
stood componentwise.

The same convention is adopted implicitly for operations ‘max’, ‘min’, ‘sup’,
‘inf’. The symbols 1n and 0n stand respectively for the unit and zero matrix of di-
mension n, and r(K) denotes the maximal, in modulus, eigenvalue of a square
matrix K.

���������� 1� For any non-negative vector ρ ∈ R
n under the componentwise

ρ-neighbourhood of a point z ∈ R
n we understand

B(z, ρ) :=
{
ξ ∈ R

n : |ξ − z| ≤ ρ
}
. (2.1)

Similarly, for the given bounded connected set Ω ⊂ R
n, we define its componen-

twise ρ-neighbourhood by putting

B(Ω, ρ) := ∪
ξ∈Ω

B (ξ, ρ) . (2.2)

���������� 2� For given two bounded connected sets Da ⊂ R
n and Db ⊂ R

n,
introduce the set

Da,b := (1− θ)z + θη, z ∈ Da, η ∈ Db, θ ∈ [0, 1] (2.3)

and its componentwise ρ-neighbourhood

D := B(Da,b, ρ). (2.4)

For a set D ⊂ R
n, closed interval [a, b] ⊂ R, Caratheodory function f : [a, b]×

D → R
n, n× n matrix K with non-negative entires, we write

f ∈ Lip(K,D) (2.5)

if the inequality

|f(t, u)− f(t, v)| ≤ K |u− v| (2.6)

holds for all {u, v} ⊂ D and a.e. t ∈ [a, b].

Finally, on the base of function f : [a, b]×D → R
n we introduce the vector

δ[a,b],D(f) :=
1

2

[
ess sup

(t,x)∈[a,b]×D

f(t, x) − ess inf
(t,x)∈[a,b]×D

f(t, x)

]
. (2.7)
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3. Problem setting and reduction to a model-type,
some subsidiary statements

Let us consider the nonlinear integral boundary value problem

dx

dt
= f (t, x) , t ∈ [a, b] , (3.1)

b∫
a

[
g
(
s, x(s)

)
+ h

(
s, x′(s)

)]
ds = d. (3.2)

Let Da and Db be convex subsets of R
n, where one looks for the values

of the solution of the boundary value problem (3.1), (3.2) at a and b, respectively.
Based on the sets Da and Db we introduce the set Da,b according to (2.3) and
its componentwise ρ-neighbourhood D as in (2.4). So, the domain of the space
variables in the given problem is D defined according to (2.4).

From now on, we suppose that the functions

f : [a, b]×D→ R
n and g : [a, b]×D → R

n, h : [a, b]×D → R
n

satisfy the Caratheodory and the Lipschitz condition in the domain D with ρ
satisfying the inequality

ρ ≥ b− a

2
δ[a,b],D(f). (3.3)

Here δ[a,b],D(f) is given in (2.7) and for the maximal in modulus eigenvalue
of the matrix

Q =
3(b− a)

10
K (3.4)

holds
r(Q) < 1. (3.5)

It is important to emphasize that D ⊂ R
n is bounded and, thus, the Lipschitz

condition is not assumed globally.

The problem is to find an absolutely continuous solution x : [a, b] → D of the
problem (3.1), (3.2) with initial value x(a) ∈ Da.

At first we simplify the boundary conditions (3.2) and reduce them to some
two-point separated conditions. To replace the boundary conditions (3.2) by cer-
tain linear two-point linear separated ones, similarly to [8]–[12], [14], [16], we ap-
ply a certain “freezing” technique. Namely, we introduce the vectors of param-
eters

z = col(z1, z2, . . . , zn), η = col(η1, η2, . . . , ηn) (3.6)

by formally putting
z := x(a), η = x(b). (3.7)
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Now, instead of the integral boundary value problem (3.1), (3.2) we will con-
sider the following “model-type”, two-point BVP with separated parameterized
conditions

dx

dt
= f (t, x) , t ∈ [a, b] , (3.8)

x(a) = z, x(b) = η. (3.9)

The parametrization technique that we are going to use suggest that, in-
stead of the original boundary value problem with nonlinear integral boundary
conditions (3.2), we study the family of parametrized boundary value problems
(3.8), (3.9), where the boundary restrictions are linear and separated. We then go
back to the original problem by choosing the values of the introduced parameters
appropriately.

Remark 1� The set of solutions of the non-linear integral boundary value prob-
lem (3.1), (3.2) coincides with the set of the solutions of the parametrized
problem (3.8), (3.9) with separated restrictions, satisfying the additional con-
ditions (3.9).

We recall some subsidiary statements which are needed below in the following
form.

	�

� 1 ([4, Lemma 3.13])� Let f : [τ, τ + I] → R
n be a continuous function.

Then, for an arbitrary t ∈ [τ, τ + I], the inequality∣∣∣∣∣∣
t∫

τ

⎡⎣f(τ)− 1

I

τ+I∫
τ

f(s) ds

⎤⎦dτ
∣∣∣∣∣∣ ≤ α1(t, τ, I) δ[τ,τ+I](f) (3.10)

holds, where

α1(t, τ, I) = 2 (t− τ)

(
1− t− τ

I

)
, |α1(t, τ, I)| ≤ I

2
, t ∈ [τ, τ + I] , (3.11)

and

δ[τ,τ+I](f) =

max
t∈[τ,τ+I]

f(t) − min
t∈[τ,τ+I]

f(t)

2
.

	�

� 2 ([4, Lemma 3.16])� Let the sequence of continuous functions{
αm(t, τ, I)

}∞
m=0

, for t ∈ [τ, τ + I]

be defined by the recurrence relation

αm+1(t, τ, I) =

(
1− t− τ

I

) t∫
τ

αm(s, τ, I) ds+
t− τ

I

τ+I∫
t

αm(s, τ, I) ds,

m = 0, 1, 2, . . . , where α0(t, τ, I) = 1. (3.12)
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Then the following estimates hold for t ∈ [τ, τ + I] :

αm+1(t, τ, I) ≤ 10

9

(
3I

10

)m
α1(t, τ, I), m � 0, (3.13)

αm+1(t, τ, I) ≤ 3I

10
αm(t, τ, I), m � 2,

where α1(t, τ, I) is given in (3.11).

4. Investigation of the model type BVP

Let us connect with the two-point model type BVP (3.8), (3.9) the sequence
of functions

xm+1(t, z, η) = z +

t∫
a

f
(
s, xm(s, z, η)

)
ds− t− a

b− a

b∫
a

f
(
τ, xm(τ, z, η)

)
dτ (4.1)

+
t− a

b− a
[η − z] , t ∈ [a, b] , m = 1, 2, . . . ,

satisfying (3.9) for arbitrary z, η ∈ R
n, where

x0(t, z, η) = z +
t− a

b− a
[η − z] =

(
1− t− a

b− a

)
z +

t− a

b− a
η, t ∈ [a, b] (4.2)

and z ∈ Da, η ∈ Db are considered as parameters.

It is easy to see from (4.2) that x0(t, z, η) ∈ D as a convex combination
of vectors z and η, when z ∈ Da, η ∈ Db.

The following statement establishes the uniformly convergence of the se-
quence (4.1) to some parametrized limit function.

�
����
 1� Let there exist a non negative vector ρ satisfying the inequal-
ity (3.3) and f : [a, b] × D → R

n be a function satisfying the Caratheodory
and the Lipschitz condition f ∈ Lip(K,D) in the domain D of form (2.4) with
a matrix K for which

r

(
Q =

3(b− a)

10
K

)
< 1. (4.3)

Then, for all fixed (z, η) ∈ Da ×Db :

1. The functions of the sequence (4.1) are absolutely continuous functions
on the interval t ∈ [a, b], have values in the domain D and satisfy the
two-point separated boundary conditions (3.9).
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2. The sequence of functions (4.1) in t ∈ [a, b] converges uniformly as m → ∞
to the limit function

x∞ (t, z, η) = lim
m→∞xm(t, z, η).

3. The limit function satisfies the initial condition

x∞ (a, z, η) = z (4.4)

and the two-point separated boundary conditions (3.9).

4. The function x∞ (t, z, η) is a unique absolutely continuous solution of the
integral equation

x(t) = z +

t∫
a

f
(
s, x(s)

)
ds− t− a

b− a

b∫
a

f
(
s, x(s)

)
ds+

t− a

b− a
[η − z] . (4.5)

In other words, x∞ (t, z, η) satisfies the Cauchy problem for the modified
system of integro-differential equations:

dx

dt
= f(t, x) +

1

b− a
Δ(z, η),

x (a) = z (4.6)

where Δ(z, η) : Da ×Db → R
n is a mapping given by formula

Δ(z, η) := η − z −
b∫

a

f
(
s, x∞ (s, z, η)

)
ds . (4.7)

5. The following error estimate holds:

|x∞ (t, z, η)− xm (t, z, η)| � 10

9
α1(t, a, b)Q

m (1n −Q)−1 δ[a,b],D(f), (4.8)

for any t ∈ [a, b] and m ≥ 0, where δ[a,b],D(f) is given in (2.7) and

α1(t, a, b) = 2(t− a)

(
1− t− a

b− a

)
(4.9)

is defined by (3.11) for which

α1(t, a, b) ≤ b− a

2
.

holds.

P r o o f. The validity of assertion 1 is verified by direct computation. To obtain
the other required properties, similarly to [1] we will prove that under the con-
dition assumed for fixed z ∈ Da, η ∈ Db and t ∈ [a, b] the functions of the
sequence (4.1) are contained in the domain D and (4.1) is a Cauchy sequence
in the Banach space C

(
[a, b] ,Rn

)
equipped with the standard uniform norm.
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Indeed, using the estimate (3.10) of Lemma1 for τ = a, I = b− a, relation (4.1)
for m = 0, t ∈ [a, b] implies that

|x1 (t, z, η)− x0 (t, z, η)|

≤ 1

2
α1(t, a, b)

[
ess sup
t∈[a,b]

f
(
t, x0 (t, z, η)

)− ess inf
t∈[a,b]

f
(
t, x0 (t, z, η)

)]

≤ α1(t, a, b)δ[a,b],D(f) ≤ b− a

2
δ[a,b],D(f), (4.10)

which means, that x1 (t, z, λ, η) ∈ D, whenever (t, z, η) ∈ [a, b]×Da×Db.

Using this and arguing by induction according to Lemma 1 we can easily
establish that

|xm (t, z, η)− x0 (t, z, η)| ≤ α1(t, a, b)δ[a,b],D(f)

≤ b− a

2
δ[a,b],D(f), m = 2, 3, . . . , (4.11)

which means that all the functions (4.1) are also contained in the domain D, for
all m = 1, 2, 3, . . . and (t, z, η) ∈ [a, b]×Da ×Db.

Now, consider the difference of functions

xm+1 (t, z, η)− xm (t, z, η)

=

t∫
a

[
f
(
s, xm (s, z, η)

)− f
(
s, xm−1 (s, z, η)

)]
ds (4.12)

− t− a

b− a

b∫
a

[
f
(
s, xm (s, z, η)

)− f
(
s, xm−1 (s, z, η)

)]
ds, m = 1, 2, . . .

and introduce the notation

rm(t, z, η) = |xm (t, z, η)− xm−1 (t, z, η)| , m = 1, 2, . . . (4.13)

According to the recurrence relation (3.12) of Lemma 2, using the Lipschitz
condition (2.6) and the estimation (3.13), for m = 1 from (4.12) and (4.10)
it follows that

r2(t, z, η) ≤ K

⎡⎣(1− t− a

b− a

) t∫
0

α1(s, a, b) ds+
t− a

b− a

T∫
0

α1(s, a, b) ds

⎤⎦δ[a,b],D(f)

≤ Kα2(t, a, b)δ[a,b],D(f) ≤ 10

9
Qα1(t, a, b)δ[a,b],D(f), (4.14)

where the matrix Q has the form (3.4). By induction we can easily establish that

rm+1(t, z, η) ≤ Kmαm+1(t, a, b)δ[a,b],D(f) ≤ 10

9
Qmα1(t, a, b)δ[a,b],D(f). (4.15)
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Therefore, in view of (4.15)

|xm+j(t, z, η)− xm(t, z, η)| ≤ |xm+j(t, z, η)− xm+j−1(t, z, η)|
+ |xm+j−1(t, z, η)− xm+j−2(t, z, η)|+ |xm+1(t, z, η)− xm(t, z, η)|

=

j∑
i=1

rm+i(t, z, η) ≤ 10

9
α1(t, a, b)

j∑
i=1

Qm+i−1δ[a,b],D(f)

=
10

9
α1(t, a, b)Q

m

j−1∑
i=0

Qiδ[a,b],D(f), (4.16)

where δ[a,b],D(f) is given by (2.7). Since, due to (3.5), the maximum eigenvalue
of the matrix Q does not exceed the unity, we have

j−1∑
i=0

Qi ≤ (1n −Q)
−1

, lim
m→∞

Qm = 0n. (4.17)

Therefore, we conclude from (4.16) that, according to Cauchy criterium, the se-

quence
{
xm (t, z, η)

}∞
m=0

of the form (4.1) uniformly converges in the domain

(t, z, η) ∈ [a, b] ×Da ×Db to the limit function x∞ (t, z, η). Since all functions
of the sequence (4.1) satisfy the boundary conditions (3.9) for all values of the
introduced parameter z ∈ Da, η ∈ Db the limit function x∞ (t, z, η) also satisfies
these conditions. Passing to the limit as m → ∞ in the equality (4.1) we show
that the limit function satisfies both the integral equation (4.5) and the Cauchy
problem (4.6), where Δ(z, η) is given by (4.7). Passing to the limit as j → ∞
in (4.16) we get the estimation (4.8). �

5. Connection of the limit function x∞ (·, z, η)
to the solution of the original integral BVP

Along with (3.1), consider the system of differential equations with the addi-
tive perturbation of the right-hand side

dx

dt
= f (t, x) +

1

b− a
μ, t ∈ [a, b] , (5.1)

with the initial condition

x(a) = z, (5.2)
where

μ = col (μ1, . . . , μn) ∈ R
n (5.3)

is some control parameter.
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�
����
 2� Let z∈Da and η∈Db be fixed. Suppose that all conditions of The-
orem 1 hold.

Then, for the solution x(·, a, z) of the Cauchy problem (5.1), (5.2) we have
the property

x(b, a, z) = η,

by other words, to satisfy the parametrized separated two-point boundary condi-
tions (3.9), it is necessary and sufficient that the control parameter μ is given
by the formula

μ := η − z −
b∫

a

f
(
s, x∞ (s, z, η)

)
ds, (5.4)

where x∞ (·, z, η) is the limit function of the sequence (4.1). Moreover, in that
case

x(·, a, z) = x∞ (·, z, η) . (5.5)

P r o o f. S u f f i c i e n c y. Following to [14] let us suppose that μ in (5.1) is given
according to (5.4). By virtue of Theorem1 the limit function x∞ (·, z, η) of the
sequence (4.1) satisfying the two-point boundary conditions (3.12) is a unique
solution of the initial value problem (4.6), where Δ(z, η) = μ is given by (5.4),
i.e., it is a solution of the Cauchy problem (5.1), (5.2) when μ is given by (5.4).
Thus, we have found the value (5.4) of the parameter μ for which (5.5) holds.

Necessity. Now we show that the control parameter value (5.4) is unique
because for any

μ = μ̃ 	= η − z −
b∫

a

f
(
s, x∞ (s, z, η)

)
ds (5.6)

the corresponding solution x̃(·, a, z) of the Cauchy problem

dx

dt
= f (t, x) +

1

b− a
μ̃, t ∈ [a, b] , (5.7)

with the initial condition
x(a) = z, (5.8)

does not satisfy the boundary conditions (3.9).

Let us suppose the opposite, that the solution x̃(·, a, z) of the initial value
problem (5.7), (5.8) satisfy the boundary conditions (3.9). It is obvious from
(5.1), (5.2) with μ equal to (5.4) and from (5.7), (5.8) that the functions x(·, a, z)
and x̃(·, a, z) satisfies the Volterra integral equations

x(t, a, z) = z +

t∫
a

f
(
s, x(s, a, z)

)
ds+ μ

t− a

b− a
, t ∈ [a, b] (5.9)

and

9



MIKLÓS RONTÓ — YANA VARHA — KATYA MARYNETS

x̃(t, a, z) = z +

t∫
a

f
(
s, x̃(s, a, z)

)
ds+ μ̃

t− a

b− a
, t ∈ [a, b] . (5.10)

By assumption, the functions x(·, a, z) and x̃(·, a, z) satisfy the boundary condi-
tions (3.9) and the initial conditions (5.8)

x(a, a, z) = z, x̃(a, a, z) = z,

x(b, a, z) = η, x̃(b, a, z) = η. (5.11)

Relations (5.9)–(5.11) for t = b give

μ = η − z −
b∫

a

f
(
s, x(s, a, z)

)
ds, (5.12)

μ̃ = η − z −
b∫

a

f
(
s, x̃(s, a, z)

)
ds. (5.13)

Substituting (5.12), (5.13) into the integral equations (5.9) and (5.10), we get
that for all t ∈ [a, b]

x(t, a, z) = z +

t∫
a

f
(
s, x(s, a, z)

)
ds

− t− a

b− a

b∫
a

f
(
s, x(s, a, z)

)
ds+

t− a

b− a
[η − z] (5.14)

and

x̃(t, a, z) = z +

t∫
a

f
(
s, x̃(s, a, z)

)
ds

− t− a

b− a

b∫
a

f(s, x̃
(
s, a, z)

)
ds+

t− a

b− a
[η − z] . (5.15)

As z ∈ Da and η ∈ Db, by analogy to the proof of Theorem 1, according
to the form of equations (5.14), (5.15) and the definition of the set D and
vector δ[a,b],D(f), respectively in (2.4) and (2.7), it can be shown that the values
of the functions x(·, a, z) and x̃(·, a, z) are contained in D.

10
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It is clear from (5.14) and (5.15) that

x(t, a, z)− x̃(t, a, z) =

t∫
a

[
f
(
s, x(s, a, z)

)−f
(
s, x̃(s, a, z)

)]
ds (5.16)

− t− a

b− a

b∫
a

[
f
(
s, x(s, a, z)

)−f
(
s, x̃(s, a, z)

)]
ds, t ∈ [a, b] .

By virtue of the Lipschitz condition (2.6), from the relation (5.16) we get that
the function

ω(t) := |x(t, a, z)− x̃(t, a, z)| (5.17)

satisfies the integral inequalities

ω(t) ≤ K

⎡⎣ t∫
a

ω(s) ds+
t− a

b− a

b∫
a

ω(s) ds

⎤⎦
≤ Kα1(t, a, b) max

s∈[a,b]
ω (s) , t ∈ [a, b] , (5.18)

where α1(t, a, b) is given by (4.9). Using (5.18) recursively, we arrive at the in-
equality

ω(t) ≤ Km+1αm+1(t, a, b) max
s∈[a,b]

ω (s) , t ∈ [a, b] , (5.19)

where m ∈ N is arbitrary and the functions αm+1(t, a, b), m ≥ 1 are given by the
formula (3.12), where τ = a, I = b− a.

Taking (3.13) into account from (5.19) we get the following estimate for every
m ∈ N,

ω(t) ≤ 10

9
α1(t, a, b)K

(
3(b− a)

10
K

)m
max
s∈[a,b]

ω (s) , t ∈ [a, b] . (5.20)

By passing to the limit as m → ∞ in the last inequality and by virtue of (3.4),
(3.5), we come to the conclusion that

ω(t) = 0, t ∈ [a, b] . (5.21)

According to (5.17), this means that the function x(t, a, z) coincides with the
function x̃(t, a, z). Using (5.12) and (5.13), we get that

μ = μ̃ = η − z −
b∫

a

f
(
s, x∞ (s, z, η)

)
ds.

This contradiction proves the theorem. �

Let us find the relation of the limit function x∞ (·, z, η) of the sequence (4.1)
to the solution of the original integral boundary value problem (3.1), (3.2).
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�
����
 3� Under the assumptions of Theorem 1, the limit function

x∞ (t, z∗, η∗) = lim
m→∞xm(t, z∗, η∗) (5.22)

of the sequence (4.1) is an absolutely continuous solution of the integral boundary
value problem (3.1), (3.2) if and only if the pair of parameters (z∗, η∗) satisfies
the system of 2n algebraic “determining” equations

Δ(z, η) := η − z −
b∫

a

f
(
s, x∞ (s, z, η)

)
ds = 0,

Λ(z, η) :=

b∫
a

[
g
(
s, x∞ (s, z, η)

)
+ h

(
s, f

(
s, x∞ (s, z, η)

))]
ds− d = 0. (5.23)

P r o o f. It suffices to apply Theorem 2 and notice that the differential equation
(4.6) coincides with (3.1) if and only if (z∗, η∗) satisfies the equation

Δ(z∗, η∗) := η∗ − z∗ −
b∫

a

f
(
s, x∞ (z∗, η∗)

)
ds = 0.

Moreover, it is clear that the limit function x∞ (·, z∗, η∗) coincides with the solu-
tion of the integral boundary value problem (3.1), (3.2) if and only if x∞ (·, z∗, η∗)
satisfies the equation

b∫
a

[
g
(
s, x∞ (·, z∗, η∗))+ h

(
s, f

(
s, x∞(·, z∗, η∗))]ds = d. (5.24)

This means that the limit function x∞ (z∗, η∗) is the solution the integral bound-
ary value problem (3.1), (3.2) if and only if the equations (5.23) hold. �

The next statement claims that the system of determining equations (5.23),
in fact, determines all possible solutions of the original non-linear integral bound-
ary value problem (3.1), (3.2).

�
����
 4� Assume that conditions of Theorem 1 are satisfied.

If there exists some pair of vectors
(
z0, η0

) ∈ Da ×Db that satisfy the system
of determining equations (5.23), then the integral boundary value problem (3.1),
(3.2) has a solution x0(·) such that

x0(a) = z0, x0(b) = η0

and
b∫

a

[
g
(
s, x0 (s)

)
+ h

(
s, f(s, x0 (s)

))]
ds = d , (5.25)

12
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Moreover, this solution is given by the limit function of the sequence (4.1)

x0(t) = x∞
(
t, z0, η0

)
= lim

m→∞xm(·, z0, η0), t ∈ [a, b] . (5.26)

Conversely, if the integral boundary value problem (3.1), (3.2) has a solution
x0(·), then x0(·) necessarily has the form (5.26) and the system of determining
equations (5.23) is satisfied with

z = x0(a), η = x0 (b) . (5.27)

P r o o f. If there exists a pair
(
z0, η0

) ∈ Da ×Db that satisfies the system of de-
termining equations (5.23), then according to Theorem 3 the function (5.26) is
a solution of the given integral boundary value problem (3.1), (3.2).

On the other hand, if x0(·) is the solution of the original problem (3.1), (3.2),
then this function is a solution of the Cauchy problem (5.1), (5.2) with

μ = 0 and z = x0(a) . (5.28)

As x0(·) satisfies the integral boundary restrictions (3.2), by virtue of equality
(5.22) of Theorem 3 the equality (5.26) holds.

Moreover,

μ := η − z −
b∫

a

f
(
s, x∞ (s, z, η)

)
ds = 0 , (5.29)

where the pair of vectors (z, η) is defined by (5.27). From (5.29) we have that
the first equation in the determining system (5.23) is satisfied, if (z, η) is given
by (5.27). Using (3.2), we obtain that the second equation in the determining
system (5.23) also holds.

Thus in (5.27) we have specified the values of (z, η) that satisfy the system of
the determining equations (5.23), which proves the theorem. �

Similarly to [7], the solvability of the determining system (5.23) can be estab-
lished by studying some its approximate versions

Δm(z, η) := η − z −
b∫

a

f
(
s, xm (s, z, η)

)
ds = 0 ,

Λm(z, η) :=

b∫
a

[
g
(
s, xm (s, z, η)

)
+ h

(
s, f

(
s, xm (s, z, η)

))]
ds− d = 0 , (5.30)

that can be constructed explicitly.

13
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6. Approximation of a solution

Theorem 3 can be complemented by the following natural observation. Let
(ẑ, η̂) ∈ Da × Db be a root of the approximate determining system (5.30)
for a certain m. Then the function

x̃(t) := xm(t, ẑ, η̂), t ∈ [a, b] , (6.1)

defined according to (4.1) can be regarded as the mth approximation to a so-
lution of the integral boundary value problem (3.1), (3.2). This is justified
by the next estimate following directly from inequality (4.8) of Theorem 1

|x∞(t, ẑ, η̂)− xm(t, ẑ, η̂)|
� 10

9
α1(t, a, b)Q

m (1n −Q)
−1

δ[a,b],D(f), t ∈ [a, b] , m ≥ 0, (6.2)

where Q and δ[a,b],D(f) are given in (3.4) and (2.7) respectively.

It is worth to emphasize the role of unknown parameters whose values appear-
ing in (6.1) are determined from the approximate determining systems (5.30):
ẑ is an approximation of the initial value at the point t = a of the solution
of integral boundary value problem (3.1), (3.2) and η̂ is that of its value at
t = b.

The solvability analysis based on properties of the equations (5.30) can be
carried out by analogy to [6] on the base of topological degree methods [2], but
it is not treated here.

7. Example

Let us apply the numerical-analytic approach described above to the system
of differential equations{
x′
1 (t) = x2

2(t)− t
5x1(t) +

t3

100 − t2

25 = f1(t, x1, x2),

x′
2 (t) =

t2

10x2(t)+
t
8x1(t)− 21

800t
3+ 1

16 t+
1
5 = f2(t, x1, x2), t ∈ [

0, 12
]
,

(7.1)

considered for t ∈ [
0, 12

]
with the integral boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2∫
0

[
sx1(s)x2(s) + f2

1 (s, x1(s), x2(s))
]
ds = d1,

1
2∫
0

[
s2x2

2(s) + f2
2 (s, x1(s), x2(s))

]
ds = d2,

(7.2)

where

d =

[
d1
d2

]
=

[ −59/16000
81/4000

]
.

14
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It is easy to check that

x∗
1(t) =

t2

20
− 1

2
, x∗

2(t) =
t

5
(7.3)

is a continuously differentiable solution of the problem (7.1), (7.2).

Following to (3.6), (3.7), introduce the parameters

z := x(0) = col
(
x1(0), x2(0)

)
= col(z1, z2),

η := x

(
1

2

)
= col

(
x1

(
1

2

)
, x2

(
1

2

))
= col (η1, η2) . (7.4)

Let us choose the sets Da and Db, where one looks for the values x(a) and
x(b), as follows:

Da = Db =
{
(x1, x2) : −10.3 ≤ x1 ≤ 0.6,−0.01 ≤ x2 ≤ 0.2

}
. (7.5)

In this case, a convex linear combination Da,b of the form (2.3) of vectors
z ∈ Da and η ∈ Db will be

Da,b = Da = Db. (7.6)

In the inequality (3.3) of Theorem 1 let us choose

ρ := col (0.2; 0.2) . (7.7)

Consequently ρ-neighhourhood D of the set Da,b is given as follows

D =
{
(x1, x2) : −10.5 ≤ x1 ≤ 0.8,−0.21 ≤ x2 ≤ 0.4

}
Direct computations show that the Lipschitz condition (2.6) for the right hand
side in (7.1) in the domain D holds with matrix

K =

[
1/10 9/10

1/16 1/40

]
and

Q =
3

20

[
1/10 9/10

1/16 1/40

]
, r(Q) = 0.045 < 1, (7.8)

δ[a,b],D(f) :=
1

2

[
max

(t,x)∈[0, 12 ]×D
f(t, x) − min

(t,x)∈[0, 12 ]×D
f(t, x)

]
=

[
0.645

0.36075

]
, (7.9)

ρ =

[
0.2
0.2

]
≥ b− a

2
δ[a,b],D(f) =

[
0.16125

0.0901875

]
. (7.10)

So, we check that all conditions of Theorem 1 are fulfilled, and the sequence
of functions (4.1) for this example is convergent.
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Using (4.1) and applying Maple 14 at the first iteration (m = 1) for the first
and the second component gives the following results:

x11(t, z, η) := z1 + 1/400t4 + 1/3
(
(−2z2 + 2η2)

2 + 2/5z1 − 2/5η1 − 1/25
)
t3

+ 1/2(2z2(−2z2 + 2η2)− 1/5z1)t
2 + z22t

− 2t
(
−29/19200+1/24(−2z2+2η2)

2− 1/120z1

− 1/60η1+1/4z2(−2z2+2η2)+1/2z22

)
+ 2t(η1 − z1), (7.11)

x12(t, z, η) := z2 + 1/5t+ 1/4(−1/5z2 + 1/5η2 − 21/800)t4

+ 1/3(−1/4z1 + 1/4η1 + 1/10z2)t
3 + 1/2(1/8z1 + 1/16)t2

− 2t
(
5499/51200+ (1/960)z2 + (1/320)η2

+ (1/192)z1 + (1/96)η1

)
+ 2t(η2 − z2).

The numerical computations show that the components of the solution of the
approximate determining system

Δm(z, η) := [η − z]−
b∫

a

f
(
s, xm (s, z, η)

)
ds = 0,

Λm(z, η) :=

b∫
a

[
g
(
s, xm (s, z, η)

)
+ h

(
s, f

(
s, xm (s, z, η)

))]
ds− d = 0, (7.12)

of form (5.30) for m = 1 are

z1 := z11 = −0.499994975, z2 := z12 = −0.6001633747 · 10−5,

η1 := η11 = −0.4874955843, η2 := η12 = 0.09999409626. (7.13)

By putting (7.13) into (7.11), we obtain the first and second components of the
first approximation to the solution of the given integral BVP (7.1), (7.2):

x11(t) = − 0.4999949750+ (1/400)t4 − 0.00166655933t3 + 0.04999829717t2

+ 0.00010377264t,

x12(t) = − 1.633747 · 10−6 + 0.1999349966t− 0.001562495105t4

+ 0.001041415846t3 + 3.140600000 · 10−7t2. (7.14)

The errors of the first approximation are

max
t∈[0, 12 ]

|x∗
1(t)− x11(t)| ≤ 2.03 · 10−6,

max
t∈[0, 12 ]

|x∗
2(t)− x12(t)| = 1.3 · 10−5.
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Similarly, for the second approximation (m = 2) we get the following solutions
of the approximate determining system (7.1)

z1 := z21 = −0.5000000116, z2 := z22 = 3.028388758 · 10−8,

η1 := η21 = −0.4875000081, η2 := η22 = 0.1000000296 (7.15)

and the second approximation to the solution

x21(t) = −0.5000000116+ 2.712673729 · 10−7t9 − 4.069015552 · 10−7t8

+ 1.550106267 · 10−7t7 − 0.0001874660935t6+ 0.00014997298t5

− 4.165 · 10−10t4 − 0.1562396477 · 10−4t3 + 0.0500000072t2

+ 3.9414 · 10−7t, (7.16)

x22(t) = 3.028388758 · 10−8 + 0.1999998998t− 0.00002232142906t7

+ 0.00006944446598t6− 0.00004166669840t5

− 0.000001627411976t4+ 0.000004341407150t3

− 7.25 · 10−10t2.

For the second approximation (m = 2) the errors are

max
t∈[0, 12 ]

|x∗
1(t)− x21(t)| ≤ 10 · 10−8,

max
t∈[0, 12 ]

|x∗
2(t)− x22(t)| ≤ 2.5 · 10−8.

For the third approximation (m = 3) the errors are

max
t∈[0, 12 ]

|x∗
1(t)− x31(t)| ≤ 2.3 · 10−9,

max
t∈[0, 12 ]

|x∗
2(t)− x32(t)| ≤ 3 · 10−10.

The graphs of the first approximation and the exact solution of the original
boundary-value problem are shown on Figure 1.

According to Theorems 3 and 4 the number of solutions of the algebraic
determining system (5.23) coincides with the number of solutions of the given
integral BVP.

Computations show that the approximate determining system of algebraic
equations (7.12) side by side with the solution (7.13) for m = 1 has another
solution

z1 := z11 = −10.21326364, z2 := z12 = 0.1516110403,

η1 := η11 = −9.951162260, η2 := η12 = 0.1020979352. (7.17)
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MIKLÓS RONTÓ — YANA VARHA — KATYA MARYNETS

Figure 1. The components of the exact solution (solid line) and its first
approximation (drawn with dots).

By substituting (7.17) into the first approximation (7.11) we obtain the following
first approximation to the second solution of the given integral BVP (7.1), (7.2)

x11(t) = − 10.21326364+ 1/400t4 − 0.04501145400t3

+ 1.006312897t2 + 0.0319866749t,

x12(t) = 0.1516110403+ 0.1989191771t− 0.009038155255t4

+ 0.02689548301t3 − 0.6070789775t2. (7.18)

By analogy we obtain the second and the third approximations (m = 2,m = 3)
to the second solution:

z1 := z21 = −10.20404878, z2 := z22 = 0.1514587161,

η1 := η21 = −9.942186105, η2 := η22 = 0.1020892875, (7.19)

x21(t) = − 10.20404878+ 0.000009062049441t9− 0.00006066670965t8

+ 0.001668092557t7− 0.006114508143t6+ 0.07696007972t5

− 0.1060615932t4 − 0.06351237337t3 + 1.050533638t2

+ 0.0229497715t,

x22(t) = 0.1514587161+ 0.2000037976t− 0.0001290138776t7

+ 0.0004999252228t6− 0.01325502520t5 + 0.02983091078t4

+ 0.006379352260t3− 0.6065030490t2. (7.20)

z1 := z31 = −10.20427860, z2 := z32 = 0.1514591964,

η1 := η31 = −9.942410605, η2 := η32 = 0.1020862671, (7.21)

18



INVESTIGATION OF SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS

x31(t) = − 10.20427860+ 1.109681721 · 10−9t15 − 9.214218520 · 10−9t14

+ 2.823261003 · 10−7t13−1.745922368 · 10−6t12+1.837022747 · 10−5t11

− 6.158409930 · 10−5t10 − 0.00003009699552t9+ 0.002230452505t8

− 0.008098511634t7+ 0.003565338010t6+ 0.07843090050t5

− 0.1101976568t4 − 0.06277119690t3+1.050720292t2+0.0229393376t,

x32(t) = 0.1514591964+ 0.2000001111t+ 1.029818264 · 10−7t11

− 2.048525315 · 10−6t10 + 0.00002872374699t9− 0.0002612343205t8

+ 0.001800515656t7− 0.002103346123t6− 0.01371819803t5

+ 0.03126749550t4 + 0.006004863667t3 − 0.6065174125t2. (7.22)

If we substitute the third approximate solution (7.22) into the given system
of equations (7.1), we obtain the following error:

max
t∈[0, 12 ]

∣∣∣x′
31 (t)− x2

32(t) +
t
5x31(t)− t3

100 + t2

25

∣∣∣= 5.7·10−7,

max
t∈[0, 12 ]

∣∣∣x′
32 (t)− t2

10x32(t)− t
8x31(t) +

21
800 t

3 − 1
16 t− 1

5

∣∣∣=1.4·10−7.
(7.23)

The graphs of the first and the third approximations to the second solution
of the given BVP are shown on Figure 2.

Figure 2. The components of the first (◦) and the third (solid line) ap-
proximations to the second solution.
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