-29-

УДК 666.266.6+543.4

Березнюк О.П., асп.; Петрусь I.I., к.х.н., ст. лаб.; Замуруєва О.В., к.ф.-м.н., доц.; Піскач Л.В., к.х.н., проф.

ВЛАСТИВОСТІ СКЛОЗРАЗКІВ СИСТЕМ Ag₂S-GeS₂-As(Sb)₂S₃

Волинський національний університет імені Лесі Українки, Україна, 43025, м. Луцьк, просп. Волі,13; e-mail: bereznuk.orysia@vnu.edu.ua

Методом диференційно-термічного аналізу визначено характеристичні температури для окремих склозразків квазіпотрійних систем Ag₂S-GeS₂-As(Sb)₂S₃. Отримані дані показують, що температура склування сплавів лежить у типовому для халькогенідних стекол інтервалі. Встановлено, що зі збільшенням вмісту модифікатора температура розм'якшення істотно не змінюється і знаходиться в межах 402-421 К та 373-438 К для систем Ag₂S-GeS₂-As(Sb)₂S₃ відповідно. По ізоконцентратах Ag₂S систем зі зростанням вмісту германій (IV) сульфіду значення температур склування та кристалізації зростає. На основі отриманих результатів, розраховано приведену температуру склування Т_{gr}, яка знаходиться в межах 0,62-0,73 та 0,59-0,70 для стекол систем Ag₂S-GeS₂-As(Sb)₂S₃ відповідно, що вказує на високу здатність зразків до склоутворення. Проведено вимірювання спектрів оптичного поглинання за температури 297 К. За даними спектрального розподілу коефіцієнта поглинання в області краю поглинання оцінено ширину енергетичної щілини Eg стекол систем Ag2S-GeS2-As(Sb)2S3. Визначено, що при збільшенні вмісту у стеклах GeS₂ край поглинання зміщується в область більших довжин хвиль, при цьому значення енергетичного положення краю поглинання зростає. При введенні в склоутворюючу матрицю модифікатора спостерігаємо зменшення значень енергетичної щілини для усіх склозразків. Характеристична енергія, що визначає ступінь розмиття краю поглинання, для всіх досліджуваних склозразків знаходиться в межах від 0,066 до 0,079 еВ.

Ключові слова: халькогенідні стекла; квазіпотрійні системи; область склоутворення; характеристичні температури; ширина енергетичної щілини.

Вступ

Вихідні бінарні компоненти квазіпотрійних систем Ag₂S-GeS₂-As(Sb)₂S₃, які виступають склоутворювачами, знайшли вже практичне застосування. Зокрема, стекла на основі германій (IV) сульфіду використовують для надшвидкісної передачі інформації оптичними хвилеводами та інтегральними схемами, створення кераміки для термічного інформації, відображення формування компонент літієвих енергетично ємних батарей [1]. При досліджені нелінійновластивостей оптичних стекол As_2S_3 встановлено, що значення їхньої нелінійної сприйнятливості третього порядку дорівнює 2,2·10⁻¹², що у 100 разів вище, ніж для кварцового скла [2], що дає можливість їх використання як активних елементів у пристроях виключно оптичного перемикання. Склоподібні халькогеніди Арсену (III) та Стибію (III) використовують в ІЧ оптиці, оптоелектроніці, оптоволоконних пристроях зв'язку, як середовища для голографії та оптичного запису інформації [3]. При дослідженні оптичних властивостей стекол складу (100-х)GeS₂-хSb₂S₃ (x = 0.90) встановлено, що зі збільшенням вмісту Sb₂S₃ значення ширини забороненої зони зменшується від 2,70 до 1,67 eB, а лінійний показник заломлення збільшується від 2,1188 до 2,4458 [4]. Також відомо [5], що масивне скло складів частини концентраційного простору Ag₂S–GeS–GeS₂ за значеннями питомої електропровідності та числом переносу катіонів Арґентуму (І) придатне для використання ролі іоноселективних В мембран В малогабаритних джерелах живлення.

Області склоутворення в квазіпотрійних системах Ag₂S–GeS₂–As(Sb)₂S₃, що отримані при загартуванні зразків від 1173 K,

© Березнюк О.П., Петрусь І.І., Замуруєва О.В., Піскач Л.В. DOI: 10.24144/2414-0260.2022.2.29-37

(займають

встановлені (рис. 1, 2) [6] та є значними більшу половину поверхні

Рис. 1. Область склоутворення в системі $Ag_2S-GeS_2-As_2S_3[6].$

Рис. 2. Область склоутворення в системі $Ag_2S-GeS_2-Sb_2S_3[6].$

По перерізах GeS_2 -As(Sb)₂S₃ в усьому концентраційному інтервалі – це склозразки. Максимальний вміст Ag₂S, що входить до складу скла у системах Ag_2S -GeS₂-As(Sb)₂S₃, становить 70 мол.% Ag₂S по обмежуючій Ag₂S-As₂S₃ (Рис. 1) та 55 мол.% Ag₂S по обмежуючій Ag₂S-GeS₂ (Рис. 2) відповідно. Це дві системи із досліджуваних типу $Cu(Ag)_2S-Ge(Sn)S_2-As(Sb)_2S_3$, ле наявні обширні області склоутворення. Враховуючи сказане, метою даного дослідження було визначити термічні параметри та оптичні властивості склозразків у системах Ag₂S- GeS_2 -As(Sb)₂S₃.

Експериментальна частина

Для досліджень використовували уже наявні склоподібні зразки та додатково синтезували ще деяку їх кількість, відповідно до методики роботи [6].

Отримані склозразки досліджували рентгенофазового методом аналізу (дифрактометр 4-13, ДРОН CuK_{α} випромінювання, діапазон кутів 20 в межах 10-60°, крок 0,05°, експозиція – 3 с). склоподібного стану Критерієм були відсутність виражених рефлексів на дифрактограмах, натомість, присутність – «галло», а також характерний для скла раковистий злом.

Методом диференційно-термічного аналізу (ДТА) лериватографі на системи F. Paulik, J. Paulik. L. Erdey 3 використанням комбінованої Pt/Pt-Rh термопари визначали температури, що характеризують термічні властивості стекол. Розтерті в порошок склозразки завантажували у контейнери, які вакуумували до 1.33·10⁻² Па i запаювали. Як еталон використовували – Al₂O₃. Швидкість нагріву складала 10 К/хв, охолодження здійснювалося в інерційному режимі.

Для оптичних вимірювань використовувалися монохроматор МДР-208. коефіцієнта Спектральні залежності поглинання (α) температурі 293 К при отримані експериментальних на основі досліджень світла. пропускання Для дослідження спектрів поглинання виготовлялись плоскопаралельні пластини товщиною ~ 0,1 мм, які були відшліфовані та відполіровані з використанням алмазних паст різної зернистості.

Результати експерименту

Для окремих склозразків (по ізоконцентратах 0 мол.% і 10 мол.% GeS2 в арсеновмісній та стибієвмісній системах відповідно, 40 мол.% Ад₂S обох систем) методом ДТА визначено фізико-хімічні характеристики: температура розм'якшення

-30-

(склування) – T_g , температура кристалізації – T_c , температура плавлення – T_m . На основі отриманих результатів розраховано приведену температуру склування T_{gr} ($T_{gr} = T_g / T_m$) для кількісної оцінки термічної стабільності стекол та константу Грубі $K_G = [(T_c - T_g)/(T_m - T_c)]$. Згідно правила Каузмана, якщо швидкість охолодження

розплавів знаходиться в межах 10-100 К/с, то відношення температур склування і плавлення склоподібного зразка приблизно становить 2/3 ($T_{gr} \approx 2/3$) [7].

Результати диференційного термічного аналізу склоподібних зразків систем представлені в табл. 1, 2. Вигляд характерної термограми скла подано на рис. 3.

Рис. 3. Термограма склоподібного зразка складу 40 мол. % Ag₂S – 60 мол. % As₂S₃.

В системі Ag₂S-GeS₂-As₂S₃ (табл. 1) для зразків обмежуючої сторони Ag₂S-As₂S₃, які є склом, характеристичні температури особливо не змінюються при збільшенні вмісту Ag₂S. По ізоконцентраті 40 мол. % Ag₂S при збільшенні вмісту GeS₂ від 0 до 60 мол. % зростають температури склування (від 409 до 573 К), кристалізації (від 476 до 694 К), плавлення (від 668 до 809 К) (рис. 4). Ймовірно тому, що область склоутворення в цій квазіпотрійній системі має значну протяжність і температури нонваріантних процесів по обмежуючій Ag₂S-As₂S₃ є значно нижчими (температури евтектики – 580 К і ліквідусу – ~680 К [8]) по цій ізоконцентраті, ніж по обмежуючій Ag₂S-GeS₂ (температури евтектики - 903 К і ліквідусу - 910 К [9]). Зростання температури розм'якшення також викликане і структурою скла. Згідно досліджень [10,11] для склозразків на основі Ge переважає тривимірна шароподібна сітка, а на основі As – двовимірна. Це впливає на такі властивості, як твердість і температуру склування, які більші для складів стекол на основі Ge. Структура GeS2 складається з тетраедрів GeS₄, що з'єднані вершинами, а склоподібного $As_2S_3 - 3$ пірамідальних угрупувань AsS_{3/2}. Матриця скла As₂S₃ містить, крім цього, структурні фрагменти з гомополярними зв'язками As-As, S-S, що сприяють розпушуванню остову стекол. Як видно з табл. 1, величини приведеної температури склування лежать в інтервалі 0,61-0,73. Це вказує на те, що більша частина зразків мають високу здатність до склоутворення ($T_{gr} = 0,64-0,74$), при $T_{gr} < 0,64$ сплави мають підвищену схильність до кристалізації [7].

Рис. 4. Залежність T_g від вмісту GeS_2 (ізоконцентрата 40 мол.% Ag_2S) для склозразків системи Ag_2S - GeS_2 - As_2S_3 .

В системі Ag_2S – GeS_2 – Sb_2S_3 (табл. 2) по ізоконцентраті 10 мол. % GeS_2 зі збільшенням вмісту Ag_2S характеристичні температури понижуються.

При сталій концентрації Ag₂S (40 мол. %) зі збільшенням вмісту германій (IV) сульфіду температура розм'як-

-31-

шення має тенденцію до зростання від 373 К до 573 К (рис. 5), також зростають значення температур кристалізації (464-694 К) та плавлення (602-809 К), як і в арсеновмісній системі.

Для склоподібних зразків системи $Ag_2S-GeS_2-Sb_2S_3$ (табл. 2) значення приведеної температури склування знаходиться в межах від 0,59 до 0,70. Отже, більшість обраних зразків мають високу здатність до склоутворення.

Таблиця 1. Склади та характеристичні температури склозразків системи Ag₂S-GeS₂-As₂S₃

Склад, мол.%			Характеристичні температури, К			т	V
Ag ₂ S	GeS ₂	As_2S_3	T_{g}	T _c	T _m	1 gr	к _G
0		100	402	469	608	0,66	0,48
10	0	90	419	492	673	0,62	0,40
20		80	416	472	669	0,62	0,28
30		70	421	486	657	0,64	0,38
40		60	409	476	668	0,61	0,35
40	10	50	436	572	643	0,67	1,91
	20	40	459	558	646	0,71	1,13
	30	30	474	584	688	0,68	1,06
	40	20	522	623	757	0,69	0,75
	50	10	561	643	768	0,73	0,66
	60	0	573	694	809	0,70	1,05

Таблиця 2. Склади та характеристичні температури склозразків системи Ag₂S-GeS₂-Sb₂S₃

Склад, мол.%			Характеристичні температури, К			т	V
Ag_2S	GeS ₂	Sb_2S_3	Tg	T _c	T _m	I gr	κ _G
10		80	438	534	685	0,63	0,64
20	10	70	412	532	662	0,62	0,92
30		60	386	502	634	0,61	0,88
40		50	373	464	602	0,62	0,66
40	20	40	397	522	652	0,61	0,96
	30	30	426	546	694	0,61	0,81
	40	20	442	589	748	0,59	0,92
	50	10	484	632	792	0,61	0,93
	60	0	573	694	809	0,70	1,05

Спектральні залежності коефіцієнта поглинання виміряні при $T \approx 293$ К для склозразків систем Ag_2S – GeS_2 – $As(Sb)_2S_3$ (рис. 6, 8) показали, що край поглинання має експоненціальну форму. За даними спектрального розподілу коефіцієнта

поглинання в області краю поглинання оцінено ширину енергетичної щілини E_g ($\alpha = 150 \text{ см}^{-1}$), її залежність від складу склозразків (табл. 3, 4).

Для усіх досліджуваних склозразків в області, де вікно пропускання незначне,

-32-

залежність $\alpha = f$ (hv) має експоненціальний характер – «хвіст Урбаха», що характерно для аморфних твердих тіл [12]. Це пояснюсться наявністю невпорядкованості на атомному рівні в досліджуваних структурах [13]. На рис. 6 представлено частотну залежність коефіцієнта поглинання світла від енергії падаючих квантів α (hv) для склозразків системи Ag₂S–GeS₂–As₂S₃ (склади зразків в табл. 3).

Рис. 6. Спектральні залежності краю поглинання для стекол системи Ag_2S - GeS_2 - As_2S_3 при T ≈ 293 K.

При збільшенні вмісту у складі стекол аргентум (I) сульфіду за сталої концентрації GeS₂ (20 мол. %), край поглинання зсувається у довгохвильову область, при цьому ширина псевдозабороненої зони зменшується від 2,03 до 1,89 еВ.

По ізоконцентраті 50 мол. % GeS_2 значення енергетичного положення краю поглинання E_g також зменшується від 2,19 до 2,13 еВ при збільшенні вмісту Ag_2S на 10 мол.%.

При введенні в склоутворюючу матрицю $GeS_2-As_2S_3$ модифікатора спостерігаємо зменшення значень енергетичної щілини для усіх склозразків. На рис. 7 подано залежність ширини області експоненціальної залежності від вмісту Ag_2S для сплавів системи Ag_2S – $GeS_2-As_2S_3$ при 20 мол. % GeS_2 . Спектральні залежності краю поглинання стекол системи Ag_2S – GeS_2 – Sb_2S_3 наведено на рис. 8 (склади зразків в табл. 4).

-34-

N⁰	Склад	ци зразків, мо	E oP	A oB		
зразка	Ag_2S	GeS_2	As_2S_3	E_g, cD	Δ, cD	
1	10	20	70	2,03	0,066	
2	20	20	60	1,95	0,070	
3	40	20	40	1,93	0,071	
4	60	20	20	1,89	0,072	
5	10	40	50	2,11	0,073	
6	20	50	30	2,19	0,074	
7	30	50	20	2,13	0,076	
8	10	60	30	2,44	0,079	

Таблиця 3. Ширина енергетичної щілини та характеристична енергія склоподібних сплавів квазіпотрійної системи Ag₂S–GeS₂–As₂S₃

Таблиця 4. Ширина енергетичної щілини та характеристична енергія склоподібних сплавів квазіпотрійної системи Ag₂S–GeS₂–Sb₂S₃

N⁰	Склади зразків, мол. %			E oP	A oP	
зразка	Ag ₂ S	GeS ₂	Sb_2S_3	E_g, eD	Δ, eb	
1	10	20	70	1,84	0,067	
2	30	20	50	1,76	0,071	
3	40	20	40	1,68	0,073	
4	10	40	50	2,02	0,072	
5	20	50	30	2,12	0,074	
6	30	50	20	2,08	0.076	

Рис. 8. Спектральні залежності краю поглинання для стекол системи Ag_2S -Ge S_2 -Sb $_2S_3$ при T ≈ 293 K.

Як бачимо з рис. 8, по ізоконцентраті 20 мол.% GeS_2 значення енергетичного положення краю поглинання E_g , при збільшенні концентрації аргентум (I) сульфіду, зменшується від 1,84 до 1,68 еВ.

За сталої концентрації GeS_2 (50 мол. %) край поглинання зсувається у довгохвильову область при збільшенні вмісту Ag_2S у складі стекол, при цьому ширина енергетичної щілини зменшується і знаходиться в інтервалі 2,12-2,08 eB.

На краю смуги власного пропускання, яка починається в області більших енергій, частотна залежність коефіцієнта поглинання добре описується правилом Урбаха, характерного для невпорядкованих напівпровідників [12]. Виконання правила Урбаха означає, що оптичні переходи в області власного поглинання світла формуються з участю «хвостів» щільності станів, які примикають до країв дозволених зон [14].

Характеристична енергія $\Delta = d$ (hv) / d (ln α), що визначає ступінь розмиття краю поглинання. визначалась оберненою величиною крутизни лінійних ділянок. Параметр Δ для всіх досліджуваних склозразків зі збільшенням вмісту GeS₂ зростає (табл. 3, 4) і узгоджується з [15, 16], де стверджується, що нахил краю Урбаха для різноманітних скловидних систем знаходиться в межах від 0,05 до 0,25 eB.

Висновки

Методом диференційно-термічного аналізу визначено характеристичні температури стекол, які мають тенденцію до зростання зi збільшенням вмісту германій (IV) сульфіду. В області краю поглинання спектральні залежності коефіцієнта поглинання стекол обох квазіпотрійних систем описуються правилом Урбаха. При збільшення вмісту у складі стекол GeS₂ край поглинання зміщується в область більших енергій, при цьому ширина енергетичної щілини зростає. Таким чином можна резюмувати, що стекла квазіпотрійних систем Ag₂S-GeS₂-As(Sb)₂S₃ завдяки хімічній стабільності, біологічній сумісності, термічним та оптичним властивостям є важливими матеріалами в галузі оптики.

Список використаних джерел

1. Міца В., Голомб Р., Ловас Г., Кондрат О., Вереш М., Цитровський А., Хіміч Л., Чік А., Атмосферна корозія телекомунікаційних оптичних середовищ для халькогенідної фотоніки: кристалічний і склоподібний дисульфід германію. Ужгород: *Бреза*, 2017. С. 126.

2. Толмачев И.Д., Стронский А.В. Оптические нелинейности в халькогенидных стеклообразных полупроводниках (обзор). Оптоэлектроника и полупроводниковая техника. 2010, 45, 27–48.

3. Риган М.Ю., Штець П.П., Рубіш В.В., Гера Е.В., Тарнай А.А., Кириленко В.К., Гасинець С.М., Перевузник В.П., Мар'ян В.М., Шпирко Г.М., Степанович В.О., Рубіш В.М. Особливості одержання та структура халькогенідних склоподібних матеріалів для оптичного запису інформації. *Ресстрація, зберігання і обробка даних.* 2007, 9(3), 145–156. 4. Yanying L., Changgui L., Zhuobin L., Feili W. Large tailorable range in optical properties of GeS_{2} -Sb₂S₃ chalcogenide glasses. *J. Optoelectron. Adv. M.* 2012, 14(9-10), 717–721.

5. Миколайчук О.Г., Мороз М.В., Орленко В.Ф., Олексин Д.І., Мороз В.М. Т-х діаграма стану в областях формування скла системи Ag–Ge–S. *Фізика і хімія тв. тіла.* 2008, 9(4), 804–808.

6. Березнюк О.П., Петрусь І.І., Смітюх О.В. Склоутворення в квазіпотрійних системах $A_2^{I}S - B^{IV}S_2 - C_2^{V}S_3$ ($A^{I} - Cu$, Ag; $B^{IV} - Ge$, Sn, $C^{V} - As$, Sb). Пробл. хімії та сталого розвитку. 2021, 4, 3–10. Doi: 10.32782/pcsd-2021-4-1.

7. Kauzmann W. The nature of the glassy state and the behavior of liquids at low Temperatures. *Chem. Rev.* 1948, 43, 219–256.

8. Klymuk T.L., Olekseyuk I.D., Mazurets I.I. The $Ag_2S-Ga_2S_3-As_2S_3$ system. *Chemistry of Metals and Alloys.* 2015, 8, 22–26.

9. Кохан О.П. Взаємодія у системах $Ag_2X-B^{IV}X_2$ (B^{IV} – Si, Ge, Sn; X – S, Se) і властивості сполук: *Автореф. дис. …канд. хім. наук: 02.00.01, УжсДУ. Ужсород*, 1996.

10. Стронський О.В., Тельбіз Г.М., Олексенко П.Ф. Властивості і застосування халькогенідних стекол. Оптоэлектроника и полупроводниковая техника. 2013, 48, 30–53.

11. Фельц А. Аморфные и стеклообразные неорганические твердые тела. Москва: *Мир*, 1986. С. 556.

12. Urbach F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. *Physical Review*. 1953, 92, 1324. Doi: 10.1103/PhysRev.92.1324.

 13. Петросян П.Г., Григорян Л.Н. Исследование

 поведения
 структурных
 дефектов
 в

 нанокристаллах
 CdSe_xS_{1-x}. Журн. техн. физики.
 2017,
 87(3),
 443–447.
 Doi:

 10.21883/JTF.2017.03.44252.1858.
 2017.
 3.44252.1858.
 2017.
 2017.
 2017.

14. Бонч-Бруевич В.Л., Звягин И.П., Кайпер Р., Миронова А.Г., Эндерлайн Р., Эсер Б. Электронная теория неупорядоченных полупроводников. Москва: *Наука*, 1981. С. 672.

15. Tsisar O.V., Piskach L.V., Parasyuk O.V., Marushko L.P., Olekseyuk I.D., Zamuruyeva O.V., Czaja P., Karasiński P., El Naggar A.M., Albassam A.A., Lakshminarayana G. Tl₂S-Ga₂S₃-GeS₂ glasses for optically operated laser thirdharmonic generation. J Mater Sci: Mater 19003-19009. Electron. 2017. 28. Doi: 10.1007/s10854-017-7854-x.

16. Parasyuk O.V., Reshak A.H., Klymuk T.L., Mazurets I.I., Zamuruyeva O.V., Myronchuk G.L., Owsik J. Photothermal poling of glass complexes Ag₂S–Ga₂S₃–P₂S₅. *Optics Communications*. 2013, 307, 1–4. Doi: 10.1016/j.optcom.2013.05.012.

-36-

Стаття надійшла до редакції: 22.10.2022.

PROPERTIES OF GLASSES IN THE Ag₂S-GeS₂-As(Sb)₂S₃ SYSTEMS

Berezniuk O.P., Petrus' I.I., Zamuruyeva O.V., Piskach L.V.

Lesya Ukrainka Volyn National University, 13 Voli Ave., Lutsk, 43025, Ukraine; bereznuk.orysia@vnu.edu.ua

The characteristic temperatures for individual glass samples of quasi-ternary systems Ag_2S - GeS_2 -As(Sb)₂S₃ were determined by differential thermal analysis method. Obtained data show that the glass transition temperature of the alloys is in the range typical of chalcogenide glasses. It was established that the glass transition temperature increases with the modifier content in the range of 402-421 K and 373-438 K for the Ag₂S–GeS₂–As(Sb)₂S₃ systems, respectively. For the constant Ag₂S concentration, the value of the glass transition and crystallization temperatures increases with the content of germanium (IV) sulfide. The reduced glass transition temperature T_{gr} was calculated from obtained results which lies in the range of 0.62-0.73 and 0.59-0.70 for the glasses of the Ag_2S -GeS₂-As(Sb)₂S₃ systems, respectively, which indicates the high capacity of the samples to glass formation. Optical absorption spectra were measured at 297 K. The band gap energy E_g of the glasses of the Ag₂S-GeS₂-As(Sb)₂S₃ systems was estimated from the data on the spectral distribution of the absorption coefficient in the region of the absorption edge. It was determined that the absorption edge shifts to longer wavelengths with the increase of the GeS₂ content in glasses, while the energy position of the absorption edge increases. Ade crease in the band gap energy is observed for all glass samples when a modifier is introduced into the glass-forming matrix. The characteristic energy of the degree of tailing of the absorption edge is in the range from 0.066 to 0.079 eV for all studied glass samples.

Keywords: chalcogenide glasses; quasi-ternary systems; glass-formation; characteristic temperatures; band gap energy.

References

1. Mitsa V., Holomb R., Lovas H., Kondrat O., Veresh M., Tsytrovskyi A., Khimich L., Chik A., Atmosferna koroziia telekomunikatsiinykh optychnykh seredovyshch dlia khalkohenidnoi fotoniky: krystalichnyi i sklopodibnyi dysulfid hermaniiu. Uzhhorod: *Epesa*, 2017. C. 126 (in Ukr.).

2. Tolmachev I.D., Stronskii A.V. Opticheskie nelineinosti v khalkogenidnikh stekloobraznikh poluprovodnikakh (obzor). *Optoelektronika i poluprovodnikovaya tekhnika*. 2010, 45, 27–48 (in Russ.).

3. Ryhan M.Iu., Shtets P.P., Rubish V.V., Hera E.V., Tarnai A.A., Kyrylenko V.K., Hasynets S.M., Perevuznyk V.P., Marian V.M., Shpyrko H.M., Stepanovych V.O., Rubish V.M. Osoblyvosti oderzhannia ta struktura khalkohenidnykh sklopodibnykh materialiv dlia optychnoho zapysu informatsii. *Reiestratsiia, zberihannia i obrobka danykh.* 2007, 9(3), 145–156 (in Ukr.).

4. Yanying L., Changgui L., Zhuobin L., Feili W. Large tailorable range in optical properties of GeS₂–Sb₂S₃ chalcogenide glasses. *J. Optoelectron. Adv. M.* 2012, 14(9-10), 717–721.

5. Mykolaichuk O.H., Moroz M.V., Orlenko V.F., Oleksyn D.I., Moroz V.M. T-kh diahrama stanu v oblastiakh formuvannia skla systemy Ag–Ge–S. *Fizyka i khimiia tv. tila.* 2008, 9(4), 804–808 (in Ukr.).

6. Berezniuk O.P., Petrus I.I., Smitiukh O.V. Skloutvorennia v kvazipotriinykh systemakh $A_2^I S - B^{IV} S_2 - C_2^V S_3$ ($A^I - Cu$, Ag; $B^{IV} - Ge$, Sn, $C^V - As$, Sb). *Probl. khimii ta staloho rozvytku*. 2021, 4, 3–10 (in Ukr.). Doi: 10.32782/pcsd-2021-4-1.

7. Kauzmann W. The nature of the glassy state and the behavior of liquids at low Temperatures. *Chem. Rev.* 1948, 43, 219–256.

8. Klymuk T.L., Olekseyuk I.D., Mazurets I.I. The Ag₂S–Ga₂S₃–As₂S₃ system. *Chemistry of Metals and Alloys.* 2015, 8, 22–26.

9. Kokhan O.P. Vzaiemodiia u systemakh $Ag_2X-B^{IV}X_2$ ($B^{IV} - Si$, Ge, Sn; X - S, Se) i vlastyvosti spoluk : *Avtoref. dys. ...kand. khim. nauk: 02.00.01, UzhDU. Uzhhorod,* 1996 (in Ukr.).

10. Stronskyi O.V., Telbiz H.M., Oleksenko P.F. Vlastyvosti i zastosuvannia khalkohenidnykh stekol. *Optoelektronika i poluprovodnikovaya tekhnika*. 2013, 48, 30–53 (in Ukr.).

11. Felts A. Amorfnie i stekloobraznie neorganicheskie tverdie tela. Moskva: Mir, 1986. C. 556 (in Russ.).

12. Urbach F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. *Physical Review*. 1953, 92, 1324. Doi: 10.1103/PhysRev.92.1324.

13. Petrosyan P.G., Grigoryan L.N. Issledovanie povedeniya strukturnikh defektov v nanokristallakh $CdSe_xS_{1-x}$. *Zhurn. tekhn. fiziki.* 2017, 87(3), 443–447 (in Russ.). Doi: 10.21883/JTF.2017.03.44252.1858.

14. Bonch-Bruevich V.L., Zvyagin I.P., Kaiper R., Mironova A.G., Enderlain R., Eser B. Elektronnaya teoriya neuporyadochennikh poluprovodnikov. Moskva: *Nauka*, 1981. C. 672 (in Russ.).

15. Tsisar O.V., Piskach L.V., Parasyuk O.V., Marushko L.P., Olekseyuk I.D., Zamuruyeva O.V., Czaja P., Karasiński P., El Naggar A.M., Albassam A.A., Lakshminarayana G. Tl₂S–Ga₂S₃–GeS₂ glasses for optically operated laser thirdharmonic generation. *J Mater Sci: Mater Electron.* 2017, 28, 19003–19009. Doi: 10.1007/s10854-017-7854-x.

16. Parasyuk O.V., Reshak A.H., Klymuk T.L., Mazurets I.I., Zamuruyeva O.V., Myronchuk G.L., Owsik J. Photothermal poling of glass complexes Ag₂S–Ga₂S₃–P₂S₅. *Optics Communications*. 2013, 307, 1–4. Doi: 10.1016/j.optcom.2013.05.012.