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T'eneparpucu posnoaisly eKCTpeMyMiB Ta
X MOMOBHEHBb [Jis HalliBHEEepPepBHUX
3BepXy rpaTd4acTuX IyacCOHIBCbKUX
nporieciB Ha jaHIory MapkoBa

Ha cxinuennomy peeyasapromy aanuyroey Maprosa
(/IM) poseandaemoca epamuacmuidl, NYyacconic-
cokut npouec; cmMpPubky AK020 NPUUMAOML 00-
8IABHE YiAL 610 eMMT 3Hadenns, a dodammi cmpuo-
KU miavku oduruuni. Taxi npouecu Hazusaro-
MbCA HaNIGHENEpePsHuUMY 36epxy. Lrs yux npo-
UeCi6 6CMAHOBAINIOMBCA CNIGEIOHOULEHHA OAS 26~
HEPATNPUC MIHIMYMY Ma ON0BHEHHA 00 MAKCU-
MYMY npouecy be3 3aCcmocysartis ONEPALy npo-
exkmyeanna. Odeporcani cnissionowenna oan do-
CAIOACYBANUT  2eHepamupuc susnauaiucs 6 [6]
Y MEPMIHAT NPoeKYit 610N06IOHOT KOMNOHEHMU
paxmopusayii. Hoei cnigsidnoutenma 0as yux 2e-
HEPATMPUC BCTNAHOBAIONMBCA 00EPHEHHAM KYMY-
AAHMU, AKG BUPANCAEMBCA Yepe3 MEIPHI nepe-
meoperts GYHKUIT po3nodiay 610 emruxr cmpub-
Ki6.
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1 Introduction

The description of the processes defined on
Markov chain (MCh) was given in papers of LI
Yezhov, A.B. Skorokhod [1|. Boundary problems
for such processes with continuously distributed
jumps on MCh were investigated in [2, 3|, where
matrix analogues of basic factorization identi-
ty (b. f. i.) and 2-nd factorization identity for
almost semi-continuous processes were obtained.
For semi-continuous processes refinements of some
results in lattice case were obtained in papers D.V.
Husak, A. I. Tureniyazova [4, 5] and M.S. Gerich
[7, 6].

In this paper, our task is to find:
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Moment generating funtions of
extremums and their complemets for
upper semi-continuous lattice Poison
process on Markov chain

On the finite reqular Markov chain it is con-
sidered latticed Poisson process, jumps of which
take arbitrary integer negative values, and posi-
tive jumps are equal 1. Such processes are called
upper semi-continuous. For these processes the
relations for moment generating funtions (m. g.
1) of minimum and complements to mazimum
of the process are established without proective
operation. Obtained relations for considered m.
g. [. were defined in [6] in terms of projection
of coresponding component of factorization. New
relations for these m. g¢. f. are established by
the invertions of the cumulant function, which
is represented in terms of generating transforma-
tion for distribution function of negative jumps.

Key Words: upper semi-continuous pro-
cesses, moment generating funtions of minimum
and complements to mazimum, cumulant func-
tion.
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— relations for moment generating functions
(m. g. f.) of the minimum distribution
(including absolute);

— relations for m. g. f. of complements to maxi-
mum and its limit relations when s — 0;

— and express these m. g. f. directly through
the m. g. f. of distribution‘s tail for negative
jumps of processes.

2 Upper semi continuous lattice Poison
process on Markov chain

To do this, first consider two-dimensional
Markov integral-valued process Z(t) =
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{£(t),z(t)}(t > 0,£(0) = 0), where z(t) is fini-
te ergodic MCh with values in E = {1,...,m} and
the generating matrix Q = N(P —I) ; £(¢) of

lattice Poison process given on MCh with values
in Z. Its m. g. f. has an exponential form

gi(2) = || E[z*")

_ R _ JK(2)

)

where matrix cumulant function K(z) is determi-
ned by general matrix relation

K(z) =) (:" - )Ko(z) + Q,
Ko(z) = Ap(z) + Nf(z)

A = ||0krAk] (B =1,...,m), A\ are jumps intensi-
tis of Poisson processes {&;(t)}p, with jumps
distribution p(z) = [0 P{e" = 2}, N =
|0krnk ||k rer, where {ny > 0,k € E} — parameters
of the exponential distributed random variables
(k. are sojour time z(t) in the state k. Matrix of
transition probabilities of embedded MCh y, =

x(on +0) , where o, are moments of n-th change
of states for z(t): P = |prr|l, (k,r = 1,m),
f(z) = ||prr P{xxr = x}|| is a distribution of jumps
on transitions of xz(t).

To reduce the notation of integral

transformations on t it is necessary to introduce
exponential distributive random variable 6,
(P{0s >t} =e™ %t 5> 0).

For extremums of process and their
complements, as well as for intersection functi-
onals of positive (negative) level introduce the
following notations:

sup (inf)e(t), € = sup (inf)E (1),

0t <t (USAC S
E(t) = &(t) — €F(1), &(t) = &(1) — € (1);
T (x) = mf{t > 0,£(t) > 2}, 7" (2) =

x 2 0;
T (x)
z < 0.

Denote (in pursuance of averaging over distributi-

on 6y)

“+oo

g(s,z) = Ez0s) = ¢ / e gy (z)dt =
0
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=s(sI—K(z))™ L. (2)

gi(s,2) = Bz8(0) =

= 1[5

g (s,2) = B2£0) gt (s, )

P, =s(sI-Q).

), x(0,) = r|z(0) = ]|, k,r =1, m,
- Ezé((’s),

(3)

In [3], [4, 6] b. f. i. matrix analogue that
establishes a relationship between g(s,z) and

g+(5,2), g_(S,Z), (gf(S,Z), g+(872)) was obtai-
ned .

g(57 Z) =

E 20 =
e (s,2)P g (s, 2),
a {g(S 2)P;'g @

T(s,2).
All next probabilities are strictly positive:

p+(s) = | P{5(0s) = 0, 2(6s) = r|z(0) = k}|,

q+(s) = p=(s),
p'(s) = [|P{&(6s) = 0, z(0s) = r[x(0) = K},
P~ (s) = [[P{€(65) = 0, 2(85) = r|z(0) = K},
q“(s) =P, — p™(s).

Next, consider the lattice Poisson processes on
MCh with cumulant function:

K(z) =A1(z—1)+
Z(Zx — 1)(A2p2(z) + Nf(2)) + Q. (5)
<0

In [5, 7] it is shown that one among the
b. f. i. component pair in (4) is matrix fracti-
onall linear function relatively to z, and the other
component of these pairs is determined by appli-

§(T+(x))—m, cation of some projective procedures to m.g.f.

of process itself. Our task is to express "not-
simple"m. g. f. from paires {g(s,z2), g (s,2)}
and {g_(s,2),g"(s,2)} without projective
operation. To do this, introduce the inverse MCh
concept (see [9]) and auxiliary assertions on si-
ngularly perturbed matrices inversion (see [10]).

If x(t) is homogeneous regular MCh with
generating (degenerate) matrix Q and appropri-
ate matrix of transition probabilities

P(t) = ||P{z(t) = rlz(0) = k|| = '?
22
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and its Laplace - Carson transform

+oo

Bls) = s / P (1)dt =

0

s(sI—Q)~ L, s >0 (7)

is expressed through the inversion of singular
perturbed matrix (sI-Q)~! (at s > 0i |sI- Q| #
0).

For z(t) the probabilities of stationary distri-
bution exists

lim P(t)

t——+o0

=Py = ”p2rH7 p%r =, Vk,

that defines as the boundary of inversion in (7) for
5 —0

Py = lim s(sT — QL (8)

Thus the relations (9) take place
QPy =0, PyQ = 0. (9)

The first one is obvious, and the second defines the
unique solution of corresponding system of linear
equations for the values of stationary probabilities

{m} (see [8]).
We need the generalization of relations (8)-
(9), which are given in Lemmas 1-2.

Lemma 1. [10] Let Qg be degenerate matriz of m-
order, v # 0. Then the perturbed matriz inversion
Qo + vI has the splitting

(Qo +vI)*

where II1 is matrix eigen projector of Qqg, r =
T

dimN(Qo) <m, II; = > vk ® p*; uF, p* are ri-
k=1

ght and left eigenvectors of the operator Qq, that

= v 'L + To(T+vTo) ™", (10)

correspond to the zero eigenvalue: (p(i), u(j)) =
dij, 4, = 1,r. Besides Ty = (I — II;)((II; —
Qo)~! —II;)(T - 1Iy),

I1,Qo = QoIl; =0, I} Ty = ToIl; =0, (11)

and (11) is the analogue of relations (9).
Denote for the process £(t) with cumulant function

(1)

M} =E¢(1)= > 2Ko(a),
<1, 2#0

Dy =D¢(1) = Y 2"Ko(x),
<1, 2#0

Denote
1+ ¢,

which further will consider as finite.

Ko(z) = <1Z#0(zx — DKo(z), at z =
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Ko(1 +¢) = eKy(1) + 5K (1), where Ky(1) =
E¢(1) = MY, Kq(1) = DE(1) = Dy.
Then at z = 1 + € the approximation
_ —(1_ o Lo ey 2
K(z) = (1—2)Mj 2(1 2)"Do—Q+o(e*) (12)

takes place and respectively averaged over the
stationary distribution Py moments denote as

Z Tk Z S EED

k=1 =1
+ Z ke EXr],  (13)
r#£k
og = m Y [k DEW (1) +
k=1 r=1

m
+ > mpreDxrel (14)
r#£k

Based on (12)-(13) and (14) and some results in [9]
the following lemma, which generalizes the relati-
on (8), is proving.

Lemma 2. For the process Z(t) with cumulant
function (5) from |mf| < oo the following relati-
ons take place

lim(—(1 — 2)K (2)) =

z—1
= lim(1 - 2)((1 - MY - Q)" =
1
= WPO’ m(l) #0, (15)
1
lim(1 — 2)’K1(2) =
1
= lqu(l — 2)? 5(1 —2)’Dy - Q) =
2
= Py, m{ =0, 05 < occ. (16)
70

For ergodic MCh z(¢) in [9] the inverse MCh
Z(t) concept is introduced.

Definition 2.1. If x(t) is ergodic MCh with
generating matrix Q = N(P — I) with diagonally
written distribution R = ||dx,7,||, then the inverse
to MCh (t) is called MCh Z(t) which is defined
by generating matrix Q =8Q7Ts ! = N(13 -1,
where S = NR~!.
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~

Accordingly reverse process £(¢)(t > 0) on
MCh Z(t) is defined by cumulant function and

~

moment generating function £(6s):

K(z) = SK"(2)S7,

8(s,2) = B280%) = 5(s1 — K(2))~ L.

Theorem 1. [4/ Basic factorization identity
(4) in terms of moment generating functions

extremums for inverse process g+ (s,z) = E-£5 ()
takes the form

g+(87 Z)Ps_ls /g\:f(s, Z)S_l;

g_(s,2)P;1Sgl(s,2)S71. (17)

g(s,2) = {

Note that from (4) and (17) the relations of
connection between the extremums distributions
of direct and inverse processes follow

gt (s,2) =SgL(s,2)S7, P, =S (P,)’S™!;

at(s) =Sai(s)S™, a (s) =Sq(s)s7".
As well as in [3] in case of lattice Poison
processes the similar result takes place.

Lemma 3. For lattice Poison process defined on
Markov chain, the following matriz representati-
ons take place for pE(s) and pi(s)

Pi(s) = pL(s)P;! =

I-E[e " @, 7£(0) < 0] =
I-T;(s,0); (18)

pi(s) =P 'p*(s) =
I— S(E[e—s?i(o)’ ?:t(O) < OO])TS_l _
I-S(TE(s,0)7s™L: (19)

TE(s,0) = qi(s)P; !, TE(5,0) = Gu(s)P; L.

For upper semi-continuous processes &(t)
according to [7] the "not complicated"components
of b.f.t. in (4) are as follows

g (s,2) = (I—2Z;'2) 'py(s),

p+(s) = 1-Z;")Ps, (20)

Z, = Q+($)Ps )

gt(s,2) =p(s)(T - Q;'2) 7",
pi(s)=P,(I-Q;"),  (21)
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Further suppose m{ > 0. Consider the
embedded MCh (y! = z(7+(0)), y? = 2(0)) with
matrix of transition probabilities P, = ||P{y}l =
rly = k}|| and generating matrix Q. = P, — I,
se P{7+(0) < 00} = [[P{7(0) < o0, y! = rly? =
kY| = Py, TS (s5,0) = E[e" (0, 7+(0) < o0] =
|E[e=" ), yL = r|y? = K]||, P. = T$(0,0). The
moment generating function 71(0) at s — 0 sati-
sfies the approximation

I-T/(s,0) = —Q. + sM. + o(s),

M, =E7"(0) > 0. (22)

Denote the stationary distribution of the
embedded MCh with generating matrix Q.
through II, = liIl’(l)S(SI - Q)7 = Imare ||, Takr =

S—>

Ter, k,7 = 1,m, and appropriate averaging on it
for M.,

m m
ph =Y ma Y E[F1(0), yb = rlyd = K].
k=1 r=1

Similarly, introduce notion of inverse MCh for
embedded with generating matrix
Q. =SQTs™, Q, =P, — I, P{7F(0) < oo} =
|P{FH(0) < oo, 5} =[G =k} = P

T (s,0) = Ele O 7(0) < o0] =
B[O, 51 = r[5? = K]||;

P. = |P{g. =r|g) = K}, k,r =T, m,

M. g. f. 77(0) for s — 0 satisfies the approximati-
on

I-T(s,0)=-Q. + sM,, + o(s),

oM (23)
M. =E77(0) > 0.

Introduce the following notations

~

P.s =S(P.)'S™!, Qs =S(Q.)"s ™",
M.s = S(E[F"(0)))"S™;
Tis(5,0) = S(E[e™™ @, 77(0) < oo])TS7L.
After performing of transposition operation
on (23), then multiplying on S the left and on S~*

on the right and taking into account the necessary
notations we obtain (24)
I— T/ (5,0) = —Qus + sM.s +o(s).  (24)

24
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Denote the stationary distribution of inverse
MCh with generatlng matrix Q* through o, =
l%S(SI - Q*) = H7T*k7’||a Takr = Ty Ky =

1,m, and appropriate averaging for M, by
corresponding stationary distribution

m m
k=1 r=1

For wupper semi-continuous process &(t)
according with (18), (19), (20), (21) and previ-
ously introduced concepts and notations we found

Z;' Qo

77l =

0), 7, =g = k.

T (5,0); Q. ' =T/g(s,0). (25)
From Lemma 2 and the relations (22), (24) and

(25) the next lemma follows

Lemma 4. If &(t) is upper semi-continuous
process and 0 < m(l] < 00, then 0 < uf < oo, 0 <
< oo, and the following limit relations take
place

lims(I—2Z;1)1 =

s

s—0
1
lim s(I— TF(s,0)) " = —1IL,, (26)
s—0 s
lim sI-Q;H =
1 ~
l%s(I —~Tls(5,0) 71 = ?H*S' (27)
Proof. Using relation (25), (22) and (15) we
obtain (26)
lim s@—2Z;H = = lim s(I—T)(s,0)7 !
1
. _ -1_ *
llir(l)s(sl\/l* Q.) ujl'[*.
Similarly (27) is proved after using (25), (24) and
taking into account the result of Lemma 2.
From dual relations
Z,(1-7Z;!
Zs _ I — S( S )7
(I-2Z;YHZs.
(28)
o _1.{Qa-an,
(I - Qs_l)Qs

at s > 0 follows
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Lemma 5. If &(t) is upper semi-continuous
process on Markov chain x(t), then at 0 < m{ <
00, according to (26) and (27) the following relati-
ons take place

1

lim s(Z, —I)~! = —II,,
=0 ut (29)
I, =I,P, = P,II, = II,.
. 1A
lli% 5(Qs —I)7" = ?H*&
ﬁ*S = H*7 (30)

H;S = ﬁ*Sf)*S = f)*Sﬁ*S = ﬁ*S~

Proof. The first relations in (29) and (30)
follow from (28) taking to the account the conditi-
ons (25)-(27). Second relation in (30) follows from
early mentiond inversity notations. Last relations
are evident.

Consider cumulant function (5) and present it
as

K(z) = (z = 1)[A1—

2 (AsF2(2) + NF(2)] +Q (31)

2) =Y PN <a), 2] 21

z<0

= szHpk’T’P{Xk’T‘ < :L'}H, ‘Z| 21
z<0
Should be noted that according to (25) K(z) is
expressed through generating transform of the
negative jumps distribution functions and K(1) =

Q.

Theorem 2. If &(t) is upper semi-continuous
process on Markov chain x(t) i 0 < m{ < oo,
and then at |z| > 1 moment generating function

of £ (0s) looks as

g-(s,2) = s(sI-K(2)) 1(I-Q; '2)(I-Q; ) ' =
=s(sI - K(2)) "I+ (1-2)(Qs D7, (32)
p-(s) =sA Q- T)" (33)
If 0 < m{ < oo, and according to (30)

moment generating function of absolute minimum
&7 looks as

g (2) = limg (s,2) = m{[As — Q(1 - 2) "

— (A9F3(2) + NF(2))z7'7'Py, (34)

25
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1 1

g-(1) = ———Poll,s = - PoIL =
i i
1
= I, =Py, (35)
it m)
- _ 1
H*S = H* = P07 ,U,j = ma (36)
1
p_ =P{¢ =0} = miA['Py. (37)

Proof. From the second equality in (4), taki-

ng into account (2), (3) and (21) we get the first
relation in(32)
g (5,2) = s(sT— K(2)) " (1-Q;'2)(T- Q;") "
In order to obtain the second relation in (32) the
last two multipliers (I — Q;'2)(I — Q;')~! are
reduced to

I-Q,'5)I-Q.) " = (Q-12)(Q,-D) ' =
(Qs —I)(Qs — I)_l +(1—2)(Qs — I)_l =
T+(1-2)(Q~D7].
To receive (33) proceed to limit in the first
relation (32) for z — oo, pre-substituting K(z)
from (31).
M. g. f. of absolute minimum in accordance
with (27) is determined from (32) for s — 0 and

0 < m < oo after accounting the second relation
in (30) and (31)

g (z) = limg (s.2) =
lim s(sT — K(2))"1(I - Q; 'z

S—>

I-Q;H)'=

~

H*S

~—

(-K(2)) '(I-P.s2)

-

1
T

The first equality in (35) we receive from
g_(z) after limited transition at z — 1 and taki-

ng into account conditions (5) and (15). Since

A~

Il,g = II,, then

1 1

By carrying out the limiting transition in (32) for
z — 1 and s — 0 in the general case, we get
g_(1) = Pg. Thus, IL, = Py, and ifm{ = 1. So
the relations (35) and (36) are proved.

Taking into account the conditions (36) in the
last relation for g_(z) we get (34).

The value p_ in (37) is determined from (34)
for z — oo. So the theorem is proved.

Almost similarly the following theorem is
established.

II..

2013, 1

—[A1—Q(1—2) "= (AsF2(2)+NF(2))z '] ',s.

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

Theorem 3. If &(t) is upper semi-continuous
process on Markov chain x(t) and 0 < m§ < oo,
then for |z| > 1 moment generating function £(0s)
satisfies the following relation

g (s,2) = (I-Z;") ' (1-27"2)s(sI-K(2)) " =
=T+ (1 —-2)(Zs — D) Ys(sI - K(2))™1, (39)

p (s) = (Zs— 1) 'sAy " (39)

If 0 < m} < oo, then _according to (29)
moment generating function & = hH(l)(f(Hs) —
S—

£1(05)) is defined by limit relation for s — 0

g (2) = limg™(s,2) = mPo[A1—Q(1—2) "' -

— (A9F2(2) + NF(2))z"']71,  (40)

g (1)= —I,—Py= ——Py=P;, (41

@ pd T m i m? 1)
1

+ - = 42

oy m(l)a ( )

p- =P{E=0} =miPoAT". (43)

Proof. From the first equality in (4) we recei-
ve g (s,2) = Ps((g4(s,2)) 'g(s, ). Considering
(2), (3) and (20) we rewrite g~ (s, z) as
g (5,2) = (1— 2, 1) (1— Z; '2)s(sT - K(2)) .
So the first relation in (38)is proved. In order to get
the second relation in (38) the first two multipliers
(I-Z;H)"1(I-Z;12) will be transformed simi-
larly as in the previous theorem. Thus the second
relation in (38) is also proved.

To prove (39) proceed to limit in the first
relation (38) for z — oo, and , pre-substituting

K(z) from (31).

g (s,2) = (I-Z;") '(1-Z;"2)s(sI-K(2)) ' =
=(1-2Z;H) A1 —-2Z; 2)s(sI+
[A1 — 27 (AsF2(2) - NF(2))] - Q) ! —. s

s(Zs =D 'AT = p7(s)
M. g. f. g7(z) according to (26) is defined from

(38) for s — 0 and 0 < m{ < oo after accounting
of second relation in (29) and (31).

g (2)= lim g (s,2) =

26
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ii_r%(I —Z YT I - Z 2)s(sT - K(2)) ! =
1

ps

IL[A1—Q(1—2) "= (AgF2(2)+NF(2))z ]~

IL(I - P.2) (-K(2)) ! =

1
;

First equality in (41) we obtain from the previ-
ous relation after the limit passage for z — 1 and
considering (5) and (15). From the obvious relati-
on II,Py = Py we receive the second expressi-
on in (41). To deduce the last expression in (41)
we will accomplish the limit passage transition in
(38) at z — 1, taking into account the conditi-
on K(1) = Q, and then, proceeding to limit for
s — 0, we'll obtain the necessary. Equating these
three expressions we receive (42).

Validity (40) follows from the previous relati-
on for g7 (z) after consideration of the conditions
(42) and (36).

For z — oo from (40) receive (43), previously
taking into account the conditions (36) and (42)

) 1
p = lim —TL[A;—

zZ— 0 M*
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