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Генератриси розподiлу екстремумiв та
їх доповнень для напiвнеперервних
зверху гратчастих пуассонiвських
процесiв на ланцюгу Маркова

На скiнченному регулярному ланцюгу Маркова
(ЛМ) розглядається гратчастий пуассонiв-
ський процес; стрибки якого приймають до-
вiльнi цiлi вiд’ємнi значення, а додатнi стриб-
ки тiльки одиничнi. Такi процеси називаю-
ться напiвнеперервними зверху. Для цих про-
цесiв встановлюються спiввiдношення для ге-
нератрис мiнiмуму та доповнення до макси-
муму процесу без застосування операцiї про-
ектування. Одержанi спiввiдношення для до-
слiджуваних генератирис визначалися в [6]
у термiнах проекцiй вiдповiдної компоненти
факторизацiї. Новi спiввiдношення для цих ге-
нератрис встановлюються оберненням куму-
лянти, яка виражається через твiрнi пере-
творення функцiї розподiлу вiд’ємних стриб-
кiв.

Ключовi слова: напiвнеперервнi зверху
процеси, генератриси мiнiмуму та доповнен-
ня до максимуму, кумулянта.
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Moment generating funtions of
extremums and their complemets for
upper semi-continuous lattice Poison
process on Markov chain

On the finite regular Markov chain it is con-
sidered latticed Poisson process, jumps of which
take arbitrary integer negative values, and posi-
tive jumps are equal 1. Such processes are called
upper semi-continuous. For these processes the
relations for moment generating funtions (m. g.
f.) of minimum and complements to maximum
of the process are established without proective
operation. Obtained relations for considered m.
g. f. were defined in [6] in terms of projection
of coresponding component of factorization. New
relations for these m. g. f. are established by
the invertions of the cumulant function, which
is represented in terms of generating transforma-
tion for distribution function of negative jumps.
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1 Introduction

The description of the processes defined on
Markov chain (MCh) was given in papers of I.I.
Yezhov, A.B. Skorokhod [1]. Boundary problems
for such processes with continuously distributed
jumps on MCh were investigated in [2, 3], where
matrix analogues of basic factorization identi-
ty (b. f. i.) and 2-nd factorization identity for
almost semi-continuous processes were obtained.
For semi-continuous processes refinements of some
results in lattice case were obtained in papers D.V.
Husak, A. I. Tureniyazova [4, 5] and M.S. Gerich
[7, 6].

In this paper, our task is to find:

– relations for moment generating functions
(m. g. f.) of the minimum distribution
(including absolute);

– relations for m. g. f. of complements to maxi-
mum and its limit relations when s → 0;

– and express these m. g. f. directly through
the m. g. f. of distribution‘s tail for negative
jumps of processes.

2 Upper semi continuous lattice Poison
process on Markov chain

To do this, first consider two-dimensional
Markov integral-valued process Z(t) =
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{ξ(t), x(t)}(t > 0, ξ(0) = 0), where x(t) is fini-
te ergodic MCh with values in E = {1, ..., m} and
the generating matrix Q = N(P − I) ; ξ(t) of
lattice Poison process given on MCh with values
in Z. Its m. g. f. has an exponential form

gt(z) = ‖E[zξ(t), x(t) = r|x(0) = k]‖

= Ezξ(t) = etK(z),

where matrix cumulant function K(z) is determi-
ned by general matrix relation

K(z) =
∑

x 6=0

(zx − 1)K0(x) + Q,

K0(x) = Λp(x) + Nf(x).
(1)

Λ = ‖δkrλk‖ (k = 1, ...,m), λk are jumps intensi-
tis of Poisson processes {ξk(t)}m

k=1 with jumps
distribution p(x) = ‖δkrP{ξ(k)

1 = x}‖, N =
‖δkrnk‖k,r∈E, where {nk > 0, k ∈ E} – parameters
of the exponential distributed random variables
ζk are sojour time x(t) in the state k. Matrix of
transition probabilities of embedded MCh yn =
x(σn + 0) , where σn are moments of n-th change
of states for x(t): P = ‖pkr‖, (k, r = 1,m),
f(x) = ‖pkrP{χkr = x}‖ is a distribution of jumps
on transitions of x(t).

To reduce the notation of integral
transformations on t it is necessary to introduce
exponential distributive random variable θs

(P{θs > t} = e−st, s > 0).
For extremums of process and their

complements, as well as for intersection functi-
onals of positive (negative) level introduce the
following notations:

ξ±(t) = sup
06t′6t

(inf)ξ(t
′
), ξ± = sup

06t6∞
(inf)ξ(t),

ξ(t) = ξ(t)− ξ+(t), ξ̌(t) = ξ(t)− ξ−(t);

τ+(x) = inf{t > 0, ξ(t) > x}, γ+(x) = ξ(τ+(x))−x,

x > 0;

τ−(x) = inf{t > 0, ξ(t) < x}, γ−(x) = x−ξ(τ−(x)),

x 6 0.

Denote (in pursuance of averaging over distributi-
on θs)

g(s, z) = Ezξ(θs) = s

+∞∫

0

e−stgt(z)dt =

= s(sI−K(z))−1. (2)

g±(s, z) = Ezξ±(θs) =

= ‖E[zξ±(θs), x(θs) = r|x(0) = k]‖, k, r = 1, m,

g−(s, z) = Ezξ(θs), g+(s, z) = Ezξ̌(θs),

Ps = s(sI−Q)−1. (3)

In [3], [4, 6] b. f. i. matrix analogue that
establishes a relationship between g(s, z) and
g+(s, z), g−(s, z), (g−(s, z), g+(s, z)) was obtai-
ned .

g(s, z) = E zξ(θs) =

=

{
g+(s, z)P−1

s g−(s, z),
g−(s, z)P−1

s g+(s, z).
(4)

All next probabilities are strictly positive:

p±(s) = ‖P{ξ±(θs) = 0, x(θs) = r|x(0) = k}‖,

q±(s) = Ps − p±(s),

p+(s) = ‖P{ξ̌(θs) = 0, x(θs) = r|x(0) = k}‖,
p−(s) = ‖P{ξ̄(θs) = 0, x(θs) = r|x(0) = k}‖,

q±(s) = Ps − p±(s).

Next, consider the lattice Poisson processes on
MCh with cumulant function:

K(z) = Λ1(z − 1)+∑

x<0

(zx − 1)(Λ2p2(x) + Nf(x)) + Q. (5)

In [5, 7] it is shown that one among the
b. f. i. component pair in (4) is matrix fracti-
onall linear function relatively to z, and the other
component of these pairs is determined by appli-
cation of some projective procedures to m.g.f.
of process itself. Our task is to express "not-
simple"m. g. f. from paires {g+(s, z), g−(s, z)}
and {g−(s, z), g+(s, z)} without projective
operation. To do this, introduce the inverse MСh
concept (see [9]) and auxiliary assertions on si-
ngularly perturbed matrices inversion (see [10]).

If x(t) is homogeneous regular MCh with
generating (degenerate) matrix Q and appropri-
ate matrix of transition probabilities

P(t) = ‖P{x(t) = r|x(0) = k‖ = etQ (6)

22



Вiсник Київського нацiонального унiверситету
iменi Тараса Шевченка
Серiя фiзико-математичнi науки 2013, 1

Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

and its Laplace - Carson transform

P̃(s) = s

+∞∫

0

e−stP(t)dt = s(sI−Q)−1, s > 0 (7)

is expressed through the inversion of singular
perturbed matrix (sI−Q)−1 (at s > 0 i |sI−Q| 6=
0).

For x(t) the probabilities of stationary distri-
bution exists

lim
t→+∞P(t) = P0 = ‖p0

kr‖, p0
kr = πr, ∀ k,

that defines as the boundary of inversion in (7) for
s → 0

P0 = lim
s→0

s(sI−Q)−1. (8)

Thus the relations (9) take place

QP0 = 0, P0Q = 0. (9)

The first one is obvious, and the second defines the
unique solution of corresponding system of linear
equations for the values of stationary probabilities
{πk} (see [8]).

We need the generalization of relations (8)-
(9), which are given in Lemmas 1-2.

Lemma 1. [10] Let Q0 be degenerate matrix of m-
order, ν 6= 0. Then the perturbed matrix inversion
Q0 + νI has the splitting

(Q0 + νI)−1 = ν−1Π1 + T0(I + νT0)−1, (10)

where Π1 is matrix eigen projector of Q0, r =

dimN(Q0) < m, Π1 =
r∑

k=1

uk
⊗

ρk; uk, ρk are ri-

ght and left eigenvectors of the operator Q0, that
correspond to the zero eigenvalue: (ρ(i), u(j)) =
δij, i, j = 1, r. Besides T0 = (I − Π1)((Π1 −
Q0)−1 −Π1)(I−Π1),

Π1Q0 = Q0Π1 = 0, Π1T0 = T0Π1 = 0, (11)

and (11) is the analogue of relations (9).
Denote for the process ξ(t) with cumulant function
(1)

M0
1 = Eξ(1) =

∑

x61, x6=0

xK0(x),

D0 = Dξ(1) =
∑

x61, x6=0

x2K0(x),

which further will consider as finite. Denote
K̃0(z) =

∑
x61, x 6=0

(zx − 1)K0(x), at z = 1 + ε,

K̃0(1 + ε) = εK̃
′
0(1) + ε2

2 K̃
′′
0(1), where K̃

′
0(1) =

Eξ(1) = M0
1, K̃

′′
0(1) = Dξ(1) = D0.

Then at z = 1 + ε the approximation

−K(z) = (1−z)M0
1−

1
2
(1−z)2D0−Q+o(ε2) (12)

takes place and respectively averaged over the
stationary distribution P0 moments denote as

m0
1 =

m∑

k=1

πk

m∑

r=1

[δkrEξ(k)(1)+

+
m∑

r 6=k

nkpkrEχkr], (13)

σ2
0 =

m∑

k=1

πk

m∑

r=1

[δkrDξ(k)(1)+

+
m∑

r 6=k

nkpkrDχkr]. (14)

Based on (12)-(13) and (14) and some results in [9]
the following lemma, which generalizes the relati-
on (8), is proving.

Lemma 2. For the process Z(t) with cumulant
function ( 5) from |m0

1| < ∞ the following relati-
ons take place

lim
z→1

(−(1− z)K−1(z)) =

= lim
z→1

(1− z)((1− z)M0
1 −Q)−1 =

=
1

m0
1

P0, m0
1 6= 0, (15)

lim
z→1

(1− z)2K−1(z) =

= lim
z→1

(1− z)2(
1
2
(1− z)2D0 −Q)−1 =

=
2
σ2

0

P0, m0
1 = 0, σ2

0 < ∞. (16)

For ergodic MCh x(t) in [9] the inverse MCh
x̂(t) concept is introduced.

Definition 2.1. If x(t) is ergodic MCh with
generating matrix Q = N(P− I) with diagonally
written distribution R = ‖δkrπr‖, then the inverse
to MCh x(t) is called MCh x̂(t) which is defined
by generating matrix Q̂ = SQTS−1 = N(P̂ − I),
where S = NR−1.
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Accordingly reverse process ξ̂(t)(t > 0) on
MCh x̂(t) is defined by cumulant function and
moment generating function ξ̂(θs):

K̂(z) = SKT (z)S−1,

ĝ(s, z) = Ezξ̂(θs) = s(sI− K̂(z))−1.

Theorem 1. [4] Basic factorization identity
( 4) in terms of moment generating functions
extremums for inverse process ĝ±(s, z) = Ezξ̂±(θs)

takes the form

g(s, z) =
{

g+(s, z)P−1
s S ĝT−(s, z)S−1;

g−(s, z)P−1
s S ĝT

+(s, z)S−1.
(17)

Note that from (4) and (17) the relations of
connection between the extremums distributions
of direct and inverse processes follow

g±(s, z) = S ĝT
±(s, z)S−1, Ps = S (P̂s)TS−1;

q+(s) = S q̂T
+(s)S−1, q−(s) = S q̂T

−(s)S−1.

As well as in [3] in case of lattice Poison
processes the similar result takes place.

Lemma 3. For lattice Poison process defined on
Markov chain, the following matrix representati-
ons take place for p±∗ (s) and p∗±(s)

p∗±(s) = p±(s)P−1
s =

I−E[e−sτ±(0), τ±(0) < ∞] =
I−T±

∗ (s, 0); (18)

p±∗ (s) = P−1
s p±(s) =

I− S(E[e−sτ̂±(0), τ̂±(0) < ∞])TS−1 =

I− S(T̂±
∗ (s, 0))TS−1; (19)

T±∗ (s, 0) = q±(s)P−1
s , T̂±∗ (s, 0) = q̂±(s)P̂−1

s .

For upper semi-continuous processes ξ(t)
according to [7] the "not complicated"components
of b.f.t. in (4) are as follows

g+(s, z) = (I− Z−1
s z)−1p+(s),

p+(s) = (I− Z−1
s )Ps,

Z−1
s = q+(s)P−1

s ,

(20)

g+(s, z) = p+(s)(I−Q−1
s z)−1,

p+(s) = Ps(I−Q−1
s ),

Q−1
s = P−1

s q+(s).

(21)

Further suppose m0
1 > 0. Consider the

embedded MCh (y1∗ = x(τ+(0)), y0∗ = x(0)) with
matrix of transition probabilities P∗ = ‖P{y1∗ =
r|y0∗ = k}‖ and generating matrix Q∗ = P∗ − I,
де P{τ+(0) < ∞} = ‖P{τ+(0) < ∞, y1∗ = r|y0∗ =
k}‖ = P∗, T+∗ (s, 0) = E[e−sτ+(0), τ+(0) < ∞] =
‖E[e−sτ+(0), y1∗ = r|y0∗ = k]‖, P∗ = T+∗ (0, 0). The
moment generating function τ+(0) at s → 0 sati-
sfies the approximation

I−T+
∗ (s, 0) = −Q∗ + sM∗ + o(s),

M∗ = Eτ+(0) > 0.
(22)

Denote the stationary distribution of the
embedded MCh with generating matrix Q∗
through Π∗ = lim

s→0
s(sI−Q∗)−1 = ‖π∗kr‖, π∗kr =

π∗r, k, r = 1,m, and appropriate averaging on it
for M∗

µ+
∗ =

m∑

k=1

π∗k
m∑

r=1

E[τ+(0), y1
∗ = r|y0

∗ = k].

Similarly, introduce notion of inverse MCh for
embedded with generating matrix
Q̂∗ = SQT∗ S−1, Q̂∗ = P̂∗ − I, P{τ̂+(0) < ∞} =
‖P{τ̂+(0) < ∞, ŷ 1∗ = r|ŷ 0∗ = k}‖ = P̂∗.

T̂+
∗ (s, 0) = E[e−sτ̂+(0), τ̂+(0) < ∞] =

‖E[e−sτ̂+(0), ŷ 1
∗ = r|ŷ 0

∗ = k]‖;

P̂∗ = ‖P{ŷ 1
∗ = r|ŷ 0

∗ = k}‖, k, r = 1, m,

P̂∗ = T̂+
∗ (0, 0).

M. g. f. τ̂+(0) for s → 0 satisfies the approximati-
on

I− T̂+
∗ (s, 0) = −Q̂∗ + sM̂∗ + o(s),

M̂∗ = Eτ̂+(0) > 0.
(23)

Introduce the following notations

P̂∗S = S(P̂∗)TS−1, Q̂∗S = S(Q̂∗)TS−1;

M̂∗S = S(E[τ̂+(0)])TS−1;

T̂+
∗S(s, 0) = S(E[e−τ̂+(0), τ̂+(0) < ∞])TS−1.

After performing of transposition operation
on (23), then multiplying on S the left and on S−1

on the right and taking into account the necessary
notations we obtain (24)

I− T̂+
∗S(s, 0) = −Q̂∗S + sM̂∗S + o(s). (24)
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Denote the stationary distribution of inverse
MCh with generating matrix Q̂∗ through Π̂∗ =
lim
s→0

s(sI − Q̂∗)−1 = ‖π̂∗kr‖, π̂∗kr = π̂∗r, k, r =

1,m, and appropriate averaging for M̂∗ by
corresponding stationary distribution

µ̂+
∗ =

m∑

k=1

π̂∗k
m∑

r=1

E[τ̂+(0), ŷ 1
∗ = r|ŷ 0

∗ = k].

For upper semi-continuous process ξ(t)
according with (18), (19), (20), (21) and previ-
ously introduced concepts and notations we found
Z−1

s , Q−1
s :

Z−1
s = T+

∗ (s, 0); Q−1
s = T̂+

∗S(s, 0). (25)

From Lemma 2 and the relations (22), (24) and
(25) the next lemma follows

Lemma 4. If ξ(t) is upper semi-continuous
process and 0 < m0

1 < ∞, then 0 < µ+∗ < ∞, 0 <
µ̂+∗ < ∞, and the following limit relations take
place

lim
s→0

s(I− Z−1
s )−1 =

lim
s→0

s(I−T+
∗ (s, 0))−1 =

1
µ+∗

Π∗, (26)

lim
s→0

s(I−Q−1
s )−1 =

lim
s→0

s(I− T̂+
∗S(s, 0))−1 =

1
µ̂+∗

Π̂∗S. (27)

Proof. Using relation (25), (22) and (15) we
obtain (26)

lim
s→0

s(I− Z−1
s )−1 = lim

s→0
s(I−T+

∗ (s, 0))−1 =

lim
s→0

s(sM∗ −Q∗)−1 =
1

µ+∗
Π∗.

Similarly (27) is proved after using (25), (24) and
taking into account the result of Lemma 2.

From dual relations

Zs − I =

{
Zs(I− Z−1

s ),
(I− Z−1

s )Zs.

Qs − I =

{
Qs(I−Q−1

s ),
(I−Q−1

s )Qs.

(28)

at s > 0 follows

Lemma 5. If ξ(t) is upper semi-continuous
process on Markov chain x(t), then at 0 < m0

1 <
∞, according to ( 26) and ( 27) the following relati-
ons take place

lim
s→0

s(Zs − I)−1 =
1

µ+∗
Π
′
∗,

Π
′
∗ = Π∗P∗ = P∗Π∗ = Π∗.

(29)

lim
s→0

s(Qs − I)−1 =
1

µ̂+∗
Π̂
′
∗S,

Π̂∗S = Π∗,

Π
′
∗S = Π̂∗SP̂∗S = P̂∗SΠ̂∗S = Π̂∗S.

(30)

Proof. The first relations in (29) and (30)
follow from (28) taking to the account the conditi-
ons (25)-(27). Second relation in (30) follows from
early mentiond inversity notations. Last relations
are evident.

Consider cumulant function (5) and present it
as

K(z) = (z − 1)[Λ1−
z−1(Λ2F̃2(z) + NF̃(z))] + Q (31)

F̃2(z) =
∑

x60

zxP{ξ(k)
1 < x}, |z| > 1.

F̃(z) =
∑

x60

zx‖pkrP{χkr < x}‖, |z| > 1.

Should be noted that according to (25) K(z) is
expressed through generating transform of the
negative jumps distribution functions and K(1) =
Q.

Theorem 2. If ξ(t) is upper semi-continuous
process on Markov chain x(t) i 0 < m0

1 < ∞,
and then at |z| > 1 moment generating function
of ξ−(θs) looks as

g−(s, z) = s(sI−K(z))−1(I−Q−1
s z)(I−Q−1

s )−1 =

= s(sI−K(z))−1[I + (1− z)(Qs − I)−1], (32)

p−(s) = sΛ−1
1 (Qs − I)−1. (33)

If 0 < m0
1 < ∞, and according to ( 30)

moment generating function of absolute minimum
ξ− looks as

g−(z) = lim
s→0

g−(s, z) = m0
1[Λ1 −Q(1− z)−1−

− (Λ2F̃2(z) + NF̃(z))z−1]−1P0, (34)
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g−(1) =
1

µ̂+∗ m0
1

P0Π̂∗S =
1

µ̂+∗ m0
1

P0Π∗ =

=
1

µ̂+∗ m0
1

Π∗ = P0, (35)

Π̂∗S = Π∗ = P0, µ̂+
∗ =

1
m0

1

, (36)

p− = P{ξ− = 0} = m0
1Λ

−1
1 P0. (37)

Proof. From the second equality in (4), taki-
ng into account (2), (3) and (21) we get the first
relation in(32)
g−(s, z) = s(sI−K(z))−1(I−Q−1

s z)(I−Q−1
s )−1.

In order to obtain the second relation in (32) the
last two multipliers (I − Q−1

s z)(I − Q−1
s )−1 are

reduced to

(I−Q−1
s z)(I−Q−1

s )−1 = (Qs−Iz)(Qs−I)−1 =

(Qs − I)(Qs − I)−1 + (1− z)(Qs − I)−1 =

[I + (1− z)(Qs − I)−1].

To receive (33) proceed to limit in the first
relation (32) for z → ∞, pre-substituting K(z)
from (31).

M. g. f. of absolute minimum in accordance
with (27) is determined from (32) for s → 0 and
0 < m0

1 < ∞ after accounting the second relation
in (30) and (31)

g−(z) = lim
s→0

g−(s, z) =

lim
s→0

s(sI−K(z))−1(I−Q−1
s z)(I−Q−1

s )−1 =

(−K(z))−1(I− P̂∗Sz)
1

µ̂+∗
Π̂∗S =

1
µ̂+∗

[Λ1−Q(1−z)−1−(Λ2F̃2(z)+NF̃(z))z−1]−1Π̂∗S.

The first equality in (35) we receive from
g−(z) after limited transition at z → 1 and taki-
ng into account conditions (5) and (15). Since
Π̂∗S = Π∗, then

g−(1) =
1

µ̂+∗ m0
1

P0Π∗ =
1

µ̂+∗ m0
1

Π∗.

By carrying out the limiting transition in (32) for
z → 1 and s → 0 in the general case, we get
g−(1) = P0. Thus, Π∗ = P0, and µ̂+∗ m0

1 = 1. So
the relations (35) and (36) are proved.

Taking into account the conditions (36) in the
last relation for g−(z) we get (34).

The value p− in (37) is determined from (34)
for z →∞. So the theorem is proved.

Almost similarly the following theorem is
established.

Theorem 3. If ξ(t) is upper semi-continuous
process on Markov chain x(t) and 0 < m0

1 < ∞,
then for |z| > 1 moment generating function ξ(θs)
satisfies the following relation

g−(s, z) = (I−Z−1
s )−1(I−Z−1

s z)s(sI−K(z))−1 =

= [I + (1− z)(Zs − I)−1]s(sI−K(z))−1, (38)

p−(s) = (Zs − I)−1sΛ−1
1 . (39)

If 0 < m0
1 < ∞, then according to ( 29)

moment generating function ξ = lim
s→0

(ξ(θs) −
ξ+(θs)) is defined by limit relation for s → 0

g−(z) = lim
s→0

g−(s, z) = m0
1P0[Λ1−Q(1−z)−1−

− (Λ2F̃2(z) + NF̃(z))z−1]−1, (40)

g−(1) =
1

µ+∗
Π∗

1
m0

1

P0 =
1

µ+∗ m0
1

P0 = P0, (41)

µ+
∗ =

1
m0

1

, (42)

p− = P{ξ = 0} = m0
1P0Λ−1

1 . (43)

Proof. From the first equality in (4) we recei-
ve g−(s, z) = Ps((g+(s, z))−1g(s, z). Considering
(2), (3) and (20) we rewrite g−(s, z) as
g−(s, z) = (I− Z−1

s )−1(I− Z−1
s z)s(sI−K(z))−1.

So the first relation in (38)is proved. In order to get
the second relation in (38) the first two multipliers
(I − Z−1

s )−1(I − Z−1
s z) will be transformed simi-

larly as in the previous theorem. Thus the second
relation in (38) is also proved.

To prove (39) proceed to limit in the first
relation (38) for z → ∞, and , pre-substituting
K(z) from (31).

g−(s, z) = (I−Z−1
s )−1(I−Z−1

s z)s(sI−K(z))−1 =

= (I− Z−1
s )−1(I− Z−1

s z)s(sI+

[Λ1 − z−1(Λ2F̃2(z)−NF̃(z))]−Q)−1 −→z→∞
s(Zs − I)−1Λ−1

1 = p−(s)

M. g. f. g−(z) according to (26) is defined from
(38) for s → 0 and 0 < m0

1 < ∞ after accounting
of second relation in (29) and (31).

g−(z) = lim
s→0

g−(s, z) =

26
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lim
s→0

(I− Z−1
s )−1(I− Z−1

s z)s(sI−K(z))−1 =

1
µ+∗

Π∗(I−P∗z)(−K(z))−1 =

1
µ+∗

Π∗[Λ1−Q(1−z)−1−(Λ2F̃2(z)+NF̃(z))z−1]−1.

First equality in (41) we obtain from the previ-
ous relation after the limit passage for z → 1 and
considering (5) and (15). From the obvious relati-
on Π∗P0 = P0 we receive the second expressi-
on in (41). To deduce the last expression in (41)
we will accomplish the limit passage transition in
(38) at z → 1, taking into account the conditi-
on K(1) = Q, and then, proceeding to limit for
s → 0, we’ll obtain the necessary. Equating these
three expressions we receive (42).

Validity (40) follows from the previous relati-
on for g−(z) after consideration of the conditions
(42) and (36).

For z →∞ from (40) receive (43), previously
taking into account the conditions (36) and (42)

p− = lim
z→∞

1
µ+∗

Π∗[Λ1−

Q(1− z)−1 − (Λ2F̃2(z) + NF̃(z))z−1]−1 =
1

µ+∗
Π∗Λ−1

1 .

The theorem is proved.

3 Conclusions

In paper the limiting relations (34) and
(40). were obtained. They are appropriate matrix
analogues of Polyaczek-Khinchin formula that
in the scalar case (P{ξ− = ξ} = 1, µ+∗ =
+∞∫
0

P{τ+(0) > t} dt), for upper semi-continuous

lattice process looks

Ezξ− =
1

µ+∗
(λ1 − λ2

˜̃
F 2(z))−1,

˜̃
F 2(z) = z−1F̃2(z), ˜̃

F 2(z) =
∑

z6k

zkpk, (k > 0)

1
µ+∗

= λ1 − λ2F̃2(1) = m1.
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