International Conference

Stochastic Processes in Abstract Spaces

14 – 16 October, 2015 Kyiv, Ukraine

Organized by:

Taras Shevchenko National University of Kyiv
Institute of Mathematics, National Academy of Sciences of Ukraine
National Technical University of Ukraine "Kyiv Polytechnic Institute"

Conference Address:

Department of Mathematical Analysis, Faculty of Mechanics and Mathematics Taras Shevchenko National University of Kyiv,

Acad. Glushkov ave., 4E, 03127 Kyiv, Ukraine

Phone: +38-044-2590591

E-mail: spas2015conf@gmail.com

Website: http://matfiz.univ.kiev.ua/conf2015/

On overshoots for the almost semi-continuous Poisson processes defined on a Markov chain

M. S. Herych

Consider two-dimensional Markov integer process $\mathbf{Y}(t) = \{\xi(t), x(t)\}(t \geq 0, \xi(0) = 0)$, where x(t) is finite ergodic Markov chain (MCh) with values in $\mathbb{E} = \{1, ..., m\}$ and the generating matrix $\mathbf{Q} = \mathbf{N}(\mathbf{P} - \mathbf{I})$; $\xi(t)$ is lattice Poisson process given on MCh with values in \mathbb{Z} . Its moment generating function (m. g. f.) has an exponential form $\mathbf{g}_t(z) = ||E[z^{\xi(t)}, x(t) = r|x(0) = k]|| = \mathbf{E}z^{\xi(t)} = e^{t\mathbf{K}(z)}$, where matrix cumulant function $\mathbf{K}(z)$ is determined by general matrix relation

$$\mathbf{K}(z) = \sum_{x \neq 0} (z^x - 1) \mathbf{\Pi}_0(x) + \mathbf{Q}, \mathbf{\Pi}_0(x) = \mathbf{\Lambda} \mathbf{p}(x) + \mathbf{N} \mathbf{f}(x),$$

 $\Lambda = \|\delta_{kr}\lambda_k\|$ (k = 1, ..., m), λ_k are jumps intensities of Poisson processes $\{\xi_k(t)\}_{k=1}^m$ with jumps distribution $\mathbf{p}(x) = \|\delta_{kr}P\{\xi_1^{(k)} = x\}\|$, $\mathbf{N} = \|\delta_{kr}n_k\|_{k,r\in\mathbb{E}}$, where $\{n_k > 0, k \in \mathbb{E}\}$ – parameters of the exponential distributed random variables ζ_k are sojourn time x(t) in the state k. Matrix of transition probabilities of embedded MCh $y_n = x(\sigma_n + 0)$, where σ_n are moments of n-th change of states for x(t): $\mathbf{P} = \|p_{kr}\|$, $(k, r = \overline{1, m})$, $\mathbf{f}(x) = \|p_{kr}P\{\chi_{kr} = x\}\|$ is a distribution of jumps on transitions of x(t). For the full definition of the process $\mathbf{Y}(t)$ in latticed cases see [1].

We study the distributions of overshoots for the almost semi-continuous processes (process, for which the jumps of same sign are geometrically distributed and jumps with opposite signs have arbitrary lattice distribution), defined on a MCh. For these processes, we get the limit distributions of overshoots over the infinitely far and zero levels.

REFERENCES

 Herych M.S. Refinements of basic faktorizational identity for almost semi-continuous lattice processes on Markov chain// Carpathian mathematical publish papers. – 2012. – V.4, 2. – P. 229–240.

Uzhhorod National University, Department of Probability Theory and Mathematical Analysis, Uzhhorod, 14 Universytetska Street, 88000. e-mail: miroslava.gerich@yandex.ua