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SEMICLASSICAL APPROXIMATION IN THE RELATIVISTIC

POTENTIAL MODEL OF B AND D MESONS

V. Yu. Lazur,∗ A. K. Reity,∗ and V. V. Rubish∗

We construct a relativistic potential quark model of D, Ds, B, and Bs mesons in which the light quark mo-

tion is described by the Dirac equation with a scalar–vector interaction and the heavy quark is considered

a local source of the gluon field. The effective interquark interaction is described by a combination of the

perturbative one-gluon exchange potential VCoul(r) and the long-range Lorentz-scalar and Lorentz-vector

linear potentials Sl.r.(r) and Vl.r.(r). In the semiclassical approximation, we obtain simple asymptotic

formulas for the energy and mass spectra and for the mean radii of D, Ds, B, and Bs mesons, which

ensure a high accuracy of calculations even for states with the radial quantum number nr ∼ 1. We show

that the fine structure of P-wave states in heavy–light mesons is primarily sensitive to the choice of two

parameters: the strong-coupling constant αs and the coefficient λ of mixing of the long-range scalar and

vector potentials Sl.r.(r) and Vl.r.(r).

Keywords: Dirac equation, Lorentz structure of interaction potentials, heavy–light quark–antiquark
system

1. Introduction

As demonstrated by numerous experiments, the majority of presently known particles have an internal
structure, i.e., are composite objects. First, this pertains to hadrons, which, according to contemporary
ideas, are composite states of colored quarks and gluons. Describing the mass spectra and decay probabilities
of composite objects requires constructing a consistent theory of bound states, which should be based on
the fundamental principles of local quantum field theory and use its apparatus [1]. But calculating these
characteristics of composite systems directly in the local quantum field theory is not always possible, because
the only known calculation method in this theory is still based on the perturbation theory, while the nature
of creating a bound state of interacting particles must undoubtedly be determined by nonperturbative
effects.

The most effective calculation method beyond the perturbation theory for constructing the theory of
bound states is to use the dynamical equations. The point is that even if we can construct kernels of
dynamical equations only in the lower orders of the perturbation theory, developing methods for solving
them exactly or approximately (but without using the perturbation theory) allows taking nonperturbative
effects of interaction into account when evaluating observable characteristics of the bound states. In a
nonrelativistic case, such a theory is formulated in the language of the classical potential using the dynamical
Schrödinger equation. But at large bond energies, the corresponding theory must be essentially relativistic.
In this regard, the way to solve this problem was indicated about half a century ago based on using
the dynamical equations in the local quantum field theory, examples of which are the Bethe–Salpether
equation [2], the quasipotential equation [3], and other equations [4].
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The Dirac equation with a mixed scalar–vector interaction plays an important role in the contemporary
development of the relativistic theory of bound states. It is valuable because it provides an adequate math-
ematical model for a wide circle of problems in hadronic physics in which it is possible to pass consistently
from a two-particle problem to the external field approximation. This equation indicates the presence of
the spin and spin moment for the quark and antiquark, and the problems of describing fine and superfine
structures in the energy spectra of heavy–light (Qq̄) mesons, which are the QCD analogues of hydrogen-like
atoms, arise naturally from this equation. Treating the Dirac equation in the limit of an infinitely heavy
quark Q as an equation for a single light antiquark q̄ (similarly to the case of hydrogen-like atoms), we can
study several important aspects of the theory of heavy–light quark–antiquark systems, in particular, the
relativistic dynamics of the light antiquark q̄ in the external field of the heavy quark Q, the Lorentz struc-
ture of the long-range component of the Qq̄ interaction, the fine structure of the spectrum of heavy–light
mesons, and the influence of the spontaneous breaking of chiral symmetry on the spectrum.

The mathematical theory of the Dirac equation with a scalar–vector interaction was developed in [5]
(see [6]–[8] for a detailed bibliography). Certain progress was achieved in constructing exact solutions of
equations of this type with potentials corresponding to different types of interaction [5]. But in most cases,
attempts to construct exact solutions of this equation for more or less realistic potentials encounter difficul-
ties that have not yet been overcome. The known methods for investigating this equation approximately
(the perturbation theory in the coupling constant, etc.) do not provide complete knowledge about the be-
havior of the wave functions and mass spectrum in the most interesting domain of values of the coupling
constant for hadronic systems containing one light quark together with one (D and B mesons) or two (twice
heavy Ξ and Ω barions) heavy (anti)quarks; relativistic and nonperturbative effects evidently play an im-
portant role in such systems. Therefore, when constructing approximate methods for investigating bound
states of the Dirac equation, nonperturbative methods, in which the expansion parameter in the potential
is not considered small, are especially important. Among these methods, one of the most widely used is the
method of asymptotic expansion in the Planck constant �, which is called the semiclassical approximation.

The rigorous theory of semiclassical asymptotic expansions including the scattering problem together
with spectral problems, was constructed in Maslov’s fundamental monograph [9] and subsequent papers [10].
The WKB method for fermions satisfying the Dirac equation with a purely vector interaction (including
states lying near the boundary of the lower continuum) was developed in detail in [11]–[13]. Namely the
semiclassical methods resulted in the majority of “memorable” results in the known theory of superheavy
atoms [14]. The construction of semiclassical solutions of the spinor equation with a scalar–vector interaction
was recently reported in [15], [16]. In [16], we used the WKB method to study the behavior of a relativistic
spin-1/2 particle in the presence of both the scalar and the vector external fields with potentials of the
confining type. For the Cornell model of interquark interaction, we obtained simple asymptotic formulas
for the energy and mass spectra and for the mean radii of heavy–light (D, Ds, B, and Bs) mesons. These
formulas ensure a high accuracy of calculations even for states with the radial quantum number nr ∼ 1.

2. Semiclassical approximation for the Dirac equation with a
vector and scalar interaction potential

The problem of describing the motion of a relativistic spin-1/2 particle in a central field composed of
scalar and vector external fields after the separation of variables reduces to solving the system of radial
Dirac equations (c = 1)

�
dF

dr
+

k̃

r
F −

[(
E − V (r)

)
+

(
m + S(r)

)]
G = 0,

�
dG

dr
− k̃

r
G +

[(
E − V (r)

)
−

(
m + S(r)

)]
F = 0.

(1)

826



Fig. 1. The form of the EP U(r,E) of the barrier type; r0, r1, and r2 are roots of the equation

p2(r) = 0.

Here and hereafter, we use the notation F (r) = rf(r) and G(r) = rg(r), where f(r) and g(r) are the radial
functions for the respective upper and lower components of the Dirac bispinor [17], E and m are the total
energy and rest mass of the particle, S(r) is the Lorentz-scalar potential, and the potential V (r) up to a
multiplier coincides with the zeroth (temporal) component of the four-vector potential Aµ = (A0,A), where
A = 0, V (r) = −eA0(r), and e > 0. In system (1), k̃ = �k, where the quantum number

k =






−(l + 1) for j = l + 1/2 (l = 0, 1, . . . ),

l for j = l − 1/2 (l = 1, 2, . . . ),

j is the total angular moment of the fermion, and l is the orbital moment (for the upper component of
F (r)), and hence |k| = j + 1/2 = 1, 2, . . . .

The systematic study of the theory of the semiclassical approximation (as � → 0) for the Dirac
equation with a scalar–vector interaction was started in [16]. Formal asymptotic expansions in powers of
� in initial Dirac system (1) for the radial functions F (r) and G(r) result in a chain of matrix differential
equations, which can be solved consecutively using the known technique of left and right eigenvectors of
the homogeneous system. For the effective potential (EP) of the barrier type (see Fig. 1)

U(r, E) =
E

m
V + S +

S2 − V 2

2m
+

k2

2mr2
, (2)

semiclassical expressions were obtained for the wave functions in the classically forbidden and permitted
bands and also the quantization condition determining the energy (position) of the bound state E in the
mixture of the scalar and vector potentials:

∫ r1

r0

(
p +

kw

pr

)
dr =

(
nr +

1
2

)
π, w =

1
2

(
V ′ − S′

m + S + E − V
− 1

r

)
. (3)

Here, nr = 0, 1, 2, . . . is the radial quantum number, and

p(r) =
[(

E − V (r)
)2 −

(
m + S(r)

)2 −
(

k

r

)2]1/2

(4)
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is the semiclassical momentum for the radial motion of the particle in the potential well r0 < r < r1, where
r0 and r1 are the turning points, i.e., the roots of the equation p2(r) = 0.

The new quantization rule (3) differs from the standard Bohr–Sommerfeld quantization condition [18]
by the relativistic expression for the momentum p(r) and by the correction proportional to w, which takes
the spin–orbital interaction into account and results in the splitting of levels with different signs of the
quantum number k.

The spectral problem for the Dirac equation with the potentials S(r) and V (r) of the confining type
considered in subsequent sections illustrates applying these methods to problems in hadronic physics. Other
types of the potentials S(r) and V (r) and also a more detailed mathematical description of the WKB method
for the Dirac equation with a scalar–vector interaction can be found in [16].

3. The dependence of the EP U(r, E) on the Lorentz structure of
the external field

The simplest model of the interaction of a relativistic spin-1/2 particle simultaneously with both scalar
and vector external fields, which we meet below when calculating the semiclassical spectrum of relativistic
bound states (see Sec. 4), is governed by the potentials

V (r) ≡ VCoul(r) + Vl.r.(r) = −ξ

r
+ λv(r), (5a)

S(r) ≡ Sl.r.(r) = (1 − λ)v(r), v(r) = σr + V0, (5b)

where V0 is a real constant, ξ is the Coulomb coefficient, and λ is the parameter of mixing between the
vector and scalar long-range potentials Vl.r.(r) and Sl.r.(r) with 0 ≤ λ ≤ 1. Below in this section, we do not
restrict the value or even the sign of the parameter σ.

The relation between the EP U(r, E) and initial potentials (5) directly entering the Dirac equation is
rather complicated: U(r, E) depends not only on r and model parameters (5) but also on the level energy E

and on the total moment j. What is especially important for us here is that the EP U(r, E) takes essentially
different forms for λ < 1/2, λ > 1/2, and λ = 1/2.

Our goal is to investigate the behavior of the EP U(r, E) at large and small r. Substituting V (r) and
S(r) of form (5) in (2) and keeping only the most singular terms as r → 0 and only the leading terms (in
r) as r → ∞, we obtain

U(r, E) ∼






(1 − 2λ)σ2

2m
r2 + . . . , r → ∞, λ �= 1

2
, (6a)

E + m

2m
σr + . . . , r → ∞, λ =

1
2
, (6b)

γ2

2mr2
, r → 0, γ2 = k2 − ξ2. (6c)

We first note that only the quadratic (in S and V ) term (S2−V 2)/2m is essential in the asymptotic domain
in formula (2) for λ �= 1/2; this term has the behavior (1 − 2λ)σ2r2/2m as r → ∞. It is hence obvious
that for any sign of the parameter σ, the EP U(r, E) of model (5) under consideration (at sufficiently large
distances) is an attractive potential for λ > 1/2 and a repulsive potential for λ < 1/2. Both types of
behavior (i.e., attraction for λ > 1/2 and repulsion for λ < 1/2) are purely relativistic effects related to the
fact that the interaction of the fermion with the scalar external field S(r) is added to the scalar quantity
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Fig. 2. The EP U(r, E) of Dirac system (1) with potential (9) in the case where λ < 1/2, σ > 0, and

eE > m̃; a, b, c, and d are the quasimomentum roots in (12).

m, the particle mass, while the vector potential V (r) is introduced into the free Dirac equation minimally
as the temporal component of the Lorentz-vector Aµ.

It is clear from what was said above that for λ < 1/2, the EP U(r, E) of model (5) is an unboundedly
increasing (as r increases) confining potential with only a discrete spectrum of energy levels; it is then
essential that the quadratic dependence of the EP U(r, E) on r (and hence the confinement property)
appears because of the relativistic terms (S2 − V 2)/2m. An example form of the EP U(r, E) for λ < 1/2
is shown in Fig. 2. It is amazing that bound states are present in composite field (5) under consideration
for λ < 1/2 even in the case where the initial long-range potential v(r) = σr + V0 corresponds to attraction
(σ < 0, V0 < 0).

But for λ > 1/2 and an arbitrary value of σ �= 0, the effective Hamiltonian H of the squared Dirac
equation in external field (5) has complex eigenvalues of energy because the EP U(r, E) becomes negative
in this case (at sufficiently large distances) and less than the effective particle energy E = (E2 − m2)/2m,
which corresponds to attraction. Therefore, for λ > 1/2, the EP U(r, E) of model (5) has the form of
a well separated from the external domain by a wide potential barrier (for |σ| � 1; see Fig. 1). It is
obvious that the leading contribution to forming the barrier of the EP U(r, E) comes from the Lorentz-
vector component Vl.r.(r) of the long-range potential v(r). Furthermore, as follows from (2) and (6a), in the
presence of only a vector field (λ = 1), the EP U(r, E) does not have the confining property even when the
initial long-range potential v(r) = σr + V0 corresponds either to attraction (σ < 0, V0 < 0) or to repulsion
(σ > 0, V0 > 0). This is the principal difference between relativistic potential model (5) under consideration
and the analogous nonrelativistic model in which the EP Un.r.

eff (r) = −ξ/r + σr + V0 + l(l + 1)/2r2 in the
radial Schrödinger equation has the barrier for negative values of the parameters σ and V0, which results
in quasistationary states with complex energies appearing instead of discrete levels. On the contrary, if
σ > 0, then the EP Un.r.

eff (r) becomes an unboundedly increasing confining potential with only the discrete
spectrum of energy levels. The absence of bound states in the Dirac equation with a linearly increasing
vector potential V (r) was first noted in [19].

The semiclassical formulas for the wave functions in the domain r > r2 [16] imply the asymptotic
form of the radial functions F (r) and G(r) as r → ∞. It then happens that the wave functions decrease
exponentially at large distances for 0 ≤ λ < 1/2 and oscillate if 1/2 < λ ≤ 1. As an illustration, we present
this asymptotic behavior for the radial function corresponding to the upper component of the Dirac bispinor
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(r → ∞):

F ∼






exp
(
−
√

1 − 2λ|σ|
2

r2

)
for 0 ≤ λ < 1/2,

exp
(

i

√
2λ − 1|σ|

2
r2

)
for 1/2 < λ ≤ 1.

(7)

It hence follows that the relativistic solutions for potential model (5) (depending on the value of the mixing
parameter λ) constitute stationary or quasistationary systems satisfying different boundary conditions (7)
for λ < 1/2 or λ > 1/2.

We point out one more important particular case realized at λ = 1/2. Substituting potentials (5) with
the value λ = 1/2 in expression (2), we see that the quadratic dependence of the “tail” of U(r, E) on r

disappears and the long-range components Vl.r.(r) and Sl.r.(r) of the first two terms dominate EP (2) at
large r, which results in a practically linear dependence of U(r, E) on r (see (6b)). We note that we again
obtain a linear confining potential, which has only the discrete spectrum, at positive values of σ, while for
negative (sufficiently small) values of σ, the EP U(r, E) of model (5) has a wide barrier. Because of this,
level decay by percolation through the potential barrier becomes possible, i.e., the bound level becomes a
quasistationary exponentially decaying state with the complex energy E = Er − iΓ/2. From the analyticity
standpoint, the above behavior of the EP U(r, E) for σ < 0 and σ > 0 allows studying how the discrete
spectrum continues from the real axis to the complex plane.

Summarizing, we can say that varying one of the parameters of interaction model (5), the coefficient
λ of mixing the scalar and vector long-range potentials Sl.r.(r) and Vl.r.(r), in the interval 0 ≤ λ ≤ 1, we
obtain qualitatively different forms of the EP U(r, E): from the confining potential with only the discrete
spectrum for λ < 1/2 to the potential with the potential barrier and quasistationary energy levels for
λ > 1/2 through the physically important intermediate case λ = 1/2, where the asymptotic behavior (as
r → ∞) of the “tail” of the EP U(r, E) switches from quadratic (6a) to linear (6b) (see above).

For the squared Dirac equation in composite field (5), the form of the EP becomes more complicated:
expression (2) for U(r, E) acquires small corrections due to the particle spin and the related spin–orbital
interaction. It is clear from the nature of the conclusions about the behavior of the EP U(r, E) for λ <

1/2, λ > 1/2, and λ = 1/2 that the indicated changes of the form of U(r, E) do not change the results
qualitatively.

Everything said above remains valid for the spherically symmetric potentials S(r) and V (r) with the
powerlike or logarithmic behavior (v(r) ∼ σrβ , β > 0, or v(r) ∼ g log r) of the long-range part v(r) at
infinity.

Having clarified the qualitative aspects, we now concentrate on a practical application of the above
apparatus of semiclassical asymptotic behavior to heavy–light mesons.

4. Semiclassical description of the energy spectrum of heavy–light
quark–antiquark systems

To use the potential approach to describe properties of heavy–light mesons, we must construct the
quark–antiquark interaction potential. As is known from QCD, because of the asymptotic freedom property,
the Coulomb-type potential of the one-gluon exchange gives the leading contribution at small distances
(r < 0.25Fm).

As the distance increases, the long-range confining interaction (the confinement), whose actual form has
not yet been established in the QCD framework, prevails. The confining potential may have a complicated
Lorentz structure. For example, it was shown in [20], [21] that the interaction of the quark–antiquark pair
with a fluctuating gluon vacuum field at a finite correlation length results in a linearly increasing potential.
The spin-dependent potential obtained with that approach has a structure that is characteristic of scalar
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confinement. On the other hand, the infrared asymptotic behavior of the gluon propagator of the form
D(k2) ∼ 1/(k2)2 was obtained in [22] by analyzing the system of the Schwinger–Dyson equations. Such an
asymptotic behavior in the static limit results in a linearly growing vector confining potential. It is therefore
most plausible that the confining potential comprises a mixture of vector and scalar parts. Moreover, lattice
calculations [23] based on the first principles of QCD support a linear confinement proportional to r/4πα′(0)
(where α′(0) is the slope of the hadronic Regge trajectory). From the above considerations, we assume that
the Qq̄ interaction is a combination of the following potentials:

a. the one-gluon exchange potential VCoul(r) = −ξ/r, where ξ = 4/3αs, αs is the strong coupling constant

αs(Q) =
12π

(33 − 2Nf) log(Q2/Λ2)
, (8)

Nf is the number of quark flavors, and Λ = 360MeV is the QCD parameter,

b. the long-range linear scalar confining potential Sconf(r) = (1 − λ)v(r), where v(r) is determined by
expression (5b), and

c. the long-range linear vector potential Vconf(r) = λv(r).

The total effective quark–antiquark interaction is then described by a combination of the perturbative one-
gluon exchange potential VCoul(r) and the scalar and vector long-range confining potentials Sconf(r) and
Vconf(r),

V (r) = VCoul(r) + Vconf(r) = −ξ

r
+ λ(σr + V0),

S(r) = Sconf(r) = (1 − λ)(σr + V0), 0 ≤ λ < 1/2.

(9)

Here, σ = 0.18GeV2 is the string tension, V0 is the constant of the additive shift of the bond energy, and
the coefficient λ of mixing between the vector and scalar confining potentials is the adjustable parameter.
We can consider that the value of αs is approximately the same for each family of heavy–light mesons and
twice-heavy barions and changes in accordance with (8) only when we pass from one family to another.

We cannot solve Dirac system (1) with potentials (9) exactly; we hence use the semiclassical approxi-
mation method, which provides a high accuracy even for low-lying quantum numbers in the case of scalar
and vector fields of the Coulomb and oscillatory types [16].

Choosing the mixing coefficient in the range 0 ≤ λ < 1/2 corresponds to the scalar confinement
prevailing. In this case, the EP U(r, E) of our model has the form of a standard oscillator well with
a single minimum (at the point rmin ≈ γ2/Ẽξ) and no maximums (see Fig. 2). The equation p2 =
2m

(
E − U(r, E)

)
= 0 determining the turning points then results in the complete fourth-degree algebraic

equation r4 + fr3 + gr2 + hr + l = 0 with the coefficients

f =
2
[
m̃(1 − λ) + Ẽλ

]

(1 − 2λ)σ
, g = − Ẽ2 − m̃2 − 2ξσλ

(1 − 2λ)σ2
,

h = − 2Ẽξ

(1 − 2λ)σ2
, l =

γ2

(1 − 2λ)σ2
,

(10)

where

Ẽ = E − λV0, m̃ = m + (1 − λ)V0 (11)
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are the characteristic parameters with the respective meanings of the “shifted” energy and the “shifted”
mass. This equation has four real roots d < c < b < a determined by the equalities

a = −f

4
+

1
2
(Ξ + ∆+), c = −f

4
− 1

2
(Ξ − ∆−),

b = −f

4
+

1
2
(Ξ − ∆+), d = −f

4
− 1

2
(Ξ + ∆−).

(12)

Here, we use the notation

Ξ =
[
f2

4
− 2g

3
+

u

3

(
2
Z

)1/3

+
1
3

(
Z

2

)1/3]1/2

, ∆± =

√

F ± D

4Ξ
,

F =
f2

2
− 4g

3
− u

3

(
2
Z

)1/3

− 1
3

(
Z

2

)1/3

, Z = v +
√
−4u3 + v2 ,

D = −f3 + 4fg − 8h, v = 2g3 − 9fgh + 27h2 + 27f2l − 72gl,

u = g2 − 3fh + 12l.

For the potentials under consideration, the semiclassical momentum is determined by equalities (4)
and (9). Using formulas (12), we represent it in the form convenient for what follows (σ > 0 and σ < 0)

p(r) = |σ|
√

1 − 2λ
R(r)

r
= |σ|

√
1 − 2λ

[
(a − r)(r − b)(r − c)(r − d)

]1/2

r
. (13)

We integrate in quantization condition (3) over the classically allowed domain between the two positive
turning points b = r0 < r1 = a, while the other two turning points (d < c < 0) are in the nonphysical
domain r < 0. Using formula (13), we transform quantization integrals (3) into the sum of the integrals

J1 =
∫ a

b

p(r) dr = −|σ|
√

1 − 2λ

∫ a

b

(r3 + fr2 + gr + h + lr−1)
R

dr,

J2 =
∫ a

b

kw

p(r)r
dr = − k

2|σ|
√

1 − 2λ

[ ∫ a

b

dr

(r − λ+)R
+

∫ a

b

dr

(r − λ−)R

]
,

(14)

where we introduce the notation

λ± = −
Ẽ + m̃ ∓

√
(Ẽ + m̃)2 − 4σξ(1 − 2λ)

2σ(1 − 2λ)
.

Writing condition (3) in terms of J1 and J2 is advantageous compared with the initial representation because
the integrals contained in J1 and J2 can be expressed in terms of complete elliptic integrals.

The particle energy spectrum is determined by quantization condition (3), which, after quantization
integrals (14) are evaluated (see the appendix), becomes the transcendental equation

−2
√

1 − 2λ
√

(a − c)(b − d)

[
|σ|(b − c)2

�

[
N1F (χ) + N2E(χ) + N3Π(ν, χ) + N4Π

(
cν

b
, χ

)]
+

+
k

2(1 − 2λ)|σ|
[
(b − c)

(
N5Π(ν+, χ) + N6Π(ν−, χ)

)
+ N7F (χ)

]
]

=
(

nr +
1
2

)
π, (15)
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where F (χ), E(χ), and Π(ν, χ) are the complete elliptic integrals of the respective first, second, and third
kind (see formulas (A.1)). The mathematical details of calculating integrals of type (14) can be found
in [24], [25], and the expressions for ν, χ, ν±, �, and Ni (i = 1, . . . , 7) are collected in the appendix because
they are rather cumbersome.

Finding an “exact” solution of Eq. (15) in the general case is, of course, impossible, but the situation
is simplified with the increase in the energy E or in the approximation of “weak” long-range field (as
compared with the Coulomb field). The first case corresponds to the fact that for not too large (i.e., for
“intermediate”) values of the parameters ξ and σ (namely, for σ � 0.2GeV2 and 0.3 < ξ < 0.8), the
condition Ẽ2 � σγ is well satisfied for all possible values Enrk of the heavy–light meson energy levels, and
the second case is realized when the condition σ � ξm̃2 is satisfied. In the framework of our consideration
(i.e., for the physics of heavy–light mesons), only the first case is interesting, while the second case is most
often encountered in approximate calculations of those properties of low-lying hadronic states that do not
depend directly on the presence or absence of confinement.

A simple and often effective method for deriving asymptotic expansions of integrals of form (14) is
to expand a quasimomentum p(r) in a small parameter, the interaction, and integrate the obtained series
term by term. We then indicate two special features of this procedure for calculating the integrals J1 and
J2 containing the small parameter. First, it is obvious from analyzing expressions (12) that in addition to
the level E = m, we must introduce one more characteristic energy level Ẽ = m̃, which divides the domains
of applicability of the asymptotic approximations for the quantization integrals J1 and J2 obtained below.
Using the relations Ẽ > m̃ and Ẽ < m̃, we can show that in these two domains of the spectrum, the motion
is semiclassical if the condition σ/ξm̃2 � 1 is satisfied for Ẽ < m̃ and the condition σγ/Ẽ2 � 1 is satisfied
for Ẽ > m̃. This gives the possibility of obtaining expressions for J1 and J2 in elementary functions using
the formal expansion of the quasimomentum in a power series in a small dimensionless parameter (which
is σγ/Ẽ2 � 1 or σ/ξm̃2 � 1). Second, the further analysis depends essentially on the mutual positions of
the turning points a, b, c, and d. Then, depending on the relative values of Ẽ and the level m̃, we consider
several typical situations.

Case A: Let σ > 0 and the conditions σ � ξm̃2 and Ẽ < m̃ be satisfied. This situation describes deep
levels whose energy is close to the bottom of the scalar–vector well U(r, E). Estimating expressions (12) for
the turning points in the approximation σ/ξm̃2 � 1 and preserving only the two first terms in the small
parameter expansion, we can easily obtain

a ≈ Ẽξ + θ

µ2

[
1 − Ẽξ + θ

µ4

(
η1 +

m̃ξη2

µ

)
σ

]
,

b ≈ Ẽξ − θ

µ2

[
1 − Ẽξ − θ

µ4

(
η1 −

m̃ξη2

µ

)
σ

]
,

c ≈ −m̃ − Ẽ

σ
− ξ

m̃ − Ẽ
, d ≈ − m̃ + Ẽ

σ(1 − 2λ)
+

ξ

m̃ + Ẽ
.

(16)

Here and hereafter, we use the notation

θ =
√

(Ẽk)2 − (m̃γ)2 , µ =
√

m̃2 − Ẽ2 ,

η1 = (1 − λ)m̃ + λẼ, η2 = λm̃ + (1 − λ)Ẽ.

(17)

It follows from asymptotic expressions (16) that the positive turning points a and b depend weakly
on σ and are determined only by the Coulomb field. The other two (negative) turning points c and d
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depend mainly on the linear part v(r) of interaction (9), but their values are “corrected” by the quantities
∓ξ/(m̃ ∓ Ẽ), which are due to the Coulomb long-range interaction. It is also obvious from (16) that for
small positive values of σ, the turning points c and d are sufficiently far from the two points a and b and
tend to −∞ in the limit as σ → 0.

The properties of deeply lying levels for massive quarks (m̃2ξ � σ) are mainly determined by the
Coulomb potential. Treating the long-range potential v(r) as a small perturbation, we can expand the
semiclassical momentum p(r) in the domain of the potential well b < r < a in a series in increasing powers
of r/|c| � 1 and r/|d| � 1. Calculating the table integrals in (3), whose sum gives the value of the
quantization integrals J1 and J2 up to terms of the order O

(
(σ/ξm̃2)2

)
, we then obtain the equation, which

can be easily solved for the level energies,

Enrk = Ẽ0 + λV0 +
σ

2ξm̃2

[(
ξ2m̃2

µ2
0

− k2

)
η10 +

(
2ξ2m̃Ẽ0

µ2
0

− k

)
η20

]
+ O

((
σ

ξm̃2

)2)
, (18)

where Ẽ0 = m̃l[1 + ξ2/(n′
r + γ)2]−1/2 is the Dirac level of the energy of the fermion (with the effective

mass m̃ = m + (1 − λ)V0) in the Coulomb field, n′
r = nr + (1 + sgnk)/2, and the quantities µ0, η10,

and η20 are obtained from µ, η1, and η2 by substituting Ẽ0 for Ẽ. The previously accepted condition
σ > 0 is unnecessary here because this result remains applicable also in the case of negative values of the
parameter σ.

Formula (18) can also be found using the standard perturbation theory, but this involves rather cum-
bersome calculations. Using semiclassical formulas (3) and (14) dramatically simplifies calculations. As
is shown by comparing with the result obtained by numerically integrating Eq. (1), formula (18) ensures
a good accuracy for calculating the spectra of bound systems of heavy quarks (for example, QQ mesons;
see [26]).

Calculations, which we omit here, demonstrate that in the case λ < 1/2 and for (sufficiently small)
negative values of σ, the EP U(r, E) has the shape of a double well. If we neglect the barrier penetrability
in the region c < r < b between the two wells, then the semiclassical quantization conditions in this well
can be written merely as the conditions on the phase integrals over the domain of the semiclassical motion
in each of the wells. Quantizing in the left well by formula (3) then results in formula (18) above.

Case B: In the domain Ẽ > m̃ and σ > 0, which is of actual importance for the physics of heavy–
light mesons, a small dimensionless parameter σγ/Ẽ2 appears in the spectral problem. Imposing the
condition σγ/Ẽ2 � 1, we can easily obtain the approximate expressions for the turning points from exact
formulas (12):

a ≈ Ẽ − m̃

σ
+

ξ

Ẽ − m̃
, b ≈ −Ẽξ + θ

Ẽ2 − m̃2
,

c ≈ −Ẽξ − θ

Ẽ2 − m̃2
, d ≈ − Ẽ + m̃

σ(1 − 2λ)
+

ξ

Ẽ + m̃
.

(19)

As can be seen from these formulas, the turning points a and b are rather distant from each other, and the
above expansion for the quasimomentum p(r) is not applicable in the whole integration domain. Neverthe-
less, using the condition σγ/Ẽ2 � 1, we can use the approximation method to evaluate the quantization
integrals based on the idea of splitting the whole integration domain [b, a] into the intervals [b, r̃] and [r̃, a] in
each of which only the dominating interaction type is taken into account exactly while the other integration
types are treated as perturbations.

We now find a point r̃ that divides the integration domain b ≤ r ≤ a into the domain b ≤ r ≤ r̃ where
the Coulomb potential prevails and the domain r̃ ≤ r ≤ a where the long-range potential v(r) prevails.
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The method for choosing such a point is not unique. The most natural seems to find a point r̃ where the

long-range potential v(r) is equal to the Coulomb potential. From this requirement, we have r̃ ≈
√

Ẽξ/η1σ .

We can calculate the quantization integrals (for σγ/Ẽ2 � 1) as follows. We calculate integrals (14)
by expanding the quasimomentum p(r) in a power series in the parameters r/a � 1 and r/|d| � 1 in the
domain b ≤ r ≤ r̃ and in the small parameters b/r � 1 and |c|/r � 1 in the domain r̃ ≤ r ≤ a. Splitting

the integration interval at the point r̃ ≈
√

Ẽξ/η1σ therefore gives the representation for J1,

J1 = σ
√

1 − 2λ (j1 + j2), (20)

where the integrals j1 and j2 can be written as follows up to terms of the first order in the corresponding
small parameters r/a, r/|d| and b/r, |c|/r in the expansions for the quasimomentum p(r):

j1 =
√
−ad

∫ r̃

b

√
(r − b)(r − c)

r

[
1 − a + d

2ad
r + · · ·

]
dr,

j2 =
∫ a

r̃

√
(a − r)(r − d)

[
1 − b + c

2r
+ · · ·

]
dr.

(21)

Calculating the table integrals in (21) and collecting terms with like dependence on σ, we obtain

J1 = σ
√
−ad(1 − 2λ)

[
b + c

2
log

(
(a − d)(c − b)

16ad

)
−
√
−bc arccos

(
b + c

b − c

)
+

+
a + d

4
+

1
4
√
−ad

(
(a − d)2

2
− (a + d)(b + c)

)
arccos

(
d + a

d − a

)]
+ O

(
σγ

Ẽ2

)
. (22)

We note that when the asymptotic expressions for j1 and j2 are added, the result does not contain the
parameter r̃.

To expand the integral J2 in the small parameter σγ/Ẽ2, we represent it as a sum of two terms,

J2 = − k

2σ
√

1 − 2λ
(j̃1 + j̃2), (23)

where the integrals j̃1 and j̃2 can be written in the forms

j̃1 ≈ 1√
−ad

∫ r̃

b

dr

(r + p̃)
√

(r − b)(r − c)
, p̃ =

ξ

Ẽ + m̃
,

j̃2 ≈
∫ a

r̃

1
√

(a − r)(r − d)

[
1
r2

+
1

r(r + q̃)

]
dr, q̃ =

Ẽ + m̃

σ(1 − 2λ)
.

(24)

An elementary calculation of the integrals in (24) results in

J2 = − k

2|σ|
√

1 − 2λ

arccos
(
(b + c + 2ξ/(Ẽ + m̃))/(b − c)

)

√
ad

(
b + ξ/(Ẽ + m̃)

)(
c + ξ/(Ẽ + m̃)

) + O

(
σγ

Ẽ2

)
. (25)

Adding expansions (22) and (25) and combining terms of like orders in σ, we obtain the transcendental
equation determining the energy spectrum from (3),

η1

√
Ẽ2 − m̃2

2σ(2λ − 1)
− η

(
η2
2

2σ(2λ − 1)
+ λξ

)
− γ arccos

(
−Ẽξ

θ

)
−

− Ẽξ
√

Ẽ2 − m̃2
log

(
ση2θ

4e(Ẽ2 − m̃2)2

)
− sgnk

2
arccos

(
−m̃ξ

θ

)
=

(
nr +

1
2

)
π, (26)
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where
η = (1 − 2λ)−1/2 arccos(η1/η2). (27)

Although Eq. (26) is much simpler than “exact” semiclassical equation (15) for the energy levels,
solving it still requires numerical calculations. Below, we consider several limiting cases where Eq. (26) is
simplified and can be investigated analytically.

For the parameter values σ � 0.2GeV2 and 0.3 < ξ < 0.8, the condition Ẽ � m̃ is well satisfied for all
possible values of the level energies Enrk of heavy–light mesons. If we expand the left-hand side of (26) in
m̃/Ẽ � 1 up to third-degree terms, we obtain the transcendental equation for Enrk:

[
(1 − λ)A − λ

]
Ẽ2 + 2m̃Ẽ(1 − λ)(λA − 1) − 2σ(1 − 2λ)

(
πN + ξ log

σ|k|(1 − λ)

4Ẽ2

)
−

− λm̃2 + λ
[
λm̃2 − 2σξ(1 − λ)

]
A = 0, (28)

where

A =
arccos

(
λ/(1 − λ)

)

√
1 − 2λ

, N = nr +
1
2

+
sgnk

4
+

1
π

(
γ arccos

(
− ξ

|k|

)
− ξ

)
. (29)

Solving this equation by the method of consecutive iterations, we obtain the desired expression for the
eigenvalues Enrk in the first approximation (up to terms of the order O(σγ/Ẽ2)):

E
WKB(as)
nrk

= ζ−1

{
B +

(
B2 + ζ

[
2σ(1 − 2λ)

(
ξ log

σ|k|(1 − λ)

4(Ẽ(0))2
+ 3ξ + λξA + πN

)
+

+ λm̃2(1 − λA)
])1/2}

+ λV0, (30)

where

ζ = (1 − λ)2A − λ − 2σξ(1 − 2λ)

(Ẽ(0))2
, B = (1 − λ)(1 − λA)m̃ − 4σξ(1 − 2λ)

Ẽ(0)
,

and Ẽ(0) = E(0) − λV0. Here, E(0) is the zeroth approximation for the energy on which the quantity Enrk

depends rather weakly, and we can set E(0) ≈ Enrk(ξ)|ξ=0 in most cases.
We have obtained formula (30) for the energy levels Enrk, which depend nonanalytically on the string

tension σ and which therefore cannot be obtained in the perturbation theory framework. We mention that
for a purely scalar confinement (λ = 0), formula (30) is simplified to

E
WKB(as)
nrk

=
2
π

[
m +

√

m2 + σπ

(
ξ log

σ|k|
(
2E(0)

)2 + πN

) ]
. (31)

The results of calculating the energy levels EWKB
nrk

and E
WKB(as)
nrk

based on transcendental equation (15)
and asymptotic formula (30) together with the exact values of Enrk obtained by solving the Dirac equation
numerically are presented in Table 1 for nr = 0, 1, 2 and k = ±1,±2. In these calculations, we set the values
of αs, λ, V0, mu,d, and ms to those used in QCD to describe the states of B (bū or bd̄) and Bs (bs̄) mesons.
As can be seen in Table 1, the semiclassical values EWKB

nrk
and E

WKB(as)
nrk

ensure the respective 1% and 2%
accuracies (except the energy of states with the radial quantum number nr = 0, for which the accuracy of
both formulas is about 8%). The accuracy of determining Enrk from semiclassical formula (30) is therefore
such that the first-order approximation usually suffices for practical purposes.
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Table 1

bū, bd̄ bs̄

Lj(nr, k) Enrk EWKB
nrk

E
WKB(as)
nrk

Enrk EWKB
nrk

E
WKB(as)
nrk

(0,−1) 0.4327 0.4408 0.4729 0.5248 0.5322 0.5623

S1/2 (1,−1) 0.8796 0.8838 0.8943 0.9750 0.9791 0.9912

(2,−1) 1.1978 1.2009 1.2066 1.2946 1.2976 1.3049

(0,−2) 0.7355 0.7373 0.7504 0.8376 0.8392 0.8460

P3/2 (1,−2) 1.0880 1.0892 1.0947 1.1879 1.1890 1.1927

(2,−2) 1.3658 1.3667 1.3699 1.4650 1.4659 1.4685

(0, 1) 0.7249 0.7293 0.7030 0.8235 0.8278 0.7985

P1/2 (1, 1) 1.0701 1.0733 1.0594 1.1696 1.1728 1.1572

(2, 1) 1.3470 1.3496 1.3405 1.4466 1.4492 1.4390

(0, 2) 0.9661 0.9671 0.9343 1.0655 1.0665 1.0315

D3/2 (1, 2) 1.2588 1.2596 1.2385 1.3583 1.3591 1.3369

(2, 2) 1.5058 1.5066 1.4914 1.6052 1.6059 1.5901

The results of calculating the level energies EWKB
nrk

(based on transcendental
equation (15)) and E

WKB(as)
nrk

(based on semiclassical expression (30)) and also
the exact values of Enrk calculated at the parameter values αs = 0.3, λ =
0.3, V0 = −0.45GeV, mu,d = 0.33GeV, and ms = 0.5GeV (the energies are
measured in GeV).

To find the dependence of the energy eigenvalues Enrk on the Coulomb coupling constant ξ, we solved
transcendental equation (15) numerically with the following choice of parameters determining the form
of initial interaction potentials (9): αs = 0.3, λ = 0.3, V0 = −0.45GeV, and mu,d = 0.33GeV. The
graphs of dependences of energy levels on the ratio ξ/|k| are shown in Fig. 3, where solid lines indicate the
dependence of several lowest levels (nr = 0) with the given value of k and dashed lines correspond to the
excited states (nr = 1). As could be expected, as the Coulomb parameter ξ increases, energy levels decrease
monotonically and develop a square-root singularity as ξ → |k|. This is a manifestation of the “falling to
the center” phenomenon for the Dirac equation in composite field (9) with the vector potential V (r), which
has the Coulomb singularity at zero, V (r) ≈ VCoul(r) = −ξ/r as r → 0. As is known [27], every truncation
of the potential V (r) at small distances removes the square-root singularity in the energies Enrk, and the
curve of the level of Enrk(ξ) can then be smoothly continued to the domain E < 0.

It can be seen from Fig. 3 that for the states with the same nr, the level energies with k > 0 lie much
above the levels with k < 0. This is the influence of the centrifugal barrier (for instance, this barrier is
absent for states with k = −1, while it suppresses the probability of the presence of the quark at large
distances for states with k = +1). These conclusions are completely confirmed by numerically solving Dirac
system (1) with potentials (9); the results of this were presented in [27].

We also note that the energies of the lowest levels (nr = 0) with k < 0 reach the zero level (E = 0) at
the maximum possible value of the Coulomb coupling constant ξ = −k (see Figs. 3a–3c). All other states
also have the singularity of the square-root type at ξ = |k|, but their energies remain positive.

The above study of the spectrum of Dirac equation in composite field (9) using the WKB approximation
is of practical interest because calculating integrals in quantization condition (3) is much easier in many
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a b

c d

Fig. 3. (a–c) The dependence of the level energies εnrk = Enrk/
√

σ on ξ/|k|. Solid lines correspond

to the lowest levels (nr = 0) with the given value of k, and dashed lines correspond to the excited

states (nr = 1). The parameter values are (a) m = 0 and λ = 0, (b) m = 0.33 GeV and λ = 0,

(c) m = 0.33 GeV, σ = 0.18 GeV2, and λ = 0.3. Here, m∗ = m/
√

σ . (d) The dependence of the level

energy ε0,−1 on ξ/|k| for different values of the parameter λ at m = 0.33 GeV.

cases than finding exact values of energy levels by numerically solving system of radial Dirac equations (1).

5. The mass spectrum of heavy–light quark systems

The qualitative picture of forming bound states in a Qq̄ system is determined by the presence of the
scale parameter ΛQCD of the confinement of the light antiquark q̄: ΛQCD � mQ, where mQ is the mass
of the heavy quark Q. Under this condition, the heavy quark Q affects the light quark q̄ as a local static
source of the color (gluon) QCD field. The presence of a small parameter ΛQCD/mQ � 1 allowed developing
powerful means for studying QCD in interactions between heavy and light quarks. For example, a consistent
scheme of the effective theory of heavy quarks for hadronic systems with one heavy quark (Qq̄, Qqq) was
developed (see, e.g., [6] and the references therein). In the leading term of this theory (i.e., in the static limit
as mQ → ∞), first, the spin of the heavy quark Q splits from the interaction with weakly virtual gluons,
second, the effective Hamiltonian exactly corresponds to the Dirac Hamiltonian of one-particle problem (1),
and the energy of the spin–orbital interaction of the light antiquark q̄ becomes the leading term of spin
interactions. This is manifested in the approximate Isgur–Wise spin symmetry [28] for the heavy quark.
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In the leading order in 1/mQ, the mass spectrum of meson states with one heavy quark is given by the
expression [6], [29]–[31]

M theor
nrk (Qq̄) = Enrk +

√
E2

nrk
− m2

q + m2
Q , (32)

where mQ and mq are the masses of the heavy quark Q and the light quark q̄ constituting the Qq̄ me-
son. Calculating the mass spectrum of Qq̄ mesons therefore reduces to consistently calculating the energy
eigenvalues of Dirac equation (1) in composite field (9) whose source here is the heavy quark Q.

The symmetry properties of Dirac equation (1) drastically simplify the problem of classifying states of
heavy–light mesons. Because the Hamiltonian of Eq. (1) does not contain terms describing the interaction
of the spin of the Q quark with the orbital and spin moments 
l and 
sq of the light antiquark, both the
spin moment 
SQ of the heavy quark Q and the total moment 
j = 
sq + 
l of the light antiquark q̄ are two
separate integrals of motion. This allows classifying the states by the quantum numbers j = 1/2, 3/2, . . .

of the operator of the total moment of the light antiquark q̄, while the states of the total moment of the
composite Qq̄ system 
J = 
j + 
SQ are degenerate with respect to the orientation of the spin 
SQ of the heavy
quark Q. Two almost degenerate states of the composite Qq̄-system with J = j ±1/2 in the spin symmetry
approximation [28] therefore correspond to each state of the Dirac equation with the given j and with the
spatial parity P = (−1)l+1. Masses of the jP -states of the Qq̄ meson are also degenerate with respect to
J , and these states therefore have identical wave functions.

The values l = 0 (s states in the quark–antiquark model) and j = 1/2− correspond to the ground
state of the Qq̄ meson. This doublet consists of two states JP = (0−, 1−). In the case l = 1 (the p state
in the quark model), we have two states with j = 1/2+ and j = 3/2+ and two corresponding doublets
JP = (0+, 1+) and JP = (1+, 2+).

As usual, we introduce a concise notation for the families of D and Ds mesons: (D∗
0 , D′

1) are the
components of the charmed doublet JP = (0+, 1+) with j = 1/2+ for nonstrange states (the cū system),
(D∗

s0, D′
s1) are the components of the same doublet for strange states (the cs̄ system), and (D1, D∗

2) and
(Ds1, D∗

s2) are the components of the doublet JP = (1+, 2+) with j = 3/2+ for the respective nonstrange
and strange states. We also use the analogous notation system for B and Bs families.

Above, we did not take the level superfine structure (SFS) into account, and the proposed potential
model can predict only the position of the center of masses of the SFS multiplet comprising sublevels with
different moments 
J = 
j + 
SQ. In actual Qq̄ systems, the degeneracy of doublet states corresponding to
different moments J = j±1/2 at the given j is broken primarily because of the 
sq


SQ interaction. Therefore,
to be able to compare our theoretical predictions with experimental data, we present the observation values
for the centers of masses of the SFS multiplets in Tables 2–5; these centers of masses are calculated by the
known formula

Mexp =
∑

J

(
(2J + 1)MJ

)
∑

J(2J + 1)
, (33)

where MJ is the experimental value of the mass of state with the given J .
Based on these observations, we have tried to describe the spectra of masses of low-lying states of the

heavy–light B (bū or bd̄), Bs (bs̄), D (cū or cd̄), and Ds (cs̄) mesons considering σ and λ to be universal
quantities and setting the values of the parameters αs and V0 constant in every family of heavy–light
mesons allowing them to vary slightly only when passing from one family to another. All the parameters
σ, λ, αs, and V0 of potential model (9) were determined by fitting the known data for the mass spectra of
pseudoscalar D and B mesons. The found values of the parameters are consequently used below in other
applications in the framework of our approach, for example, when describing the spectra of the strange Ds

and Bs mesons.
We use only one a priori restriction: the value of the coefficient λ of mixing between the vector and

scalar long-range potentials Vconf(r) and Sconf(r) must lie in the interval 0 ≤ λ < 1/2 for the EP U(r, E) of
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interaction model (9) to be a confining-type potential. The value of the parameter λ was obtained by fitting
experimental data [32], [33] on the fine structure of P -wave levels in D and B mesons. It was established that
the fine structure of the P -wave states in the heavy–light (D, Ds, B, and Bs) mesons is primarily sensitive
to the choice of the mixing coefficient λ and to the value of the strong coupling constant αs. Comparing
the results of calculations based on formulas (15) and (32) with the experimental data [32], [33], we find
that the best agreement is reached at λ = 0.3 and for the parameter choices

σ = 0.18 GeV2, αs(cū or cd̄) = 0.386, αs(bū or bd̄) = 0.3,

αs(sū or sd̄) = 0.421, V0(cū or cd̄) = −375 MeV, V0(bū or bd̄) = −450 MeV.

For the masses of u, d, s, c, and b quarks, we used their constituent masses mu,d = 330MeV, ms = 500MeV,
mc = 1550MeV, and mb = 4880MeV. When calculating the mass spectrum, we neglected electromagnetic
interaction and the difference of the masses of u and d quarks, therefore considering the particles D+, D−,
D0, and D

0
, for example, to be the same state of the Qq̄ system, JP = 0−. Correspondingly, we do not

distinguish between the interaction parameters σ, λ, αs, and V0 for these particles. The mass spectra of D
and Ds mesons calculated in this approximation are presented in Tables 2 and 3.

Table 2

Lj (nr, k) Mtheor Mexp 〈r〉numer 〈r〉 (35)

S1/2 (0,−1) 2001.5 1971.1 0.472 0.402
(1,−1) 2632.3 < 2637 0.684 0.664

P3/2 (0,−2) 2443.2 2447.3 0.678 0.632
(1,−2) 2981.9 – 0.856 0.833

P1/2 (0, 1) 2403.7 2407.8 0.513 0.568
(1, 1) 2933.4 – 0.770 0.788

The mass spectrum and the mean radii of D mesons
obtained in the WKB approximation for potentials (9)
(masses are expressed in MeV and the mean radii are ex-
pressed in Fm).

Table 3

Lj (nr, k) Mtheor Mexp 〈r〉numer 〈r〉 (35)

S1/2 (0,−1) 2069.0 2072 0.416 0.359
(1,−1) 2737.4 – 0.646 0.628

P3/2 (0,−2) 2552.1 2559.2 (I) 2530.7 (II) 0.625 0.588
(1,−2) 3107.2 – – 0.814 0.795

P1/2 (0, 1) 2508.5 2423.8 (I) 2480.9 (II) 0.504 0.536
(1, 1) 3058.5 – – 0.739 0.756

The mass spectrum and the mean radii of Ds mesons obtained in the
WKB approximation for potentials (9) (masses are expressed in MeV and
the mean radii are expressed in Fm).

The agreement between the model and experiment is in the 3–5% range, except for the masses of states
P3/2 and P1/2 of the cs̄ system for which the mismatch depends on the interpretation of the Ds1(2536)±

meson and is 10% if we consider it to be the vector state JP = 1+ belonging to the doublet j = 3/2+

or 4% if we consider it to be the state JP = 1+ of the doublet j = 1/2+. There is a rather broad
spectrum of opinions concerning the identification of the states P3/2 and P1/2 of the meson with the quark
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content cs̄ (see, e.g., [34]–[44]). For example, the state JP = 2+ of a relatively narrow doublet j = 3/2+

is related to Ds2(2573), while the vector state JP = 1+ belonging to the doublet j = 3/2+ is generally
related to the isotopic singlet Ds1(2536)± meson with the mass 2535.35 ± 0.34 ± 0.5MeV (values (I) for
Mexp in Table 3) [34]–[37], [40]–[44]. On the other hand, the state Ds1(2536)± was associated with the
state JP = 1+ of the wide doublet j = 1/2+ in [38], [39] (values (II) in Table 3). Therefore, a reliable
experimental identification of this state is still lacking. We note that our calculations agree better with the
second possibility.

For bū and bs̄ systems, we obtained a good agreement of our results with the experimental data for
the ground state with j = 1/2− and for the p state with j = 3/2+ (see Tables 4 and 5). For states in the
doublet j = 1/2+, we have only theoretical predictions of other authors. For the bū system, our results
agree with the data obtained in [45], and a remarkable agreement with the results in [34], [35], [46] was
obtained for the bs̄ system.

Table 4

Lj (nr, k) Mtheor Mexp 〈r〉numer 〈r〉 (35)

S1/2 (0,−1) 5329.5 5313.5 0.516 0.448
(1,−1) 5832.2 – 0.728 0.708

P3/2 (0,−2) 5661.6 < 5698 0.711 0.666
(1,−2) 6078.4 – 0.888 0.865
(0, 1) 5652.4 5751.6 [34] 0.577 0.612

P1/2 5624 [45]
(1, 1) 6059.0 – 0.812 0.829

The mass spectrum and the mean radii of B mesons obtained
in the WKB approximation for potentials (9) (masses are
expressed in MeV and the mean radii are expressed in Fm).

Table 5

Lj (nr, k) Mtheor Mexp 〈r〉numer 〈r〉 (35)

S1/2 (0,−1) 5415.6 5404.8 0.457 0.404
(1,−1) 5931.2 – 0.688 0.671

P3/2 (0,−2) 5765.6 < 5853 0.656 0.619
(1,−2) 6186.8 – 0.845 0.826

5751.8 [34]
5753.3 [35]

P1/2 (0, 1) 5752.2 5700.5 [45] 0.547 0.575
5755.0 [46]
5790.3 [47]

(1, 1) 6166.8 – 0.779 0.795

The mass spectrum and the mean radii of Bs mesons ob-
tained in the WKB approximation for potentials (9) (masses
are expressed in MeV and the mean radii are expressed in
Fm).

In the leading approximation (in 1/mQ), the wave functions and excitation energies of the strange
quark in the field of a heavy c or b quark reproduce the corresponding characteristics of heavy–light mesons
with light u and d quarks with high accuracy. Therefore, up to an additive upward shift of masses on the
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value of the current mass of the strange quark

ms ≈ M [Ds] − M [D] ≈ M [Bs] − M [B] ≈ 0.1 GeV,

the level systems for Ds and Bs mesons coincides with the respective level systems for D and B mesons
if we do not take the level splitting depending on the spin of the heavy quark into account. Further, the
spin–orbital splitting of lower states of Ds and Bs mesons for the levels P3/2 and P1/2 is 35% larger than
that of the D and B mesons.

Not only the spectrum of bound systems, all other observable characteristics of heavy–light mesons
can be calculated in the framework of the semiclassical approach under consideration. For example, an
important meson characteristics is the mean radius 〈r〉, which determines the radius of the light quark
orbit in a definite state |nrk〉 in the case of hydrogen-like quark systems. We first obtain general formulas
expressing the means of type 〈rm〉 (i.e., the moments of the probability distribution density) in terms of
semiclassical asymptotic expressions for solutions of the Dirac equation. Using the standard procedure, we
obtain the known semiclassical formula

〈rm〉 =
∫ ∞

0

χ+rmχ dr =
∫ ∞

0

(
|F (r)|2 +

∣
∣G(r)

∣
∣2)rm dr ≈ 2

T

∫ r1

r0

E − V (r)
p(r)

rm dr, (34)

where the period T of radial oscillations of the classical relativistic particle is given by the formula T =
2

∫ r1

r0

(
E − V (r)

)
/p(r) dr [16].

All the integrals in (34) can be expressed in terms of complete elliptic integrals (A.1). In particular,
the mean radius of the bound state is

〈r〉 =
4
[
n1F (χ) + n2E(χ) + n3Π(ν, χ)

]

T
√

(a − c)(b − d)(1 − 2λ) |σ|
, (35)

where

T =
4
[
n4F (χ) + n5E(χ) + n6Π(ν, χ)

]

√
(a − c)(b − d)(1 − 2λ) |σ|

(36)

and the quantities ni (i = 1, . . . , 6) are defined in the appendix. The calculation results for 〈r〉, according
to formulas (35) and (36) for different states of D, Ds, B, and Bs mesons are presented in the last columns
in Tables 2–5. We see that the semiclassical approximation well describes the numerical simulation results
〈r〉numer and ensures an accuracy up to 3% (except the ground state). Calculations demonstrate that the
mean radius of the Qq̄ system increases monotonically as the energy increases.

In addition to the “exact” semiclassical formulas (35) and (36), it is desirable to find approximate
analytic expressions for the quantities 〈r〉 and T . We already addressed an analogous problem in the
preceding section when constructing asymptotic approximations for the quantization integrals.

If the condition σ/ξm̃2 � 1 is satisfied in the spectral domain Ẽ < m̃, then the only essential contri-
bution to the integral determining the mean radius 〈r〉 comes from the domain of the integration variable
r where the long-range potential v(r) can be considered a small perturbation. Neglecting this potential, we
obtain the expressions for the mean radius and the period in the zeroth approximation:

〈r〉 ≈ πẼ0

Tµ3
0

(
3ξ2m̃2

µ2
0

− k2

)
, T ≈ 2πξm̃2

µ3
0

. (37)

A more accurate expression (than (37)) for the mean radius can be obtained if we use the exact solutions of
Dirac system (1) in the Coulomb field in the integral

∫ ∞
0

(∣∣F (r)
∣
∣2 +

∣
∣G(r)

∣
∣2)r dr ≡ 〈r〉 [17]. The resulting
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expression for the mean radius of the hydrogen-like system becomes

〈r〉Coul =
Ẽ0

2ξm̃2

(
3ξ2m̃2

µ2
0

− k2 − km̃

Ẽ0

)
, (38)

and it coincides with (37) at large values of the radial quantum number nr.
This simple approximation ensures an amazingly good accuracy for deeply lying levels (but, of course,

not at E = 0). For example, for the first three terms 1S1/2, 1P1/2, and 2S1/2 of the b quark (mb =
4.88GeV), we obtain the respective values 〈r〉 = 0.153Fm, 0.501Fm, and 0.609Fm from (38), while the
exact calculation (the numerical solution of the Dirac equation with potentials (9) at ξ = 0.4, λ = 0.3,
V0 = −0.45GeV, and σ = 0.18GeV2) yields the respective values 〈r〉 = 0.153Fm, 0.493Fm, and 0.600Fm.
Our approximation therefore ensures a high accuracy in the case of heavy quarks.

Unfortunately, the domain of applicability of such an approximation is restricted by the condition
σ/ξm̃2 � 1. Because the problem of a size of a bound state of the Qq̄ system is important, we consider
it from the quantitative standpoint. We use the fact that the condition σγ/Ẽ2 � 1 is satisfied for all
typical values of the parameters ξ and σ of heavy–light quarks in the spectrum domain Ẽ > m̃ under
investigation. In this case, the light quark motion is mainly determined by the linear potential, and the
Coulomb interaction can be considered a perturbation. In some cases, the zeroth approximation suffices for
calculating 〈r〉 and T ,

〈r〉 ≈ 2
Tσ2(1 − 2λ)

{(
3λη1

2(1 − 2λ)
+ Ẽ

)√
Ẽ2 − m̃2 −

− 1√
1 − 2λ

[
Ẽη1 +

λ

2

(
3η2

1

1 − 2λ
+ Ẽ2 − m̃2

)]
arccos

η1

η2

}
, (39)

T ≈ 2
σ(1 − 2λ)

[
−λ

√
Ẽ2 − m̃2 + (1 − λ)ηη2

]
, (40)

where the quantity Ẽ is determined in (11), the quantities η1 and η2 are determined in (17), and the
quantity η is determined in (27). For example, for the first three terms 1S1/2, 1P1/2, and 2S1/2 of the B
meson (mb = 4.88GeV and mu = 0.33GeV), we obtain the respective quantities 〈r〉 = 0.381Fm, 0.576Fm,
and 0.681Fm in approximation (39), (40), and the calculation using “exact” formulas (35) and (36) (at
αs = 0.3, λ = 0.3, V0 = −0.45GeV, and σ = 0.18GeV2) yields the respective values 0.448Fm, 0.612Fm,
and 0.708Fm. This approximation therefore ensures an acceptable accuracy for calculating the mean radii
of the Qq̄ mesons.

Appendix

We consider the quantization integral J1. We rewrite the expression for J1 in (14) as the sum of
integrals

J1 = −|σ|
√

1 − 2λ (l�−1 + h�0 + g�1 + f�2 + �3), �n =
∫ a

b

rn

R(r)
dr,

where the quantities f , g, h, and l are determined in (10) and the quantity R(r) is determined in (13).
After the standard change of the integration variable [24]

r =
b(a − c) − c(a − b) sin2 ϕ

a − c − (a − b) sin2 ϕ
,
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the integrals �n are expressed in terms of the complete elliptic integrals of the first, second, and third kind,
which are written in the conventional notation [25] as

F (χ) =
∫ π/2

0

dϕ

∆
, E(χ) =

∫ π/2

0

∆ dϕ, Π(ν, χ) =
∫ π/2

0

dϕ

(1 − ν sin2 ϕ)∆
, (A.1)

∆ =
√

1 − χ2 sin2 ϕ , ν =
a − b

a − c
, χ =

√

ν
(c − d)
(b − d)

.

We thus obtain the representations for �−1, . . . ,�3:

�−1 =
∫ a

b

dr

rR
=

2
√

(a − c)(b − d)bc

[
bF (χ) − (b − c)Π

(
c

b
ν, χ

)]
, (A.2)

�0 =
∫ a

b

dr

R
=

2
√

(a − c)(b − d)
F (χ), (A.3)

�1 =
∫ a

b

r dr

R
=

2
√

(a − c)(b − d)

[
cF (χ) + (b − c)Π(ν, χ)

]
, (A.4)

�2 =
∫ a

b

r2 dr

R
=

2
√

(a − c)(b − d)

[
c2F (χ) + c(b − c)Π(ν, χ) +

+ (b − c)2T2

(
π

2
, ν, χ

)]
, (A.5)

�3 =
∫ a

b

r3 dr

R
=

2
√

(a − c)(b − d)

[
c3F (χ) + 3c2(b − c)Π(ν, χ) +

+ 3c(b − c)2T2

(
π

2
, ν, χ

)
+ (b − c)3T3

(
π

2
, ν, χ

)]
. (A.6)

The integrals of the form

Tn(ϕ, ν, χ) =
∫ ϕ

0

dϕ

(1 − ν sin2 ϕ)n∆

are calculated using the recurrence relation

Tn−3 =
1

(2n − 5)χ2

{
−ν2∆ sin ϕ cosϕ

(1 − ν sin2 ϕ)n−1
+ 2(n − 2)

[
3χ2 − ν(1 + χ2)

]
Tn−2 −

− (2n − 3)
[
χ2(3 − 2ν) + ν(ν − 2)

]
Tn−1 + 2(n − 1)(χ2 − ν)(1 − ν)Tn

}
.

We analogously find the integrals in the expression for J2 in (14):

∫ a

b

dr

(r − λ±)R
=

2
√

(a − c)(b − d) (b − λ±)(λ± − c)
×

×
[
(λ± − b)F (χ) − (b − c)Π

(
(λ± − c)
(λ± − b)

ν, χ

)]
. (A.7)
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After expressions (A.2)–(A.7) are substituted in integrals (14), quantization condition (3) becomes
transcendental equation (15), where

ν± =
λ± − c

λ± − b
ν, � = (1 − ν)(χ2 − ν), ℵ = χ2(3 − 2ν) + ν(ν − 2),

N1 =
χ2(b − c)

4
− 3ℵ(b − c)

8(1 − ν)
− (χ2 − ν)

2
(f + 3c) +

+
�

(b − c)2

(
c3 + c2f + cg + h +

l

c

)
,

N2 = −ν

2

[
f + 3c +

3
4

(b − c)ℵ
�

]
,

N3 =
1
2

[
3
4

(b − c)ℵ2

� +
2�

(b − c)
(3c2 + 2cf + g) + (b − c)

(
(1 + χ2)ν − 3χ2

)
+

+ ℵ(f + 3c)
]
, N4 = − �

(b − c)
l

bc
,

N5 =
[
(b − λ+)(λ+ − c)

]−1
, N6 =

[
(b − λ−)(λ− − c)

]−1
,

N7 =
2

(λ+ − c)(λ− − c)

(
c +

Ẽ + m̃

2(1 − 2λ)σ

)
.

We analogously find the integrals appearing when calculating the mean radii by formula (34). We
present the quantities ni (i = 1, . . . , 6) in formulas (35) and (36):

n1 = Ẽ

(
c2 − (b − c)2

2(1 − ν)

)
− λσ

(
c3 − 3c(b − c)2

2(1 − ν)
+

+
(b − c)3

4�

(
χ2 − 3ℵ

2(1 − ν)

))
+ ξc,

n2 = −ν(b − c)2

2�

[
Ẽ − 3λσ

(
c +

(b − c)ℵ
4�

)]
,

n3 = (b − c)
[
Ẽ

(
2c +

(b − c)ℵ
2�

)
− λσ

(
3c2 +

(b − c)ℵ
2� ×

×
(

3c −
(b − c)

(
3χ2 − ν(1 + χ2)

)

ℵ +
3(b − c)ℵ

4�

))
+ ξ

]
,

n4 = cẼ − λσ

(
c2 − (b − c)2

2(1 − ν)

)
+ ξ,

n5 =
λσν(b − c)2

2� , n6 = (b − c)
[
Ẽ − λσ

(
2c +

(b − c)ℵ
2�

)]
.
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