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THE QUANTUM ELECTRODYNAMIC PROBLEM OF TWO

ELECTRONS

V. Yu. Lazur,∗ S. I. Migalina,∗ and A. K. Reitii∗

We solve the problem of the interaction of two quasimolecular electrons at an arbitrary distance from each

other, i.e., near different atoms (nuclei). We regard the interaction as a second-order effect of the quantum

electrodynamic perturbation theory in the coordinate representation. Taking the natural condition of the

symmetry of the retardation factor, the electron spins, and the effects of retardation of the relativistic

interaction of the two quasimolecular electrons located near different nuclei into account consistently,

we obtain additional terms in the interelectron interaction operator compared with the standard Breit

operator.
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molecular electron

1. Introduction

Almost all two-electron processes with redistribution (two-electron recharging, recharging with simul-
taneous excitation or ionization, etc.), which accompany nonelastic collisions of multicharged ions with
atoms, are necessarily related to the correlated electron transitions from the field of one atom remnant
(or a bare nucleus) to the field of another. The leading contribution to the probability of such transitions
comes from the configuration in which two active electrons of the target atom move to different nuclei,
and the free-electron approximation holds for the zeroth approximation (see, e.g., [1] and the references
therein). At low collision energies, quasiresonance processes with redistribution are characterized by cross
sections that are large compared with the atomic radius and are therefore determined mainly by transitions
at large internuclear distances R, which allows constructing a logically closed asymptotic theory of such
processes (see [2]; see [1], [3], [4] for examples of more recent developments in this direction). Extending
the asymptotic theory of processes with redistribution to the domain of relativistic coupling energies results
in the need to consistently account for the correlation between two electrons localized near different nuclei
located at large distances from each other compared with the characteristic wavelengths λ0 in the spectrum
of the interacting atoms. This domain of large interelectron distances r12 = |�r1 − �r2|, where �r1 and �r2 are
the electron radius vectors, determines the probabilities of two-electron processes with redistribution in the
asymptotic limit as r12 ∼ R → ∞; in what follows, we call the domain r12 ∼ R > λ0 the domain of far
electron correlations.

Analyzing autoionization states of heavy multicharged quasimolecules with two excited electrons shows
that the main correlation effect corresponds to configurations in which electrons are located far from each
other, i.e., near different atoms [4], [5]. For studying the spectroscopy of autoionization states of such quasi-
molecules, realistic calculations must be based on a totally relativistic theory. In contrast to autoionization
states of atomic systems, different physical aspects requiring a detailed study of rather general problems of
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the role of magnetic interactions and retardation effects in processes of the Auger ionization of atoms by
slow highly charged ions prevail here.

But the formulation of the two-particle problem in relativistic quantum theory immediately encounters
principal mathematical and logical obstacles. It can be reasonably said that a satisfactory relativistic theory
of two-particle systems is still lacking. A direct generalization of the Dirac equation to two-electron systems
is impossible because of the absence of a local Lorentz-invariant operator that takes the relativistic character
of interelectron interaction (the retardation effects) into account.

Skipping a detailed discussion of the poorly investigated problem of relativistic two-particle interactions,
we only note that a total relativistic Hamiltonian of a system could be given in the form of a series expansion
in α2 (where α is the fine structure constant). As early as 1929, Breit demonstrated [6] that such an
expansion up to the first correction term provides a good approximation for the relativistic interaction
between two electrons under the assumption that retardation effects in the spectrum of a helium-like atom
are small. Breit obtained a relativistic operator of the interelectron interaction [6], [7]:

V (�r12) = VC(r12) + VB(�r12) =
e2

r12
− e2

2r12

[
�α1�α2 +

(�α1�r12)(�α2�r12)
r2
12

]
. (1)

Here, �α1 and �α2 are the commuting sets of Dirac matrices, �r12 = �r1 − �r2, and the subscripts 1 and 2
distinguish quantities related to the first and second electrons. The first term in (1) describes the electron
electrostatic interaction, and the remaining Breit part VB(�r12) takes the magnetic spin–spin interactions
and retardation corrections due to the finite speed of the interaction propagation into account. Using
quantum electrodynamics terminology, we can say that the retarded interaction is due to the exchange of
virtual transversal photons between the electrons and the Coulomb interaction is due to the exchange by
“longitudinal” and “scalar” photons [7].

But we must remember that Breit operator (1) ensures a good approximation describing the retarded
interaction only while the interelectron distance r12 is small compared with λ0 = 2πc/ω0, where ω0 is
the characteristic frequency in the spectrum of interacting electrons. This approximation fails in two-
electron processes related to collisions of slow atoms because large interelectron distances r12, in contrast,
are essential in this case. Interest in the problem of two electrons belonging to two different neutral atoms
located at an arbitrary distance from each other was therefore renewed at the beginning of the 1970s in
relation to the intensive study of multiatomic systems in a radiation field. The decisive leap toward solving
this problem was performed in [8]–[10], where the problem of the interaction of two electrons belonging to
two different hydrogen-like atoms was studied by quantum electrodynamic methods in the general setting
without imposing any restriction on the interatom distances. As a result, the generalized Breit operator of
the interaction of two electrons via the field of virtual photons was obtained in [9], [10] as a second-order
effect in the quantum electrodynamic perturbation theory. But a consistent treatment of relativistic effects
was lacking in those papers. This can be seen, for instance, because the interaction operator constructed
in [10] is nonsymmetric with respect to the pair of interacting particles. To take the effects of retardation
of electron interaction completely into account, the natural condition of the symmetry of the “retardation
factor” with respect to the interacting particles must be ensured. Here, we show that this results in the
appearance of a new (“retarded”) term in the relativistic two-electron interaction operator compared with
the corresponding operator in [10].

Our studies are based on work by Gadomskii and collaborators [10], [11], who during last three decades
extensively studied the problem of two-electron interaction in the third-order approximation in quantum
electrodynamics, which includes the process of emitting (or absorbing) a real photon. This approach is
important for the general setting of the problem and for solving several principal problems in classical,
nonlinear, and quantum optics. In particular, it describes polarizing fields in a system of two hydrogen-
like atoms in terms of which nonlocal equations for propagation of photons and electromagnetic waves in
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Fig. 1

various media were constructed depending on the types of quantum transitions and intermediate states in
the spectra of interacting atoms. A certain completion of this circle of questions was found in [12].

The paper is organized as follows. In Sec. 2, we set the problem of the interaction of two quasimolecular
electrons via the virtual photon field based on second-order effects in quantum electrodynamics. In Sec. 3,
we derive the relativistic operator of interaction between two electrons located at an arbitrary distance
from each other. A consistent accounting for the natural symmetry condition for the retardation factor
with respect to the interacting particles results in an additional contribution to the relativistic two-electron
interaction operator (32) compared with the generalized Breit operator in [10] (see formula (33)).

2. Effective energy of interaction of two electrons located at an
arbitrary distance from each other

We regard the interaction of two electrons in an external electrostatic field as a second-order effect in
quantum electrodynamics described by the Feynman diagram depicted in Fig. 1. The corresponding matrix
element of the second-order scattering operator S(2) can be written in the form [13], [14]

S
(2)
i→f ≡ 〈f |S(2)|i〉 = −i

∫
d4x

∫
d4y j

(2)µ
fi (y)DF(y − x)j(1)

fiµ(x), (2)

where DF is the photon propagator and the transition current densities j
(1)
fiµ(x) and j

(2)µ
fi (y) are

j
(1)
fiµ(x) = eΨ

(1)

f (x)γ(1)
µ Ψ(1)

i (x), j
(2)µ
fi (y) = eΨ

(2)

f (y)γ(2)µΨ(2)
i (y). (3)

Here, e = −|e| is the electron charge, γµ are the Dirac matrices in the covariant representation, µ = 0, 1, 2, 3,
Ψ(n)

i and Ψ(n)
f are the wave functions of the respective initial and final states of the nth electron, n = 1, 2,

Ψ
(n)

f = Ψ(n)+
f γ0 is the Dirac-adjoint bispinor and Ψ(n)+

f is the Hermitian-adjoint bispinor. Everywhere
below unless specifically indicated, we use the relativistic units � = c = 1, the notation xµ = (t1, �r1) and
yµ = (t2, �r2) for the radius four-vectors and d4x = d3xdt1 and d4y = d3y dt2 for the four-volume elements.
The superscripts (1) and (2) distinguish quantities related to different electrons. The subscripts i and f

denote quantities pertaining to the initial and final states of the interacting electrons. In expressions (2)
and (3), we use the representation for the Dirac matrices

�α =

(
0 �σ

�σ 0

)
, β =

(
I 0

0 −I

)
,

where the matrix γ0 = β is diagonal, the relations γj = βαj , j = 1, 2, 3, are satisfied, �σ are the known Pauli
matrices, and I is the 2×2 unit matrix.
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External electron legs of the diagram correspond to wave functions of stationary states,

Ψ(1)
i,f (x) = Ψ(1)

i,f (�r1)e−iE
(1)
i,f t1 , Ψ(2)

i,f (y) = Ψ(2)
i,f (�r2)e−iE

(2)
i,f t2 . (4)

The quantities E
(1)
i and E

(1)
f and E

(2)
i and E

(2)
f are the initial and final energies of the first and second

electrons. Taking formulas (4) into account, we segregate the explicit time dependence of the transition
currents,

j
(1)
fiµ(x) = j

(1)
fiµ(�r1)eiω

(1)
fi t1 , j

(2)µ
fi (x) = j

(2)µ
fi (�r2)eiω

(2)
fi t2 , (5)

where the transition frequency is ω
(n)
fi = E

(n)
f − E

(n)
i , n = 1, 2.

We set the propagator

DF(y − x) =
∫

d4k

(2π)4

(
−4πe−ik(y−x)

k2 + iε

)
(6)

into correspondence with the internal photon line of the diagram. Here, k = (ω,�k), �k and ω are the respective
wave vector and frequency of the quantum, and the infinitesimal imaginary addition in the denominator
fixes the rules for bypassing poles in the complex plane. Substituting (5) and (6) in formula (2), we obtain
the representation for the S-matrix:

S
(2)
i→f = −i

∫
d4x

∫
d4y

∫
d4k

(2π)4
j
(2)µ
fi (�r2)eiω

(2)
fi t2

(
−4πe−ik(y−x)

k2 + iε

)
j
(1)
fiµ(�r1)eiω

(1)
fi t1 . (7)

After integration over the time t2, formula (7) becomes

S
(2)
i→f = 4πi

∫
d3x

∫
d3y

∫
dt1

∫
dω δ(ω − ω

(2)
fi )ei(ω

(1)
fi +ω)t1 ×

× j
(2)µ
fi (�r2)j

(1)
fiµ(�r1)

∫
d3k

(2π)3
e−i�k�r12

ω2 − �k2 + iε
. (8)

Then integrating over d3k (using the rules for bypassing poles at the points k = ±(ω+ iε′ sgn ω)), we obtain
the representation

S
(2)
i→f = − i

∫
d3x

∫
d3y

∫
dt1

∫
dω δ(ω − ω

(2)
fi ) ×

× ei(ω
(1)
fi +ω)t1j

(2)µ
fi (�r2)

ei|ω|r12

r12
j
(1)
fiµ(�r1). (9)

After integration over the time t1 and the frequencies of virtual photons ω, the last expression becomes

S
(2)
i→f = −2πiδ(ω(1)

fi + ω
(2)
fi )

∫
d3x

∫
d3y j

(2)µ
fi (�r2)

ei|ω(2)
fi |r12

r12
j
(1)
fiµ(�r1). (10)

We now pass from the scattering matrix S
(2)
i→f to the matrix U

(2)
i→f of the effective interaction energy

of the system of two charges determined by the equality

S
(2)
i→f = −2πiU

(2)
i→fδ(E(1)

f − E
(1)
i + E

(2)
f − E

(2)
i ). (11)

Segregating the one-dimensional δ-function of the difference between the total electron energies in the initial
and final states into a factor expresses the energy conservation law,

E
(1)
f + E

(2)
f = E

(1)
i + E

(2)
i , (12)
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which manifests the symmetry under the continuous time-shift operation. Because of conservation law (12),
we conventionally write |ω(1)

fi | and |ω(2)
fi | in the simplified form |ωfi| (implying |ωfi| = |ω(1)

fi | = |ω(2)
fi |). Then

by (10) and (11), the matrix of the effective energy of interaction between two electrons is

U
(2)
i→f =

∫
d3x

∫
d3y j

(2)µ
fi (�r2)

ei|ωfi|r12

r12
j
(1)
fiµ(�r1). (13)

All the formulas in this section pertain to matrix element (2). To obtain the complete expression for
S

(2)
i→f , the corresponding exchange matrix element expressing the indistinguishability of electrons must be

added to matrix element (2).

3. The long-range interaction-type generalized Breit operator

Using definitions (3)–(5), we express the interaction currents in terms of wave functions in formula (13)
for the matrix element of the effective interaction energy,

U
(2)
i→f = e2

∫
d3x

∫
d3y Ψ(2)+

f (�r2)Ψ
(1)+
f (�r1)

1 − �α1�α2

r12
ei|ωfi|r12Ψ(2)

i (�r2)Ψ
(1)
i (�r1), (14)

where �α1 and �α2 are the Dirac matrices acting on different one-electron wave functions: �α1 acts on Ψ(1)
i (�r1)

and �α2 acts on Ψ(2)
i (�r2). Because the “retardation factor” ei|ωfi|r12 , which depends explicitly on the ini-

tial and final energies of the system, enters this expression, in the general case, we cannot introduce a
Hamiltonian of interaction between two electrons, i.e., an operator V for which the relation

U
(2)
i→f = 〈f |V |i〉 =

∫
d3x

∫
d3y Ψ(2)+

f (�r2)Ψ
(1)+
f (�r1)V Ψ(2)

i (�r2)Ψ
(1)
i (�r1) (15)

is satisfied. Here, we assume that the operator of the effective potential energy V is a 16-component matrix
in the spinor indices.

But in the approximation of low velocities (v/c � 1, where v is the speed of electrons in the atom and
c is the speed of light in the vacuum), we can construct such an operator. Indeed, for atomic electrons, we
have |ωfi| ∼ m(αZeff)2 in our units, where Zeff is the effective nucleus charge action, which is equivalent
to the action on a given electron of a nucleus screened by all the other electrons in the atom. We take into
account that the characteristic interelectron distance in an atom is r12 ∼ (mαZeff)−1. Hence, the exponent
|ωfi|r12 in (14) is of the order of αZeff . In fact, for all the atomic electrons including the internal ones, the
ratio v/c, being of the order of αZeff , is much smaller than unity, and we can therefore take the retardation
and all other relativistic effects into account approximately by dropping terms of the order v3/c3 and
higher in the v/c-expansion of matrix element (14). This approximation results in the known expression (1)
for the Breit operator [6], [7], which now depends not only on the relative position �r12 = �r1 − �r2 of the
pair of electrons but also on their spins. We claim that this expression well approximates the relativistic
electron interaction only in the intra-atomic domain but becomes invalid in the domain of large interelectron
distances (r12 � λ0 = 2πc/ω0). In this domain, which we call the domain of far electron correlations,
retardation effects become more significant for the interelectron interaction.

We now consider a two-electron atom (or ion) A(Za−2)+ and the bare nucleus BZb+ with empty shells
located at an arbitrary distance R from the atom. Here, Za and Zb are the charges of the atomic nuclei
AZa+ and BZb+, which we assume to be stable in the proposed two-center model. Let �rna and �rnb be the
radius vectors of the nth electron with respect to the respective nuclei AZa+ and BZb+, n = 1, 2. We now
assume that one of the electrons of the atom A(Za−2)+, for instance, the first electron tunnels to the closest
proximity of the foreign nucleus BZb+, while the second electron remains near its host nucleus AZa+. If the
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domains of spatial localizations of the electrons near the different nuclei (the first electron near BZb+ and
the second electron near AZa+) are sufficiently small (of the order of the atom size) and are well separated,
then with the condition ∆r < R < ∞ satisfied, we can expand the distance r12 between the electrons in a
power series in the ratio ∆r/R,

r12 = |�r1 − �r2| = R

(
1 +

�R∆�r

R2
+

M1

R

)
. (16)

Here, ∆�r = �r1b−�r2a, ∆r = |∆�r |, �r1b and �r2a are the radius vectors of the first and the second electron with
respect to the corresponding nuclei, and M1 = M1(∆�r, �R) are small corrections containing higher powers
of the ratio ∆r/R.

From the matrix of effective interaction energy (14), we segregate the factor

K(�r1, �r2; ωfi) =
ei|ωfi|r12/c

r12
, (17)

which is responsible for the virtual photon exchange between the two electrons. Here and hereafter, we use
the system of units in which c �= 1. It was previously assumed in [6], [7] when constructing the retardation
factor that the only small parameter is the quantity ω0r12/c � 1 (or formally 1/c). The expansion of
the factor K(�r1, �r2; ωfi) thus obtained obviously holds while the interelectron distance r12 remains small
compared with the characteristic wavelengths λ0 = 2πc/ω0 in the spectrum of the interacting electrons. In
what follows, we construct an asymptotic expansion for the factor K treating 1/c and ∆r/R simultaneously
as natural small parameters. Such a selection of small parameters corresponds to the limit of noninteracting
atoms (R → ∞) [1]–[3], and this limit is realized in the two-center model, for instance, when electrons are
located far from each other near different atoms (nuclei).

As in [10], we transform the retardation factor in (17) to the form

K(�r1, �r2; ωfi) = ei|ωfi|R/c ei|ωfi|(r12−R)/c

r12
. (18)

For electrons pertaining to different atoms, this transformation is convenient because it segregates the
relativistic factor ei|ωfi|R/c of amplifying the effects of retardation of the interaction of charged particles at
large mutual distances (r12 ∼ R � λ0). Because the difference r12−R of relative distances between electrons
r12 and nuclei R in the exponent of one of the rapidly oscillating exponential functions in retardation
factor (18), the quantity K(�r1, �r2; ωfi) must be expanded not only in powers of 1/c but also in powers of
the small parameter ∆r/R. In what follows, we set

|ωfi|
c

∆r

R
� 1. (19)

With this condition satisfied, the exponent |ωfi|(r12 − R)/c in the right-hand side of (18) is a small
quantity, and we can therefore expand the factor K in a power series in small parameter (19) and keep only
the first three expansion terms,

K(�r1, �r2; ωfi) = ei|ωfi|R/c

{
f0(r12) +

i

c
|ωfi|f1(r12) −

ω2
fi

2c2
f2(r12)

}
. (20)

The coefficients
f0(r12) =

1
g0(r12)

=
1

r12
,

f1(r12) =
g1(r12)
g0(r12)

=
r12 − R

r12
,

f2(r12) =
g2(r12)
g0(r12)

=
(r12 − R)2

r12

(21)
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of expansion (20) are in turn power series in ∆r/R, which can be written directly using asymptotic repre-
sentations of the functions g0, g1, and g2 at small values of the parameter ∆r/R:

g0(∆�r, �R) = R

[
1 +

�R �∆r

R2
+

M1

R

]
,

g1(∆�r, �R) =
�R �∆r

R
+ M1, g2(∆�r, �R) =

[ �R �∆r

R
+ M1

]2

.

The obtained expansion (20) holds in the entire domain of the internucleus distance ∆r ≤ R < ∞ of
practical interest.

We eliminate frequencies from (20) using the Dirac equation

Ĥ(n)(�rn)Ψ(n)
i (�rn) = E

(n)
i Ψ(n)

i (�rn), Ĥ(n)(�rn)Ψ(n)
f (�rn) = E

(n)
f Ψ(n)

f (�rn). (22)

Here, the index n takes the values 1 and 2, and the one-electron relativistic Hamiltonian Ĥ(n)(�rn) acts in
the space of Dirac wave functions Ψ(n)

i,f (�rn) of the electron with the number n.
In formula (20), the expansion of the factor K has no symmetry under interchanging the interacting

particles. To obtain the required symmetry in the last two terms of expansion (20), we use the relation
ω

(1)
fi = −ω

(2)
fi , which expresses energy conservation law (12). Having the two possibilities E

(1)
f > E

(1)
i or

E
(1)
f < E

(1)
i , we consider the two cases ω

(1)
fi > 0 and ω

(1)
fi < 0 separately. If E

(1)
f > E

(1)
i or E

(1)
f < E

(1)
i ,

then respectively ω
(1)
fi = −ω

(2)
fi > 0 or ω

(1)
fi = −ω

(2)
fi < 0 and |ω(1)

fi | = ω
(1)
fi or |ω(1)

fi | = −ω
(1)
fi . Using these

relations, we transform the second term in (20) to the symmetric form:

|ωfi|f1(r12) = |ω(1)
fi |f1(r12) = ±ω

(1)
fi f1(r12) = ±1

2
[E(1)

f − E
(1)
i + E

(2)
i − E

(2)
f ]f1(r12). (23)

The plus sign in (23) corresponds to the case E
(1)
f > E

(1)
i (ω(1)

fi > 0), and the minus sign corresponds

to the case E
(1)
f < E

(1)
i (ω(1)

fi < 0). When symmetrizing the quantity |ωfi|f1, we could start with the

equality |ωfi|f1 = |ω(2)
fi |f1 instead of the equality |ωfi|f1 = |ω(1)

fi |f1. It is easy to see that the representation
for |ωfi|f1 thus obtained is equivalent to representation (23). Because we multiply expression (20) by
Ψ(2)

i (�r2)Ψ
(1)
i (�r1) from the right and by Ψ(2)+

f (�r2)Ψ
(1)+
f (�r1) from the left and subsequently integrate over �r1

and �r2, we can replace the energies E
(1)
i and E

(2)
i in (23) with the operators Ĥ(1) and Ĥ(2) to the right of

the factor f1(r12) and replace the energies E
(1)
f and E

(2)
f with the operators Ĥ(1) and Ĥ(2) to the left of

the factor f1(r12),

|ωfi|f1(r12) → ±1
2
{Ĥ(1)f1(r12) − f1(r12)Ĥ(1) + f1(r12)Ĥ(2) − Ĥ(2)f1(r12)} =

= ±1
2
{[Ĥ(1), f1(r12)] + [f1(r12), Ĥ(2)]}. (24)

Here and hereafter, the square brackets denote the commutators of the corresponding quantities.
Similarly (using the relation ω

(1)
fi = −ω

(2)
fi ), we eliminate frequencies from the third term in expan-

sion (20):

−ω2
fif2(r12) = (E(1)

f − E
(1)
i )(E(2)

f − E
(2)
i )f2(r12) →

→ f2(r12)Ĥ(1)Ĥ(2) − Ĥ(1)f2(r12)Ĥ(2) − Ĥ(2)f2(r12)Ĥ(1) + Ĥ(1)Ĥ(2)f2(r12) =

=
[
Ĥ(1), [Ĥ(2), f2(r12)]

]
. (25)
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Substituting operator expressions (24) and (25) in the right-hand side of (20), we obtain the transformation
of the factor K:

K(�r1, �r2; ωfi) → ei|ωfi|R/c

{
f0(r12)±

i

2c

(
[Ĥ(1), f1(r12)]+ [f1(r12), Ĥ(2)]

)
+

1
2c2

[
Ĥ(1), [Ĥ(2), f2(r12)]

]}
, (26)

where |ωfi| = |ω(1)
fi | = |ω(2)

fi | and the functions f0, f1, and f2 are still given by equalities (21).
Double expansion (20) therefore gives K-factor (17) in powers of 1/c and ∆r/R. In the expansion

in 1/c, we then retain only the first three terms, imposing no restrictions on the expansion in the small
parameter ∆r/R; the function M1 contains all higher correction terms. In what follows, we therefore take
interactions of two quasimolecular electrons of arbitrary multipolarity into account.

The motion of separate electrons in a two-center system A(Za−2)+ + BZb+ is described by the Dirac
one-electron Hamiltonian for the problem of two Coulomb centers at the distance R from each other,

Ĥ(n) = c�αn�̂pn + βnmc2 + V (�rn), n = 1, 2, (27)

where

V (�rn) = −
(

Zae2

rna
+

Zbe
2

rnb

)
, rna,nb =

∣∣∣∣�rn ±
�R

2

∣∣∣∣. (28)

Here and hereafter, � �= 1, �̂pn = −i��∇n is the momentum operator, �∇n is the three-dimensional gradient
with respect to the coordinates �rn of the electron with the number n, and the index n on the matrices �αn

and βn indicates that these matrices act on the function Ψ(n)
i (�rn). We can obviously introduce other terms

into Hamiltonian (27), for instance, taking a finite size and the spin of the nucleus, screening of the nucleus
field by the electron shell of the atomic core, etc., into account.

We calculate the commutators in (26). We first note that the only term in Ĥ(n) that does not commute
with f1(r12) and f2(r12) is c�αn�̂pn. When substituting the operators Ĥ(1) and Ĥ(2) given by expression (27)
in the commutator in (26), we can therefore disregard all terms not containing the matrices �αn,

[Ĥ(1), f1] = c[�α1�̂p1, f1], [f1, Ĥ
(2)] = c[f1, �α2�̂p2],

[
Ĥ(1), [Ĥ(2), f2]

]
= c2

[
�α1�̂p1, [�α2�̂p2, f2]

]
.

(29)

Using these relations together with the obvious auxiliary formula

[�αn�̂pn, f1,2] = −i�(�αn
�∇n)f1,2,

we easily find that the contributions of the second and third terms in expansion (26) are determined by the
operator equalities

± i

2c
([Ĥ(1), f1] + [f1, Ĥ

(2)]) = ±�R
�α1�n + �α2�n

2r2
1,2

, (30)

1
2c2

[
Ĥ(1), [Ĥ(2), f2]

]
= −�

2

2
(�α1

�∇1)(�α2
�∇2)r12 −

�
2R2

2
(�α1

�∇1)(�α2
�∇2)

1
r12

, (31)

where �n = (�r1 −�r2)/|�r1 −�r2|. The quantity 〈f |V |i〉 can therefore indeed be represented in form (15), where
the operator V describing the virtual photon exchange between particles is (here again � = 1)

V (±)(�r1, �r2; R) = e2 · exp
(

i|ωfi|R
c

){
1

r12
− �α1�α2 + (�α1�n)(�α2�n)

2r12
±

± R
�α1�n + �α2�n

2r2
12

− R2 �α1�α2 − 3(�α1�n)(�α2�n)
2r3

12

}
. (32)
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In this equality, the plus sign of the term containing the factor R corresponds to the case E
(1)
f > E

(1)
i ,

and the minus sign corresponds to the case E
(1)
f < E

(1)
i . We calculate matrix element (15) of this operator

with the four-component wave functions Ψ(n)
i (�rn) and Ψ(n)

f (�rn). The first term in (32) is the energy of
the instant (Coulomb) interaction between electrons, and the remaining terms take corrections due to the
retardation of relativistic interaction and due to the presence of electron spins into account.

In the limit of a unified atom (R → 0), operator (32) becomes relativistic Breit operator (1) of the
interaction of two atomic electrons in helium-like systems. We can therefore consider operator (32) a direct
generalization of the Breit operator [6], [7] to the domain of arbitrarily large interelectron distances, where
the relativistic nature of the interaction of moving charges is manifested most clearly. Such a generalization is
nontrivial because expression (32) (in contrast to Breit expression (1)) contains retarded terms proportional
to R and R2. This additional contribution to V (±) is essentially relativistic and appears because of the
additional retardation of the relativistic interaction between two electrons located at an arbitrarily large
distance compared with λ0 = 2πc/ω0.

Because we generalize the Breit operator here, we can call expression (32) the generalized Breit operator
of long-range type (to stress the possibility of using it to solve two-electron problems in the physics of slow
atomic collisions [1]–[3], in the theory of quasimolecular Auger spectroscopy [4], [5], and in several important
problems in nonlinear and quantum optics [8]–[12]).

To analyze the symmetry properties of operator (32), we introduce the notation P12 for the operator
of permutation of the pair of interacting particles 1 and 2. Acting with the operator P12 on V (±)(�r1, �r2; R),
we obtain

P12V
(±)(�r1, �r2; R) = V (∓)(�r1, �r2; R).

We here take into account that �α1�n and �α2�n change their sign when particles 1 and 2 are interchanged,
and their product is therefore unchanged. But the third term in (32) is not symmetric: it is antisymmetric
under interchanging the particles. We also stress that the obtained expression for operator (32) is explicitly
symmetric with respect to the interacting particles. This is not surprising, because we symmetrize each
separate term of expansion (20) by formulas (23)–(25) and the functions f0, f1, and f2 in the right-hand
side of (26) depend only on the distance between the particles. Therefore, the symmetry of formula (21)
under interchanging the vectors �r1 � �r2 is obvious.

In [9]–[12], which initiated the contemporary studies of the two-electron problem, the result

Û (2)(�r1, �r2; R) = e2 · exp
(

i|ωfi|R
c

){
1

r12
− �α1�α2 + (�α1�n)(�α2�n)

2r12
+

+ R
�α2�n

r2
12

− R2 �α1�α2 − 3(�α1�n)(�α2�n)
2r3

12

}
(33)

was obtained for the relativistic operator of two-electron interaction. A principal drawback of this operator
is the absence of symmetry in the description of the pair of interacting particles. As mentioned above, in our
construction of operator (32), we obtain the equality in the particle description by the proper symmetrization
of the last two terms in the expansion of retardation factor (26). As a result, final expression (32) for the
operator V (±)(�r1, �r2; R), in addition to the terms represented in (33), contains the new term ±R(�α1�n)/2r2

12,
which is due to the additional retardation in the electron interaction. This was lacking in [9]–[12] and
resulted in the incorrect result (33) for the operator of the relativistic interaction of two electrons.

4. Conclusion

We have used the quantum electrodynamic approach to solve the problem of the interaction of two
quasimolecular electrons located at an arbitrary distance from each other near different atoms (nuclei). We
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regarded the interaction as a second-order effect in the quantum electrodynamic perturbation theory with
the Feynman diagram in Fig. 1. We now indicate the main properties of this interaction.

We have two domains of the configuration space where the generalized Breit operator V (±)(�r1, �r2; R)
behaves differently when the distance r12 between the two electrons changes. For instance, as R → 0,
formula (32) for V (±)(�r1, �r2; R) becomes limit expression (1), which correctly describes the retardation
effects of the relativistic interaction only at a small interparticle distance r12. In particular, the applicability
domain for Breit formula (1) is restricted by the condition on the coordinate variables

ω0r12

c
� 1, (34)

where ω0 is the characteristic frequency of the spectrum of the interacting electrons. We let ΩI denote the
corresponding domain in the configuration space, which we call the domain of close electron correlations.
But in the domain ΩII, where the electrons belong to different nuclei and condition (19) is satisfied for all
∆r ≤ R < ∞, Breit operator (1) fails to describe the relativistic interaction of two electrons even on the
qualitative level. At the same time, the relativistic operator V (±)(�r1, �r2; R), constructed here and called
the generalized Breit operator of the long-range interaction type, allows describing the retarded interaction
of two electrons uniformly in the domain ΩI of close electron correlations and in the domain ΩII of far
electron correlations. This operator can therefore be used to solve many two-electron problems in atomic
and molecular spectroscopy, astrophysics, the theory of slow atomic collisions, etc.

For each domain of distances r12, we have the corresponding time scale of interaction transfer and
the corresponding calculation approximations in which we segregate small parameters and take different
types of interaction into account. We thus again confirm that we can use the generalized Breit operator
V (±)(�r1, �r2; R) to solve multielectron two-center problems and that the quantum electrodynamic pattern of
two-electron interaction based on standard Breit operator (1) is incomplete.

As shown in the preceding section, in the derivation of Breit operator (1), the standard assumption
is [7] that the only small parameter in which the retardation factor must be expanded is quantity (34). This
means that in addition to the characteristic (mean) transition time T0 = 2π/ω0, we also use the unified time
scale TT = r12/c corresponding to the domain ΩI. We can interpret this time as the interaction transfer
time. We must then satisfy the condition 2πTT � T0, i.e., that a substantial change in the electron density
in a system of two interacting electrons occurs during the interaction transfer time.

At large interelectron distances (in the domain ΩII), where the interaction transfer time TT = R/c

is much larger than the mean electron transition time T0 = 2π/ω0, the natural small parameter is quan-
tity (19). Exchange by virtual photons at such a distance results in an interelectron interaction (cf. (32))
that in addition to the Coulomb and Breit interactions (1), contains additional terms due to increasing
retardation effects in the spin–orbit and spin–spin interactions of the two electrons. The parameter that
determines the increase in the influence of the retardation effects on the electron interaction effects is the
ratio TB/T0 or R/λ0, where λ0 = 2πc/ω0.
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