
STM_2013_B5_V2_4656_60ks_OBALKA_LLDčistý formát 163x240 mm

ISBN 978-80-8143-141-8
EAN 9788081431418 October 27–30, 2013   I   Stará Lesná

THE 15th SMALL TRIANGLE MEETING
on theoretical physics



15 th Small Triangle Meeting — Stará Lesná, October 27–30, 2013

Boundary-Layer Method
in the Theory of Tunnel Ionization
of an Atom by Constant Uniform

Electric Field

O.K. Reity, V.K. Reity, V.Yu. Lazur

Department of Theoretical Physics, Uzhhorod National University,
54 Voloshyna Street, Uzhhorod 88000, Ukraine

Abstract

Within the paraxial Fock-Leontovich approximation the three-dimensional
version of the WKB method is developed for the Schrödinger equation with
an arbitrary axially symmetrical potential of barrier type which does not
permit the complete separation of variables. By means of the elaborated
recurrent scheme of WKB expansions the wave functions in the problem of
an atom in a constant uniform electric field are constructed in the classi-
cally forbidden and allowed regions. This has allowed for the first time to
calculate the first two terms of the asymptotic (at small intensity of electric
field) behavior of probability of tunneling ionization of an arbitrary atom
(not H-like one) in a constant uniform electric field, taking into account the
centrifugal energy.

Introduction

In this paper we consider the decay of atoms and ions in a constant electric field.
The common feature of these problem is the fact that the effects under consider-
ation are determined by the behavior of the valence electron in an atom at large
distances from the nucleus. The removal of an electron from an atom or an ion
placed in a constant electric field occurs as a result of the tunnel effect. The
difficulty in this problem consists of the fact that the barrier through which the
electron penetrates is a three-dimensional one. In order to overcome this diffi-
culty the problem is artificially reduced to a one-dimensional problem [1, 2], but
the method of introducing the effective potential barrier is not justified and the
obtained result is incorrect. In two cases the problem can be solved exactly. In
the case of a hydrogen atom in the ground state [3] placed in an electric field the
variables in the Schrödinger equation for the wave function of the electron can
be separated in parabolic coordinates so that the problem is reduced to a one-
dimensional problem. The Schrödinger equation can also be solved for the wave
function of an electron situated in a spherically symmetrical field of force of zero
range and in a constant electric field [4].
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Of practical interest is the case when the intensity of the external electric
field is much smaller than the intensity of the characteristic atomic fields. If this
condition is satisfied the breakup of the atomic particle occurs slowly compared
to the characteristic atomic times and the leaking out of the electron takes place
primarily in directions close to the direction of the electric field. Therefore, in order
to determine the frequency of the passage of the electron through the barrier it
is convenient to use the idea of the boundary-layer method, i. e. to solve the
Schrödinger equation near an axis directed along the electric field and passing
through the atomic nucleus. This idea was used for calculating the leading term
of the tunnel ionization rate of an atom in a constant uniform electric field in non-
relativistic [5] and relativistic [6, 7] cases. Also on the basis of the boundary-layer
method the relativistic two-center problem was solved at large intercenter distances
[8]. In the present paper we use this method for finding two terms of asymptotic
behavior (at small intensity of the external electric field) of the probability rate
of tunnel ionization of an atom in a constant uniform electric field taking into
account the centrifugal energy.

The boundary-layer method for the Schrödinger
equation with axially symmetrical potentials

Consider an axially symmetrical problem, when two classically allowed ranges are
separated by a potential barrier. Then the direction of the most probable tunneling
is the potential symmetry axis z, the axis ρ is perpendicular to z, φ is the azimuthal
angle.

The stationary Schrödinger equation is (me = |e| = � = 1)

ΔΨ+ 2(E − V )Ψ = 0. (1)

where V = V (z, ρ) is the effective potential energy of the interaction of the elec-
tron with the external field not allowing a complete separation of variables in the
equation (1).

Since the potential V is axially symmetrical, the Hamiltonian commutes with
the operator of projection of total angular momentum of the electron onto a po-
tential symmetry axis z, and equation (1) permits separation of a variable φ. For
this purpose we represent the solution of (1) in

Ψ = ψ(z, ρ)eimφ, (2)

where ψ(z, ρ) is a new unknown function, m = 0,±1,±2, ... is the projection of
the total angular momentum of the electron onto a potential symmetry axis z. By
substituting (2) into (1), we obtain the differential equation

Δψ +

[
2

�2
(E − V )− m2

ρ2

]
ψ = 0, (3)

where the Planck constant � is renewed.
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We seek a solution of equation (3) in the form of a WKB expansion:

ψ = ϕe
S
� , ϕ =

∞∑
n=0

�
nϕ(n). (4)

Having substituted ψ, determined by (4), into (3) and equated to zero the coeffi-
cients of each power of �, we arrive at the hierarchy of equations

(�∇S)2 = q2, q2 = 2(V − E); (5)

2�∇S�∇ϕ(0) +ΔS ϕ(0) = 0; (6)

2�∇S�∇ϕ(n+1) +ΔS ϕ(n+1) = (m2/ρ2)ϕ(n) −Δϕ(n), (7)

where n = 0, 1, 2, . . .. Unfortunately, equations (5)–(7), similarly to the initial
equation (1), do not permit exact separation of variables. In order to solve this
problem, we use the idea of the boundary-layer method.

We seek the solutions of equations (5)–(7) in the below-barrier range, where,
unlike for the classically allowed range, the wave function is often localized in the
vicinity of the most probable tunnelling direction, that substantially simplifies the
whole problem: it is natural to expand all the quantities in equations (5)–(7),
including the solutions, in the vicinity of the z-axis.

Consider equation (5) and assume that

V (z, ρ) =

∞∑
k=0

Vk(z)ρ
2k, Vk =

1

k!

∂kV (z, 0)

∂ρ2k
. (8)

According to the above speculations, the solution of equation (8) can also be
represented in the form of an expansion in powers of coordinate the ρ:

S (z, ρ) =

∞∑
k=0

sk(z)ρ
2k. (9)

By inserting (9) into (5) and equating to zero the coefficients of each power of ρ,
we obtain

(s′0)
2 = q20 , q0 =

√
2(V0 − E); (10)

s′0s
′
1 + 2s21 = V1; (11)

s′0s
′
2 + 8s1s2 = V2 − (s′1)

2
/2; (12)

s′0s
′
k + 4ks1sk = Vk − 1

2

k−1∑
j=1

s′js
′
k−j − 2

k−2∑
j=1

(j + 1)(k − j)sj+1sk−j , k = 3, 4, 5, . . .

(13)

from which the values sn (n = 0, 1, 2, . . .) are successively determined. Here the
prime means the derivative with respect to z. Note that if in the expansion (9)
the coefficients of negative and odd powers of ρ are taken into account, after
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substitution of (9) into (5) they will be equal to zero. We shall consider the first
three equations of the given system.

It is easy to show that the solution of equation (10) is

s0 = ±
∫

q0dz + const. (14)

Since in the below-barrier range the wave function should decrease exponentially
with increasing z, in (16) we select the negative sign.

Equation (11) is the nonlinear Riccati differential equation and are not solvable
analytically in a general case. However, by making the substitution

s1 =
q0 (z)

2

(
1

2

q′0 (z)
q0 (z)

− σ′ (z)
σ (z)

)
, (15)

one can proceed from (11) to the linear second-order equation

σ′′ +

[
1

4

(
q′0
q0

)2

− 1

2

q′′0
q0

− 2V1

q20

]
σ = 0, (16)

which after substitution q0 → ±ip0 coincides with the equation obtained by Sumet-
sky within the parabolic equation method [9].

The equations for s2, s3,... are linear and integrated in quadratures:

s2 =
q20
σ4

{∫
σ4

q30

[
(s′1)

2

2
− V2

]
dz + const

}
, (17)

sk =
( q0
σ2

)k

⎧⎨⎩
∫

σ2k

qk+1
0

⎡⎣1

2

k−1∑
j=1

s′js
′
k−j + 2

k−2∑
j=1

(j + 1)(k − j)sj+1sk−j−

−Vk] dz + const} , (18)

The solutions of the equations (6), (7) are sought in the form

ϕ(n) = ρ|m|
∞∑
k=0

ϕ
(n)
k (z)ρ2k. (19)

By substituting (19) into the corresponding equations and equating to zero the
coefficients of each power of ρ, we obtain the system of ordinary first-order dif-
ferential equations for ϕ

(n)
k (z) which are solvable. So for the equation (6) these

functions to within a constant common multiplier are of the form:

ϕ
(0)
0 =

1√
q0

(√
q0

σ

)|m|+1

, (20)

ϕ
(0)
k =

1√
q0

(√
q0

σ

)|m|+2k+1
⎧⎨⎩

∫
1√
q0

(
σ√
q0

)|m|+2k+1 k∑
j=1

(
s′kϕ

(0)
k−j

′
+ [2(j + 1)

× (|m|+ 2k − j + 1)sk+1 + s′′k/2]ϕ
(0)
k−j

)
dz + const

}
, k = 1, 2, 3, . . . , (21)
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and for the equations (7) –

ϕ
(n)
0 =

1√
q0

(√
q0

σ

)|m|+1
{∫

1√
q0

(
σ√
q0

)|m|+1 [
2(|m|+ 1)ϕ

(n−1)
1

+
ϕ
(n−1)
0

′′

2

]
dz + const

}
, (22)

ϕ
(n)
k =

1√
q0

(√
q0

σ

)|m|+2k+1
⎧⎨⎩

∫
1√
q0

(
σ√
q0

)|m|+2k+1
⎡⎣ k∑
j=1

(
s′kϕ

(n)
k−j

′
+

+ [2(j + 1)(|m|+ 2k − j + 1)sk+1 + s′′k/2]ϕ
(n−1)
k−j

)
+

+ 2(k + 1)(|m|+ k + 1)ϕ
(n−1)
k+1 + ϕ

(n−1)
k

′′
/2

]
dz + const

}
, (23)

where k = 1, 2, 3, . . .. The latter equation is really correct for all n, k � 0, because
ϕ
(n)
k ≡ 0 when n, k < 0.
Note that if it is necessary to find the wave function to within terms O(�N+1),

then in the expansion (19) for ϕ(0) one has to take into account the first N + 1
terms, for ϕ(1) – N terms, ..., for ϕ(N) – one leading term, and in the expansion
(9) for the function S giving stronger exponential dependence the corrections s0,
s1, ..., sN+1 should be taken into account. For example, if the problem consists
in finding wave function to within terms O(�2) as well as in the problem of the
breakup of an atom in a constant uniform electric field considered here then we
can make replacement ϕ(1) → ϕ(0)S(1) i. e. represent the solution of (3) in the
form

ψ = ϕ(0) e
S
� [1 + �S(1)] � ϕ(0) exp

{
S

�
+ �S(1)

}
, (24)

where S and ϕ(0) are determined by

S = −
∫

q0(z)dz+s1(z)ρ
2+s2(z)ρ

4, ϕ(0) = ϕ
(0)
0 (z)+ϕ

(0)
1 (z)ρ2, ϕ(1) = ϕ

(1)
0 (z),

(25)
and S(1) satisfies the equation

2�∇S�∇S(1) = m2/ρ2 −Δϕ(0)/ϕ(0). (26)

Saving in the expansion of S(1) in powers of ρ2 only the leading term we obtain
the following solution of (26):

S(1)(z) =

∫
ϕ
(0)
0

′′
+ 4(|m|+ 1)ϕ

(0)
1

2q0ϕ
(0)
0

dz + const. (27)

Quasiclassical solutions of the problem of an atom
in a constant uniform electric field
If the arbitrary (not H-like) atom (ion) is placed in the constant uniform electric
field being antiparallel to the axis z, then an interaction potential at distances
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much more than atomic size (r � 2Z/γ2, γ =
√−2E) has the following asymptotic

behavior:

V ∼ −Z

r
− Ez. (28)

where Z is the charge of atomic core, E = |�E| = const is the intensity of electric
field.

The leading term V0 of the expansion (8) which we shall call “potential” has a
form of the potential with a barrier (see figure 1).

zm

V0(z)

z
z2

E

z1

Figure 1: The “potential” V0(z); z1, z2 are roots of equation q0(z) = 0, zm =
√
Z/E

is the maximum point.

When E � γ4/4Z then the tuning points of the “potential” equal

z1 =
γ2 −

√
γ4 − 16EZ

4E
� 2Z

γ2
+

8Z2E

γ6
,

z2 =
γ2 +

√
γ4 − 16EZ

4E
� γ2

2E
− 2Z

γ2
− 8Z2E

γ6
, (29)

the below-barrier region is quite wide (z1 � z2) and there is the region z1 � z � zb
(zb < zm) where an electric field can be considered as a perturbation. In this
region the wave function should be close to the asymptotic behavior (at ρ/z � 1,
r ∼ z � z1) of the Coulomb (atomic) wave function Ψ0 [3]:

Ψ −−−−−−→
z1
z
zb

Ψ
(as)
0 , (30)

Ψ
(as)
0 (�r) = R

(as)
nl (r)Y

(as)
lm (�n), �n = �r/r, (31)
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where

R
(as)
nl � azZ/γ−1

[
1− (Z/γ − l − 1)(Z/γ + l)

2γz
+

(
Z

γ
− 1

)
ρ2

2z2

]
× exp

{
−γz − γρ2

2z
+

γρ4

8z3

}
, (32)

Y
(as)
lm � Alm

(ρ
z

)|m| {
1−

[
l(l + 1)

|m|+ 1
+ |m|

]
ρ2

2z2

}
eimφ, (33)

Alm =
(−1)(m+|m|)/2

2|m||m|!

√
2l + 1

4π

(l + |m|)!
(l − |m|)! . (34)

Here l is the orbital angular moment of an atom, a is the asymptotic coefficient.
Let us find the quasiclassical localized wave function Ψ in the range zb < z < z2.

s0(z) = −
z∫

z1

q0(x)dx+ lnC0, C0 = const. (35)

From boundary condition (30) it follows that

s0 −−−−−−→
z1
z
zb

−γz +
Z

γ
ln z − Z2

2γ3z
+ ln(

√
γ aAlm) +O(z−2). (36)

In order to calculate the integral (35) at z1 � z � zb we represent q0 in the
form

q0(z) =

√
2E(z − z1)(z2 − z)

z
�

√
2Ez2

√
z − z1

z

(
1− z

2z2

)
, (37)

Then
z∫

z1

q0(x)dx =
√
2Ez2

{√
z(z − z1)− z1

2
ln

2
√
z(z − z1) + 2z − z1

z1
−

− 1

8z2

[
(2z − z1)

√
z(z − z1)− z21 ln(1 +

√
1− z1/z)

]}
. (38)

Due to z � z1 one can expand (38) in powers of the parameter z1/z � 1 in
the following way

z∫
z1

q0(x)dx =
√

2Ez2

(
z − z1

2
− z1

2
ln

4z

z1
+

z21
8z

− z2

2z2

)
. (39)

Taking into account (29) we have

s0 = −γz +
Z

γ
+

Z

γ
ln

2γ2z

Z
− Z2

2γ3z
+

Ez2

2γ
+ lnC0. (40)
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Equating the expressions (36) and (40), we obtain the constant

C0 =
√
γ

(
Z

2eγ2

)Z/γ

aAlm, e = 2.718... (41)

The non-linear Riccati equation (11) for potential (28) is of the form

− q0s
′
1 + 2s21 =

Z

2z3
(42)

and satisfied limiting condition

s1 −−−−−−→
z1
z
zb

− γ

2z
+O(z−3). (43)

The equation (42) can be reduced to the Bernoulli equation for f(z) being
solvable exactly. But in the given problem it is necessary to obtain asymptotic
solution at large z only. Let us represent the solution of (42) in the form

s1(z) =

∞∑
n=1

s1n(z), (44)

where s10(z) ∼ 1/z is the solution of the equation (42) without the right-hand
side, s1n(z) (n = 1, 2, . . .), ... are the corrections ∼ 1/zn+1 and satisfy the 1-st
order linear differential equations. Taking into account the first two terms of (42)
the condition (43) we have obtained that

s1 = −γ + q0
4z

[
1 +

Z(γ + q0)

4γ3z

]
. (45)

and

σ(z) =
2γz

√
q0

γ +
√

γ2 − 2Ez

[
1 +

Z(14Ez − 3γ2 − γq0)

4γ3zq0
+

3ZE

γ4
ln

√
2Ez

γ + q0

]
, (46)

The substitution of s1 and σ into (17) gives

s2 =
(γ + q0)

3

64γz3q0
, (47)

Similarly, from formulae (21) and (27) one can find the following expressions
for ϕ

(0)
1 and S1. Therefore, the asymptotic behavior of quasiclassical localized

wave function in the below-barrier region is of the form

Ψ = C0ρ
|m|

(
ϕ
(0)
0 + ϕ

(0)
1 ρ2

)
exp

[
−

∫ z

z1

q0(x)dx+ s1ρ
2 + s2ρ

4 + S1 + imφ

]
.

(48)
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Wave function in the classically allowed domain.
Width of below-barrier resonance
Transition through the turning point z = z2 into classically allowed domain z > z2
is performed within the Zwaan [3]). Then

Ψ̃ = C̃0

(
ϕ̃
(0)
0 + ϕ̃

(0)
1 ρ2

)
exp

[
i

∫ z

z2

p0dx+ s̃1ρ
2 + s̃2ρ

4 + S̃1 + imφ

]
, (49)

where
C̃0 = C0 exp

(
−

∫ z2

z1

q0(z)dz +
iπ

4

)
, (50)

p0(z) =
√
2(E − V0) is the quasiclassical momentum in one-dimensional case, and

s̃1, σ̃, s̃2, ϕ̃
(0)
0 , ϕ̃(0)

1 , S̃1 are obtained from corresponding quantities s1, σ, s2, ϕ
(0)
0 ,

ϕ
(0)
1 , S1 by means of the formal replacement q0 → −ip0.
The ionization rate is equal to the total probability flux through the plane

which is perpendicular to z-axis and located in the domain z > z2:

w =
i

2

∫
S

(
Ψ̃�∇Ψ̃∗ − Ψ̃∗�∇Ψ̃

)
d�S =

i

2

∫ 2π

0

∫ ∞

0

(
Ψ̃
∂Ψ̃∗

∂z
− Ψ̃∗ ∂Ψ̃

∂z

)
ρdρdφ, (51)

Having substituted (49) into (51) and calculating the integral, we obtain:

w = πC2
0 |m|!

(
E

γ3

)|m|+1

e−2J

[
1 +

l(l + 1)− (|m|+ 1)(Z/γ + 3|m|/2 + 2)

2γ3
E

]
,

(52)
where

J =

z2∫
z1

q0(z)dz. (53)

The barrier integral (53) can be expressed through elliptic integrals of 1-st
K(k) and 2-nd E(k) kind. For the asymptotic expression of (53) one can use the
technique elaborated by Chibisov [10]:

J =
γ3

3E
− Z

γ
+

17Z2E

4γ5
+

Z

γ

(
1 +

3ZE

2γ4

)
ln

ZE

4γ4
. (54)

Taking into account (54) the ionization rate can be written in the form

w =
a2(2l + 1)

2|m|+1|m|!γ|m|
(l + |m|)!
(l − |m|)!

(
2γ2

E

)2Z/γ−|m|−1

e−
2γ3

3E

{
1 +

E

4γ3
×[

2Z2

γ2

(
6 ln

4γ4

ZE
− 17

)
+ 2l(l + 1)− (|m|+ 1)(2Z/γ + 3|m|+ 4)

]}
. (55)

The leading term of (55) coincides with the result of the paper [5] (see corrections
for this paper in [11])



Boundary-Layer Method in the Theory of Tunnel Ionization 135

References
[1] S. N. Kaplan, G. A. Paulikas, and R. V. Pule, Phys. Rev. 131, 2574 (1963).

[2] G. Darewich and S. Neamtan, Nucl. Instr. Meth. 21, 241 (1963).

[3] L. D. Landau and E. M. Lifshitz, QuantumMechanics: Nonrelativistic Theory
[in Russian] (Course of Theoretical Physics, Vol. 3), Nauka, Moscow (1989);
English transl. prev. ed., Oxford Univ. Press, Oxford (1975).

[4] Yu. N. Demkov, G. F. Drukarev, JETP 47, 918 (1964).

[5] B. M. Smirnov and M. I. Chibisov, Zh. Eksp. Teor. Fiz. 49, 841 (1965).

[6] O. K. Reity, V. K. Reity, V. Yu. Lazur, Proc. 13-th Small Triangle Meeting,
Inst. Exp. Phys. SAS, Košice, 94 (2011).

[7] O. K. Reity, V. K. Reity, V. Yu. Lazur, Uzhhorod University Scientific Herald,
Series Physics, No 27, 97 (2010).

[8] O. K. Reity, V. Yu. Lazur, A. V. Katernoha, J. Phys. B 35, 1 (2002).

[9] M. Yu. Sumetsky, Teor. Mat. Fiz. 45, 64 (1980).

[10] M. I. Chibisov, Zhurn. Tekhn. Fiz. 51, 470 (1981).

[11] A. M. Perelomov, V. S. Popov, M. V. Terent’ev, JETP 23, 924 (1966).


	Титул
	Reity


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '300-300-1200'] [Based on '300-300-1200'] [Based on '300-300-1200'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




