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.1 Introduction

Research of an electron motion in the field of two Coulomb centers (so-called Z1eZ2

problem) began with the paper of Pauli [1]. Since then, this problem has attracted
a lot of interest mostly in connection with the problems of atomic and molecular
physics (status of the problem and references on the subject up to 1976 can be
found in [2]).

The intensive studies of the problem of two Coulomb centers Z1eZ2 during the
last thirty years were stimulated not only by the availability of powerful computers
and successes achieved with asymptotic methods in solving ordinary differential
equations, but also by the requirements of mesomolecular physics [3, 4] and the
theory of ion-atom collisions [5]. New results were obtained for both the problem
of the hydrogen molecular ion H+

2 [6] and the problem of two centers with strongly
differing charges [7, 8, 9, 10].

A number of algorithms are now available which calculate the energy terms and
wave functions for the Z1eZ2 quasi-molecule numerically, within a given accuracy,
for both the same [11, 12, 13] and different [14, 15, 16] Coulomb centres.

Despite the significant progress made in the numerical solution of the Z1eZ2

problem, approximate methods of quantum mechanics are still useful, and often
they are the only possible usable methods. This belongs also to the comparison
equation method which was developed in the second half of the 1960s [17, 18,
19]. This method generates both the eigenfunctions and the eigenvalues of the
quasiradial and quasiangular equations in the asymptotic region for large R. (The
results obtained before 1976 are collected, for instance, in the book of Komarov et
al [2].)

To solve many problems arising in physics of slow atomic collisions, e.g. for
calculation of the matrix element of exchange interaction ∆(R) of a hydrogen
atom (or H-like ion) with a nucleus, it is necessary to know not only two-centre
Coulomb spheroidal wave functions but two-centre Coulomb spheroidal quasiradial
and quasiangular wave functions too. Thus, for the resonant case ZeZ the exchange
matrix element above was determined formerly [20, 21] under the condition requir-
ing that when an electron approaches one of the nuclei the two-centre spheroidal
wave function of the electron tends to the one-centre parabolic wave function. The
correct result for ∆(R) can be actually obtained only (it is shown in [22]) when
wave functions of zero approximation are considered in the spheroidal system of
coordinates. The fact is that the exchange matrix element ∆(R) is defined by the
asymptotic region of electron coordinates where one-centre parabolic and spheroidal
wave functions of a hydrogen atom differ essentially from each other. To be more
specific, at large distances from the nucleus the set of several Coulomb parabolic
wave functions makes a contribution to the asymptotic behaviour of the Coulomb
spheroidal wave function. This circumstance makes difficulties for application of
the comparison equation method [22] to determination of the mentioned asymptotic
behaviour.

The two-Coulomb-centre problem was also investigated in the relativistic case
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[23, 24], study of exchange interactions in molecular ion dimers [25], at small in-
tercentre distances in the two-dimensional [26] and arbitrary dimensional [27, 28]
cases.

In spite of this, much interest in this problem still exists. The reason is twofold.
On the one hand, the two-Coulomb-centre system is an important model for the
theory of diatomic molecules, much as the hydrogen atom is for the theory of
multielectron atoms. On the other hand, this system has many applications, such
as in the study of certain scattering problems and the characterization of plasma
radiation.

As a suitable method for calculating the wave functions and all other quantities
required in the problem of the interaction of two heavy ions, we propose to employ
the quasiclassical approach. This approach allows us to obtain analytic solutions,
but it is limited by asymptotically large internuclear distances R. These distances
should be so large that the quantum penetrability of the potential barrier separating
atomic particles is much smaller than unity. A great number of problems can be
pointed out [29, 30, 31], whose solution depends on that region of internuclear
distance. We stress, however, that analytic expressions derived for the asymptotic
behavior of various splittings and shifts of the potential curves can sometimes be
used in the region of internuclear distances that are smaller than those given by the
formal criteria of applicability of the asymptotic expansions. Qualitatively, this can
be explained by the fact that asymptotic solutions of the two-center problem retain
the basic analytic properties of the exact solution [2] rather well, even the first term
of the wave function expansion in powers of R−1, up to sufficiently small R, and,
thus, reproducing the results of variational calculations [31]. These properties are
also conserved for other quantities computed with these functions.

The paper is organized as follows. In Section 2, we describe the statement of
the problem. In Section 3, using the perturbation theory, we obtain the asymptotic
behavior of the wave function of the electron moving near one Coulomb center and
perturbed by another. In Section 4, we find the quasiclassical two-Coulomb-centre
wave function.

.2 Basic equations

The motion of the electron in the field of two fixed nuclei with charges Z1 and Z2

is described by the following Schrödinger equation:
(

−1

2
∆− Z1

r1
− Z2

r2

)

Φ (~r, R) = E (R) Φ (~r, R) (1)

where r1 and r2 are the distances from the electron to nuclei 1 and 2, E(R) is the
electron energy and R is the distance between the nuclei. The Schrödinger equation
(1) is separable in the prolate spheroidal coordinates:

ξ =
r1 + r2
R

, η =
r1 − r2
R

, ϕ = arctan
y

x
, (2)

ξ ∈ [1;∞) , η ∈ [−1; 1] , ϕ ∈ [0; 2π) .
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If we replace the wave function Φ (~r, R) by the product function

Φ (~r, R) = X (ξ, R)Y (η, R)
e±imϕ

√
2π

(3)

we obtain the quasiradial and quasiangular equations for the functions X(ξ, R) and
Y (η, R)

d

dξ

(

ξ2 − 1
) dX

dξ
+

[

λξ +
ER2

2

(

ξ2 − 1
)

+ (Z1 + Z2)Rξ −
m2

ξ2 − 1

]

X = 0, (4)

d

dη

(

1− η2
) dY

dη
+

[

−λη +
ER2

2

(

1− η2
)

− (Z1 − Z2)Rη −
m2

1− η2

]

Y = 0. (5)

Here λξ and λη are the separation constants depending on R, and m is the modulus
of the magnetic quantum number. The two one-dimensional equations (4) and
(5) are equivalent to the original Schrödinger equation provided the separation
constants are equal:

λξ = λη. (6)

To find the asymptotic solutions of equations (4) and (5) the following new
functions are usually introduced:

U (ξ) =
(

ξ2 − 1
)1/2

X (ξ, R) , V (η) =
(

1− η2
)1/2

Y (η, R)

and new variables

µ =
R

2
(ξ − 1) , µ ∈ [0,∞) ; ν =

R

2
(1 + η) , ν ∈ [0, R] .

These new functions satisfy the following boundary conditions:

U(1) = 0, U(ξ) −−→
ξ→0

0, V (±1) = 0.

In terms of new variables and new functions we can rewrite equations (4) and
(5) in the following form:

U ′′ (µ)−
[

γ2 − Z1 + Z2 + λξ/R

µ
− Z1 + Z2 − λξ/R

R + µ
+
R2(m2 − 1)

4µ2(R + µ)2

]

U (µ) = 0, (7)

V ′′ (ν)−
[

γ2 − Z1 − Z2 − λη/R

ν
+
Z1 − Z2 + λη/R

R − ν
+
R2(m2 − 1)

4ν2(R − ν)2

]

V (ν) = 0 (8)

where γ = (−2E)1/2.
When R is much larger than the size of electron shells centered on the left-hand

nucleus, the ratios µ/R and ν/R are small quantities in intra-atomic space. This
fact allow us to use the perturbation theory to equations (7) and (8) in intra-atomic
space to find the separation constants λξ, λη.
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.3 Perturbation theory and the asymptotic behavior of two-

Coulomb-centre quasiradial and quasiangular wave fuctions

Let us assume that when R tends to infinity, λ has the same order as R. Then in
a zero-order approximation (i.e. at R = ∞) equation (7) takes the following form:

u′′(0) (µ)−
[

γ2 − κ1

µ
+
m2 − 1

4µ2

]

u(0) (µ) = 0 (9)

where
κ1 = Z1 + Z2 + λ(0)/R.

The solution of (9) satisfying the boundary condition when µ → 0 is

u(0) (µ) = N
(0)
1 exp(−γµ)(2γµ)(m+1)/2F

(

m+ 1

2
− κ1

2γ
, m+ 1, 2γµ

)

(10)

where N
(0)
1 is the normalization constant, which is determined from the condition

∞
∫

0

|u(0) (µ) |2dµ = 1 ⇒ N
(0)
1 =

[

(n1 +m)!

n1! (m!)2 (2n1 +m+ 1)

]1/2

and F (α, β, x) is the confluent hypergeometric function. For the solution (10) to
satisfy the boundary condition at infinity, the parameter (m+1)/2−κ1/2γ should
be equal to zero or a negative integer, (m + 1)/2 − κ1 = −n1, (n1 = 0, 1, 2, ...).
Hence for the separation constant λ(0)(R) we obtain

λ(0)n1
(R) = R [γ(2n1 +m+ 1)− Z1 − Z2] .

To find the solution at large but finite values of the parameter R, following [32]
we shall use the perturbation theory. In equation (7), we shall consider the energy
as a parameter with a certain given value and the separation constant λ as an
eigenvalue of the corresponding operator. Then the computation of the corrections
to the eigenvalue and eigenfunction acquires a standard character. We expand the
desired wave function U(µ) to the unperturbed wave functions u

(0)
n1
(µ) series:

U(µ) =
∑

n′

1

cn′

1
(R)u

(0)
n′

1

(µ).

Substituting this expansion into (7), multiplying the obtained equality by u
(0)∗
n1

and integrating we find
(

λ− λ
(0)
n′

1

− 1−m2

2

)

〈n′
1|µ−1|n′

1〉 cn′

1

=
∞
∑

k=0

(−1)k+1

Rk

[

Z1 + Z2 − λ/R + (k + 3)
1−m2

4R

]

∑

n′′

1

〈n′
1|µk |n′′

1〉 cn′′

1
(11)
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where 〈n′
1|µ−1 |n′

1〉 are the matrix elements of the operator µk defined by means of

the unperturbed functions u
(0)
n1
(µ). Here the matrix elements of the operator 1/µ

are diagonal. Relation (11) allows us to calculate any order of corrections to the
eigenvalue and eigenfunction.

Let us express the separation constant and expansion coefficient in the following
forms,

λ = λ(0) + λ(1) + λ(2) + ... cn′

1
= c

(0)
n′

1

+ c
(1)
n′

1

+ c
(2)
n′

1

+ ...

where λ(k) and c
(k)

n′

1

are the values of the R−k+1 and R−k orders, respectively.

To determine the corrections to the nth eigenvalue and eigenfunction, we put
c
(0)
n1

= 1 and c
(0)
n′

1

= 0 for n′
1 6= n1. To find the first-order approximation, we

substitute λ = λ
(0)
n1

+ λ
(1)
n1

and cn′

1
= c

(0)
n′

1

+ c
(1)
n′

1

into equation (11) and we keep only

the terms of order one. The obtained equation with n′
1 = n1 gives

λ(1)n1
=

1

2

{

(2n1 +m+ 1) [2n1 +m+ 1− 2(Z1 + Z2)/γ] + 1−m2
}

.

Equation (11) with n′
1 6= n1 for the coefficients c

(1)
n′

1

gives us

c
(1)
n′

1

=
1

2R(n1 − n′
1)

[2n1 +m+ 1− 2(Z1 + Z2)/γ]
〈n′

1|µ0|n1〉
〈n′

1|µ−1|n′
1〉
.

All other coefficients and separation constants can be found in the same way.
Matrix elements are calculated in a standard way (see Appendix 6)

In the quasiangular case the situation is similar to the quasiradial one – all of
the formulae will work if we use the variable ν, change the sign of R and Z2 and
also replace the parabolic quantum number n1 by n2. Note that the upper limit of
the variable ν is R. If R is large, we can extend the upper limit of the variable ν
to infinity. The replacement of R by infinity corresponds to the calculations of the
integrals with the accuracy of the exponentially small terms when determining the
matrix elements.

After calculations we get the separation constants in the form

λξ,η = ±λ(0)ξ,ηR + λ
(1)
ξ,η ±

λ
(2)
ξ,η

R
+ ... (12)

where

λ
(0)
ξ,η = γ(2n1,2 +m+ 1)− (Z1 ± Z2),

λ
(1)
ξ,η =

1

2

[

(2n1,2 +m+ 1)(2n1,2 +m+ 1− 2(Z1 ± Z2)/γ) + 1−m2
]

,

λ
(2)
ξ,η =

1

8γ

{(

2n1,2 +m+ 1− 2(Z1 ± Z2)

γ

)[

(2n1,2 +m+ 1)
2(Z1 ± Z2)

γ

−8n1,2 (n1,2 +m+ 1)− (m+ 1) (m+ 3)]− (2n1,2 +m+ 1)
(

1−m2
)}

(13)
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where n1, n2 and m are parabolic quantum numbers.
The parameter γ can be determined from (6). Taking into consideration that

n1 + n2 +m+ 1 = n we get

γ = γ0 +
γ1
R

+
γ2
R2

+ ... (14)

where

γ0 =
Z1

n
, γ1 =

nZ2

Z1
, γ2 = −n

2Z2

2Z3
1

[3(n1 − n2)Z1 + nZ2] . (15)

As we mentioned above, E = −γ2/2, energy E and (14) give the well-known [2]
multipole expansion for the energy of the hydrogen-like ion eZ1 being perturbed by
the remote nucleus Z2.

We note that the right-hand side state is given by the above formulae if Z1

is replaced by Z2 and vice versa, and the parabolic quantum numbers n1, n2 are
replaced by the right-hand side parabolic quantum numbers n′

1, n
′
2 that satisfy the

condition n′
1 + n′

2 +m+ 1 = n′.
So within the perturbation theory we have found the asymptotic (for large R)

solutions of equations (7) and (8). Normalizing the total wave function ψ (µ, ν, ϕ)
to unity we obtain the wave function of the electron moving near the first nucleus
and perturbed by the second one up to R−2:

ψ = C

[

f (0)
n1

(µ) +
2
∑

p=1

p
∑

k=−p

c
(p)
n1+kf

(0)
n1+k(µ)

][

f (0)
n2

(ν) +
2
∑

p=1

p
∑

k=−p

c
(p)
n2+kf

(0)
n2+k(ν)

]

(16)

where

f
(0)
l (x) =

(

(l +m)!

l!(m!)2(2l +m+ 1)

)1/2

(2γx)(m+1)/2e−γxF (−l, m+1, 2γx),

Here n = n1 + n2 +m + 1 and for p = 1, 2 we found all of the c
(p)
n1,2+k coefficients

(for details see [32]). For normalization constant C see Appendix 7.
The obtained function (16) describes the electron behaviour in the main region

of distribution of the electron density. Our next issue is to determine the two-centre
quasi-angular wave function V (ν) in the inter-nuclear region when an electron is
located far from both Coulomb centres.

.4 WKB solutions of the quasiangular equation in the inter-

centre region

Although the perturbation theory allows solving principal problems connected with
expansions of eigenvalues λξ,η(R) and eigenfunctions U(µ) and V (ν) in powers of
1/R, determination of next terms of these expansions meets quickly increasing nu-
merical obstacles. Solutions of equations (7), (8) at large R can be represented
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in a quite simple and compact form using the WKB method (or quasiclassical
approximation) which was elaborated and became famous as one of the most ef-
fective approximate methods for solving quantum mechanical problems (see, for
instance, [33], [34], [35], [36]). The WKB method allows one to obtain simple uni-
form estimates for eigenfunctions at arbitrary internuclear distances R including
R >> 1. Another preference of the quasiclassical asymptotic expansions is their
simplicity. Moreover, in contrast with perturbation theory, the interaction does
not need to be very small in the quasiclassical approximation, and its applicability
domain is hence wider, which permits analyzing qualitative laws for the behavior
and properties of quantum mechanical systems.

Below we construct quasiclassical solutions of the quasiangular equation in the
classically forbidden region.

Let us rewrite the quasiangular equation (8) in the form of the one-dimensional
Schrödinger equation:

V ′′ − q2

~2
V = 0 (17)

where q =
√

2(Ueff −E), and the function

Ueff(ν) = −Z̃1

ν
− Z̃2

R− ν
+

~
2 (m2 − 1)

8ν2(1− ν/R)2
, Z̃1,2 = [±(Z1 − Z2)− λ/R] /2

plays a role of the effective potential energy (see fig. 1).

Figure 1: The “effective potential energy” Ueff (ν): a) when m = 0, 1, b) when

m > 1; νi, i = 1, 4 are the roots of the equation q(ν) = 0, νm is the maximum

point.

We seek the solution of (17) in the following form:

V = eS/~
∞
∑

k=0

~
kϕ(k). (18)

Having substituted (18) into (17), preliminary renewing the Planck constant ~, and
equating to zero the coefficients of each power of ~, we arrive at the system of the
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first-order differential equations for the unknown functions S(ν) and ϕ(n)(ν)

(S ′)
2
= q2; (19)

2S ′ϕ(0)′ + S ′′ϕ(0) = 0; (20)

2S ′ϕ(k+1)′ + S ′′ϕ(k+1) + ϕ(k)′′ = 0, k = 0, 1, 2, . . . . (21)

According to the general conditions of the quasiclassical approximation appli-
cability [37], the potential barrier should be quite wide (ν2 ≪ ν3 where ν2,3 are the
internal turning points). This gives us the requirement

2Z̃2/γ
2R ≪ 1 (22)

which always can be fulfilled for large R. Then one can sew the WKB solution (18)
with the asymptotics found by expanding the perturbated function (16) by powers
of ν−1:

Ψ (µ, ν) −−−−−→
ν2≪ν≪ν3

Ψas (µ, ν) (23)

In the below-barrier region ν2 < ν < ν3 as a solution of (19) we choose the
decreasing function

S (ν) = −
∫ ν

ν2

q(ν ′)dν ′ (24)

The solutions of the linear equations (20) and (21) corresponding to it are of the
form

ϕ(0) =
C(0)

√
q
,

ϕ(1) =
1√
q

[

∫

ϕ(0)′′

2
√
q
dν + C(1)

]

,

ϕ(k) =
1√
q

[

∫

ϕ(k−1)′′

2
√
q
dν + C(k)

]

.

Calculating the integrals in ϕ(k) and applying the boundary condition (22) we
find that ϕ(2) ∼ R−3. Therefore, restricting ourselves by the terms of order R−2 we
obtain the quasiclassical wave function in the below-barrier region

V =
C ′

√
q
exp

[

−
∫ ν

ν2

qdν ′
]

(

1 +
Z̃2

4γ3(R− z)2
− Z̃1

4γ3z2

)

where

C ′ = C(R) (−1)n2 e−Z̃1/γQ+Q−

[

1 +
C1

R
+
C2

R2

]

,
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Q± =

(

Z̃1

γ
±

√
m2 − 1

2

){n2+1/[1±
√

(m−1)/(m+1)]}/2

,

C1 = −2n2 +m+ 1− 2(Z1 − Z2)/γ

2γ
,

C2 =
1

16γ4
{

2
(

46n2
2 + 46n2m+ 50n2 +m(9m+ 25) + 14

)

−(2n2 +m+ 1)
[

16(Z1 − Z2)
2 + γ2

(

30n2
2 + 30n2m+ 34n2 +m(2m+ 17) + 13

)]}

− 16Z̃3
1Z̃2(7Z̃1 + 10Z̃2)− 8γ2Z̃1(m

2 − 1)(3Z̃2
1 + 8Z̃1Z̃2) + γ4(8Z̃1 + 5Z̃2)(m

2 − 1)2

16γ5[(m2 − 1)γ2 − 4Z̃2
1 ]

.

.5 Conclusions

In this paper we have developed the consistent scheme for obtaining WKB expan-
sions for solutions of the quasiangular equation in quantum mechanical problem of
two Coulomb centers Z1eZ2. It is shown that in each order of 1/R the corrections
to the wave function can be expressed by a finite number of the discrete spectrum
Coulomb wave functions with modified charge. The simple analytical expressions
for the first and second corrections to the wave functions are obtained. These ex-
pressions will be used in our further investigations when calculating the asymptotic
behavior of the matrix element of the one-electron exchange interaction potential
determining the process of one-electron charge transfer between the hydrogen atom
and multiply charged ion.

.6 Appendix A. The matrix elements

Here we give the values of the matrix elements for k = −1, 0, 1, 2, ρ1 = 2γµ

〈n1|ρ−1
1 |n1〉 =

1

2n1 +m+ 1
〈n1|ρ01|n1〉 = 1

〈n1|ρ11|n1〉 =
6n1(n1 +m+ 1) + (m+ 1)(m+ 2)

2n1 +m+ 1

〈n1|ρ21|n1〉 =
1

2n1 +m+ 1
[(m+ 1)(m+ 2)(m+ 3) + 12n1(m+ 2)(m+ 3)

+30n1(n1 − 1)(m+ 3) + 20n1(n1 − 1)(n2 − 2)]

〈n1 − 1|ρ01|n1〉 = 〈n1 − 1|ρ01|n1〉 = −
(

n1(n1 +m)

(2n1 +m+ 1)(2n1 +m− 1)

)1/2

〈n1 + 1|ρ01|n1〉 = 〈n1 + 1|ρ01|n1〉 = −
(

(n1 + 1)(n1 +m+ 1)

(2n1 +m+ 1)(2n1 +m+ 3)

)1/2
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〈n1 − 1|ρ11|n1〉 = 〈n1 − 1|ρ11|n1〉 = −2

(

n1(n1 +m)(2n1 +m)2

(2n1 +m+ 1)(2n1 +m− 1)

)1/2

〈n1 + 1|ρ11|n1〉 = 〈n1 + 1|ρ11|n1〉 = −2

(

(n1 + 1)(n1 +m+ 1)(2n1 +m+ 2)2

(2n1 +m+ 1)(2n1 +m+ 3)

)1/2

〈n1 − 2|ρ11|n1〉 = 〈n1 − 2|ρ11|n1〉 =
(

n1(n1 − 1)(n1 +m)(n1 +m− 1)

(2n1 +m− 3)(2n1 +m+ 1)

)1/2

〈n1 + 2|ρ11|n1〉 = 〈n1 + 2|ρ11|n1〉 =
(

(n1 + 1)(n1 + 2)(n1 +m+ 1)(n1 +m+ 2)

(2n1 +m+ 1)(2n1 +m+ 5)

)1/2

It should be noted that in [32] there is a mistake in the formula for the matrix
element 〈n1 + 1|ρ11|n1〉.

.7 Appendix B. The normalization constant

The normalization constant for the perturbated wave function (16) has the form

C(R) =

√

2γ3/2

πW+

{

1− 1

γR

[

4n(n1 − n2)

W+
+

2Z1

γ

W−

W+
+

2Z2

γ

]

+
1

γ2R2

[

D0 +
Z1

γ
D1 +

Z2

γ
D2 +D3

]}

.

Here

Ai = 6ni(ni +m+ 1) + (m+ 1)(m+ 2), Bi = 2ni +m+ 1, Ci = ni(ni +m+ 1),

K = 6n1n2 + (m+ 1)(3n− 2m− 1), W+ =
A1

B1
+
A2

B2
, W− =

A1

B1
− A2

B2
,

D0 =
m2 − 1

16

(

1− 1

K

)

− nG0

8W+
+

3n2(n1 − n2)
2

2(W+)2
,

D1 =
1

2W+

[

3n(n1 − n2)W
− +

G1

4
+ 25(C1 + C2)−

1

8

(

1

B2
1

+
1

B2
2

)]

,

D2 =
n1 − n2

4K

(

37B1B2 −
(1−m2)2

B1B2

)

,

D3 =
3Z2

1

8γ2

[

(

W−

W+

)2

− 2

]

+
3Z1Z2

4γ2
W−

W+
− 3Z2

2

8γ2
,

G0 = 9n(m+ 1) + 18(n2
1 − n1n2 + n2

2) + (m+ 2)(5m+ 31),

G1 = 36n(m+ 1) + 36(n2
1 + n2

2)− 2m2 + 64m+ 118.
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