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INTEGRAL BOUNDARY VALUE PROBLEMS AND DIVISION
INTO SUBINTERVALS

We show how a suitable interval division and parametrization technique can help to essentially im-
prove the sufficient convergence condition for the successive approximations dealing with solutions
of nonlinear non-autonomous systems of ordinary differential equations under integral boundary
conditions. The constructivity of a suggested new technique is shown on the example.

1 Introduction. Recently, boundary value problems (BVPs) with integral con-
ditions for non-linear differential equations have attracted much attention, see,
e.g. [1], [2], [3], [8], [7], [9] and the references therein.

We study the non-linear integral boundary value problem (BVP)

du(t)

dt
= f (t, u(t)) , t ∈ [a, b] , (1)

g

(
u(a), u(b),

∫ c

a

u(s)ds

)
= d, (2)

where f : [a, b]×Rn → Rn, g : [a, b]×Rn×Rn×Rn → Rn are continuous functions
in a certain bounded sets , which will be exactly specified later and d ∈ Rn is a
given vector, a < c ≤ b.

Following to the idea used in numerical methods for approximate solution of
initial value problems for ordinary differential equations, let us divide the interval
[a, b] by the variable mesh-points

tk = tk−1 + hk, k = 1, ..., N, t0 = a, tN = b, (3)

into N subintervals

[t0, t1] , [t1, t2] , [t2, t3] , ..., [tN−1, t1N ] .

Note, that in (3) can be used also a constant step size

h = hk =
b− a

N
=
tN − t0
N

, k = 1, ..., N.

The aim of this paper to show how an N subinterval divisions of type (3) and
parametrization technique can help to improve the sufficient convergence conditions
for analytic approximations in the case of integral BVP (1), (2).

The main idea of our approach is the following. First we simplify the integral con-
ditions (2). In order to replace it by certain linear two-point separated parametrized
ones, we introduce the vectors of parameters

z(k) = col(z
(k)
1 , z

(k)
2 , ..., z(k)n ), k = 0, 1, 2, ..., N,

by formally putting
z(k) := u(tk), k = 0, 1, 2, ..., N.
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Instead of (1), (2) we will study N ”model-type” two-point BVPs with separated
parameterized conditions

dx(k)

dt
= f

(
t, x(k)

)
, t ∈ [tk−1, tk] , (4)

x(tk−1) = z(k−1), x (tk) = z(k), k = 1, 2, ..., N. (5)

where z(0), z(1), ..., z(N) ∈ Rn are parameters. Note, that the length of the
interval in problems (4), (5), which will be studied independently, is equal to step-
size hk in opposite to b− a in the case of original BVP (1), (2).

To study the solutions of BVPs (4) ,(5) we use the special form of parametrized

successive approximations
{
x
(k)
m (t, z(k−1), z(k))

}∞

m=0
, k = 1, 2, ..., N constructed in

analytic form and well defined on the intervals

t ∈ [tk−1, tk] , k = 1, 2, ..., N,

respectively.
The following notations and definitions are used from [9], which we state again

below for the convenience of the readers.
We fix an n ∈ N and a bounded closed set D ⊂ Rn.
1. For vectors x = col(x1, ..., xn) ∈ Rn the obvious notation |x| = col(|x1| , ..., |xn|)

is used and the inequalities between vectors are understood componentwise.
The same convention is adopted implicitly for operations ′ max′,′ min′,′ sup′, ′ inf ′ .
2. 1n is the unit matrix of dimension n.
3. 0n is the zero matrix of dimension n.
4. r(K) is the maximal, in modulus, eigenvalue of a matrix K.
5. For a set D ⊂ Rn, closed interval [a, b] ⊂ R , continuous function f : [a, b] ×

D → Rn, n× n matrix K with non-negative entries, we write f ∈ Lip(K,D) if the
inequality |f(t, u)− f(t, v)| ≤ K |u− v| holds for all {u, v} ⊂ D and t ∈ [a, b] .

Definition 1. For any non-negative vector ρ ∈ Rn under the componentwise
ρ−neighbourhood of a point z ∈ Rn we understand

B(z, ρ) := {ξ ∈ Rn : |ξ − z| ≤ ρ} .

Similarly, for the given bounded connected set Ω ⊂ Rn, we define its componentwise
ρ−neighbourhood by putting B(Ω, ρ) := ∪

ξ∈Ω
B (ξ, ρ) .

Definition 2. For given two bounded connected sets Da ⊂ Rn and Db ⊂ Rn,
introduce the set

Da,b := (1− θ)z + θη, z ∈ Da, η ∈ Db, θ ∈ [0, 1] (6)

and its componentwise ρ−neighbourhood

D := B(Da,b, ρ) . (7)

Finally, on the base of function f : [a, b]×D → Rn we introduce the vector

δ[a,b],D(f) :=
1

2

[
max

(t,x)∈[a,b]×D
f(t, x)− min

(t,x)∈[a,b]×D
f(t, x)

]
. (8)
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2 Interval division and successive approximations
Let us fix for the nonlinear integral BVP (1), (2) certain closed bounded sets

Dk ⊂ Rn, k = 0, 1, 2, ..., N (9)

and focus on the continuously differentiable solutions u of problem (1), (2) with
the values u(tk) ∈ Dk, k = 0, 1, 2, ..., N. Without loss of generality, we shall choose
Dk, k = 0, 1, 2, ..., N to be convex.

Based on the sets (9) according to (6) we introduce the sets:

Dk−1,k := (1− θ)z(k−1) + θz(k), z(k−1) ∈ Dk−1, z(k) ∈ Dk, θ ∈ [0, 1] , k = 1, 2, ..., N

according to (6) and respectively its some componentwise ρ(k)−vector neighbour-
hoods:

D[k] := B(Dk−1,k, ρ
(k)), k = 1, 2, ..., N (10)

as in (7).
We suppose the fulfillment of the local Lipschitz conditions

f ∈ Lip(Kk, D
[k]), t ∈ [tk−1, tk] , k = 1, 2, ..., N

and a certain smallness of the eigenvalues r(Qk)

r(Qk) < 1 (11)

for the matrixes

Qk :=
3hk
10

Kk, k = 1, 2, ..., N. (12)

Now, instead of boundary value problem (1), (2) using a natural interval divi-
sion technique (3), we will consider on the subintervals t ∈ [tk−1, tk] , k = 1, 2, ..., N
respectively N ”model-type” two-point BVPs (4), (5) with linear separated param-
eterized conditions.

We then go back to the original problem by choosing the values of the introduced
parameters z(k) , k = 0, 1, 2, ..., N appropriately.

Let us suppose that the domains for the space variables in problems (4), (5) are
D[k] respectively defined in (10) with vector ρ(k) is satisfying the inequality

ρ(k) ≥ hk
2
δ[tk−1,tk],D[k](f), (13)

where δ[tk−1,tk],D[k](f) is defined according to (8).
Let us define for the parametrized problems (4), (5) the recurrence parametrized

sequences of functionsx
(k)
m : [tk−1, tk]×Rn ×Rn → Rn , k = 1, 2, ..., N, m = 0, 1, 2, ...,

by putting

x
(k)
0

(
t, z(k−1), z(k)

)
:= z(k−1) +

(t− tk−1)

hk

[
z(k) − z(k−1)

]
= (14)

=

[
1− t− tk−1

hk

]
z +

t− tk−1

hk
z(k), t ∈ [tk−1, tk] , k = 1, 2, ..., N,
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x(k)m

(
t, z(k−1), z(k)

)
:= z(k−1) +

∫ t

tk−1

f
(
s, x

(k)
m−1

(
s, z(k−1), z(k)

))
ds− (15)

−t− tk−1

hk

∫ tk

tk−1

f
(
s, x

(k)
m−1

(
s, z(k−1), z(k)

))
ds+

t− tk−1

hk

[
z(k) − z(k−1)

]
, t ∈ [tk−1, tk] ,

k=1,2,...,N for all m = 1, 2, ..., z(k−1) ∈ Rn and z(k) ∈ Rn .
We note that all members of the sequences (14), (15) satisfy two-point boundary

conditions (5) respectively for any z(k−1) ∈ Rn and z(k) ∈ Rn .
3 Convergence of successive approximations

We would like to use the sequences
{
x
(k)
m

(
t, z(k−1), z(k)

)}∞

m=0
, k = 1, 2, ..., N

from (14) and (15) for the investigation of solutions of the given BVP (1), (2).
The following statement shows that the sequences (15) are uniformly conver-

gent and their limit is a solution of a certain additively perturbed problem for all(
z(k−1), z(k)

)
∈ Dk−1 ×Dk.

Theorem 1. Let f ∈ Lip(Kk, D
[k]), for t ∈ [tk−1, tk] , k = 1, 2, ..., N and

there exist the non negative vectors ρ(k) such that inequalities (13) hold and the
eigenvalues of matrices Qk of form (12) satisfy (11) for k = 1, 2, ..., N.

Then, for arbitrary fixed pair of vectors
(
z(k−1), z(k)

)
∈ Dk−1 ×Dk:

1. All members of sequences (15) are continuously differentiable functions on the
interval t ∈ [tk−1, tk] satisfying the two-point linear separated parametrized boundary
conditions (5).

2. The sequences of functions (15) in t ∈ [tk−1, tk] converge uniformly as m→ ∞
to the limit functions

x(k)∞ (t, z(k−1), z(k)) = lim
m→∞

x(k)m (t, z(k−1), z(k)), k = 1, 2, ..., N

3.The limit functions satisfy the conditions

x(k)∞ (tk−1, z
(k−1), z(k)) = z(k−1), x(k)∞ (tk, z

(k−1), z(k)) = z(k), k = 1, 2, ..., N .

4.The functions x
(k)
∞ (t, z(k−1), z(k)) are the unique continuously differentiable so-

lutions of the integral equations

x(k)(t) = z(k−1) +

∫ t

tk−1

f(s, x(k)(s))ds−

−t− tk−1

hk

∫ tk

tk−1

f(s, x(k)(s))ds+
t− tk−1

hk

[
z(k) − z(k−1)

]
, t ∈ [tk−1, tk] , k = 1, 2, ..., N,

in the domain D[k],respectively.
In other words, x

(k)
∞ (t, z(k−1), z(k)) are the solutions of the following Cauchy

problems of the modified system of integro-differential equations:

dx(k)

dt
= f(t, x(k)) +

1

hk
∆(k)(z(k−1), z(k)), t ∈ [tk−1, tk] , k = 1, 2, ..., N,

x (tk−1) = z(k−1),
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where ∆(k)(z(k−1), z(k)) : Dk−1 ×Dk → Rn are the mapping given by formula

∆(k)(z(k−1), z(k)) = z(k) − z(k−1) −
∫ tk

tk−1

f(s, x(k)(s))ds, k = 1, 2, ..., N. (16)

5.The following estimates hold∣∣x(k)∞ (·, z(k−1), z(k))− x(k)m (·, z(k−1), z(k))
∣∣ 6

6 10

9
α1(t, tk−1, hk)Q

m
k (1n −Qk)

−1 δ[tk−1,tk],D[k](f), t ∈ [tk−1, tk] ,m ≥ 0, k = 1, 2, ..., N

where the vectors δ[tk−1,tk],D[k](f)) are given in (8) and

α1(t, τ, I) = 2 (t− τ)

(
1− t− τ

I

)
, |α1(t, τ, I)| ≤

I

2
, t ∈ [τ, τ + I] .

Proof. The proof can be carried out similarly as in Theorem 1 from [7].

It is natural to expect that the limit functions x
(k)
∞ (t, z(k−1), z(k)) of the iterations

(15) on the subintervals t ∈ [tk−1, tk] , k = 1, 2, ..., N will help us to formulate criteria
of solvability of the integral BVP (1), (2). It turns out that there are the functions

∆(k)(z(k−1), z(k)) : Dk−1 ×Dk → Rn

defined according to equalities (16) that provide such conclusion.
Indeed, Theorem 1 guarantee that under the conditions assumed, the functions

x(k)∞ (t, z(k−1), z(k)) : [tk−1, tk] → Rn

are well defined for all
(
z(k−1), z(k)

)
∈ Dk−1 ×Dk. Therefore, by putting

u∞(t, z(0), z(1), ..., z(N)) :=


x
(1)
∞ (t, z(0), z(1)), if t ∈ [t0, t1] ,

x
(2)
∞ (t, z(1), z(2)), if t ∈ [t1, t2] ,

....

x
(N)
∞ (t, z(N−1), z(N)), if t ∈ [tN−1, tN ]

(17)

we obtain a function u∞(·, z(0), z(1), ..., z(N)) : [a, b] → Rn, which is well defined
for the values z(k) ∈ Dk, k = 0, 1, 2, ..., N. This function is obviously continuous,
because at the points t = tk we have

x(k)∞ (tk, z
(k−1), z(k)) = x(k)∞ (tk, z

(k), z(k+1)), k = 0, 1, 2, ..., N .

The following theorem establishes a relation of function (17) to the solution of
integral BVP (1), (2) in terms of the zeroes of functions ∆(k)(z(k−1), z(k)) : Dk−1 ×
Dk → Rn, defined according to (16).

Theorem 2. Let the conditions of Theorem1 hold. Then :
1. The function u∞(t, z(k−1), z(k)) : [a, b] → Rn given by (17) is an continuously

differentiable solution of BVP (1), (2) if and only if the vectors

z(k), k = 0, 1, 2, ..., N (18)
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satisfy the system of n(N + 1) algebraic equations

∆(k)(z(k−1), z(k)) = z(k)−z(k−1)−
∫ tk

tk−1

f(s, x(k)∞ (s, z(k−1), z(k)))ds = 0, k = 1, 2, ..., N,

∆(N+1)(z(0), z(1), ..., z(l), z(l+1)) =

= g

(
z(0), z(N),

l∑
j=0

∫ tj+1

tj

x(j)∞ (s, z(j−1), z(j))ds+

∫ c

tl

x(l)∞(s, z(l), z(l+1))ds

)
− d = 0.

(19)
2. For every solution U(·) of problem (1), (2) with U(tk) ∈ Dk, k = 0, 1, 2, ..., N

there exist vectors (18) such that U(·) = u∞(t, z(0), z(1), ..., z(N)), where the function
u∞(t, z(0), z(1), ..., z(N)) is given in (17).

Proof. The proof can be carried out similarly to the proof of Theorem4 from [4].
Equations (19) are usually referred to as determining or bifurcation equations

because their roots determine solutions of the original problem.
4 Approximate determining equations
Although Theorem 2 provides a theoretical answer to the question on the con-

struction of a solution of the BVP (1), (2), its application faces difficulties due to

the fact that the explicit form of x
(j)
∞ (s, z(j−1), z(j)) and the functions

∆(k)(z(k−1), z(k)) : Dk−1 ×Dk → Rn, k = 1, 2, ..., N

∆(N+1)(z(0), z(1), ..., z(N)) : D0 ×D1 × ...×DN → Rn,

appearing in (19) are usually unknown. This complication can be overcome by using

x
(k)
m (s, z(k−1), z(k)) of form (15) for a fixed m, which will lead to the so-called m-th

approximate determining equations:

∆(k)(z(k−1), z(k)) = z(k)−z(k−1)−
∫ tk

tk−1

f(s, x(k)m (s, z(k−1), z(k)))ds = 0, k = 1, 2, ..., N,

(20)
∆(N+1)(z(0), z(1), ..., z(l), z(l+1)) =

g

(
z(0), z(N),

l∑
j=0

∫ tj+1

tj

x(j)m (s, z(j−1), z(j))ds++

∫ c

tl

x(l)m (s, z(l), z(l+1))ds

)
− d = 0.

(21)
Note that, unlike system (19), the m-th approximate determining system (20), (21)

contains only terms involving the functions x
(j)
m (·, z(j−1), z(j)) and, thus, are known

explicitly.
It is natural to expect that approximations to the unknown solution of problem

(1), (2) can be obtained by using the function

um(t, z
(0), z(1), ..., z(N)) :=


x
(1)
m (t, z(0), z(1)), if t ∈ [t0, t1] ,

x
(2)
m (t, z(1), z(2)), if t ∈ [t1, t2] ,

....

x
(N)
m (t, z(N−1), z(N)), if t ∈ [tN−1, tN ]

(22)
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which is an ”approximate” version of (17) well defined for all t ∈ [a, b] and z(k) ∈
Dk, k = 0, 1, 2, ..., N.

Lemma 1. If z(0), z(1), ..., z(N) satisfy equations (20), (21) for a certain m, then
the function um(t, z

(0), z(1), ..., z(N)) determined by equality (22) is continuously dif-
ferentiable on [a, b] .

Proof. We recall that the functions of the sequences (15) have the property

x(k)m (tk, z
(k−1), z(k)) = x(k+1)

m (tk, z
(k), z(k+1)) = z(k), k = 0, 1, 2, ..., N − 1. (23)

It follows immediately from (15) that

dx
(k)
m (t, z(k−1), z(k))

dt
= f

(
t, x(k)m (tk, z

(k−1), z(k))
)
−

1

hk

∫ tk

tk−1

f
(
s, x

(k)
m−1

(
s, z(k−1), z(k)

))
ds+

1

hk

[
z(k) − z(k−1)

]
(24)

and
dx

(k+1)
m (t, z(k), z(k+1))

dt
= f

(
t, x(k+1)

m (tk, z
(k), z(k+1))

)
−

1

hk+1

∫ tk

tk−1

f
(
s, x

(k)
m−1

(
s, z(k−1), z(k)

))
ds+

1

hk+1

[
z(k) − z(k−1)

]
. (25)

In view of (20) it follows from (24), (25) that

dx
(k)
m (tk, z

(k−1), z(k))

dt
= f

(
t, x(k)m (tk, z

(k−1), z(k))
)

(26)

and
dx

(k+1)
m (tk, z

(k), z(k+1))

dt
= f

(
t, x(k+1)

m (tk, z
(k), z(k+1))

)
(27)

and on the base of (23) it follows from (26), (27) that

dx
(k)
m (tk, z

(k−1), z(k))

dt
=
dx

(k+1)
m (tk, z

(k), z(k+1))

dt
,

i.e. the derivative of the function um(t, z
(0), z(1), ..., z(N)) of form (22) is continuous

at the points tk, k = 1, 2, ..., N − 1. The continuous differentiability of the function
um(t, z

(0), z(1), ..., z(N)) at other points is obvious from its definition.
5 Example
Let us apply the approach described above to the system of differential equations{

x′1 (t) =
1
2
x22(t)− t

4
x1(t) +

1
32
t3 − 1

32
t2 + 9

40
t = f1(t, x1, x2),

x′2 (t) =
t
8
x1(t)− t2x2(t) +

15
64
t3 + 1

80
t+ 1

4
= f2(t, x1, x2), t ∈ [0, 1.9]

(28)

considered with the integral boundary conditions
x1(0)x2(1.9) +

[
1∫
0

x1(s) ds

]2
= −0.044097222,

x1(1.9)x2(0)−
1∫
0

x2(s) ds = −0.125.

(29)
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m=1 m=2 m=7 m=9

z
(0)
1 -0.4748602215 -0.1075734488 -0.1000001272 -0.09999999351

z
(0)
2 -0.00625079464 -0.1312018998 1.6548×10−8 -1.3781466×10−8

z
(1)
1 -0.3059609811 0.02054437808 0.02499988756 0.02500000602

z
(1)
2 0.2226033171 0.2360172089 0.250000009 0.2499999989

z
(2)
1 -0.1059129 0.1752333605 0.1812499387 0.1812500041

z
(2)
2 0.3470424761 0.3696960632 0.3749998443 0.3750000035

z
(3)
1 0.1051963874 0.3445674853 0.3512500029 0.3512500008

z
(3)
2 0.4532927092 0.4728012162 0.4749995422 0.4750000178

Table 1

Let us choose in (3) N = 3, and introduce the variable mesh-points t0 = 0 = a,
t1 = t0+h1 = 0+1 = 1, t2 = t1+h2 = 1+0.5 = 1.5, t3 = t2+h3 = 1.5+0.4 = 1.9 = b.

It is easy to check that

x∗1(t) =
t2

8
− 1

10
, x∗2(t) =

t

4
. (30)

is a continuously differentiable solution of the problem (28), (29).
Let us choose the sets D0,1, D1,2 and D2,3 as follows:

D0,1 = {(x1, x2) : −0.11 ≤ x1 ≤ 0.03, −0.01 ≤ x2 ≤ 0.25} ,

D1,2 = {(x1, x2) : 0.026 ≤ x1 ≤ 0.18, 0.24 ≤ x2 ≤ 0.37} , (31)

D2,3 = {(x1, x2) : 0.18 ≤ x1 ≤ 0.35, 0.37 ≤ x2 ≤ 0.47} .

Using vectors ρ(1) =

[
0.2
0.3

]
, ρ(2) =

[
0.1
0.2

]
, ρ(3) =

[
0.1
0.4

]
on the base of (31)

and (10), we define the domains

D[1] = {(x1, x2) : −0.31 ≤ x1 ≤ 0.23, −0.31 ≤ x2 ≤ 0.55} ,

D[2] = {(x1, x2) : −0.074 ≤ x1 ≤ 0.28, 0.04 ≤ x2 ≤ 0.57} ,

D[3] = {(x1, x2) : 0.08 ≤ x1 ≤ 0.45, −0.03 ≤ x2 ≤ 0.87} .

Direct computations show that the conditions of Theorem 1 for the problem (28),
(29) in the domains D[1], D[2], D[3] hold.

Applying Maple 14 by solving the approximate determining equations (20), (21)
for m = 1, 2, 7, 9 we obtain the numerical results which are presented in Table 1.

The graphs of the ninth (m=9) approximation and the exact solution (30) of the
BVP (28), (29) are shown on Figure 1.

The number of the solutions of the algebraic determining system (20), (21) co-
incides with the number of solutions of the given integral BVP.

Using vectors ρ(1) =

[
0.4
0.4

]
, ρ(2) =

[
0.2
0.3

]
, ρ(3) =

[
0.1
0.3

]
and sets

D0,1 = {(x1, x2) : −0.14 ≤ x1 ≤ 0.57, 1.03 ≤ x2 ≤ 1.08} ,
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Figure 1. The components of the exact solution (solid line) and its ninth
approximation (drawn with dots)

m=1 m=2 m=7 m=9

ẑ
(0)
1 -0.1521237421 -0.1397657264 -0.1383259999 -0.1383258115

ẑ
(0)
2 1.075809281 1.074153009 1.073568831 1.073568702

ẑ
(1)
1 0.5310279374 0.5570093765 0.5608197314 0.5608200765

ẑ
(1)
2 1.046713842 1.040090793 1.038597963 1.038597766

ẑ
(2)
1 0.7822010976 0.8008809184 0.8042478589 0.8042481471

ẑ
(2)
2 0.7647114402 0.7654378361 0.7640757655 0.7640756219

ẑ
(3)
1 0.9097001195 0.9256427415 0.928760109 0.9287602397

ẑ
(3)
2 0.6279451019 0.6281507937 0.6263505218 0.6263509057

Table 2

D1,2 = {(x1, x2) : 0.56 ≤ x1 ≤ 0.8, 0.76 ≤ x2 ≤ 1.04} ,
D2,3 = {(x1, x2) : 0.8 ≤ x1 ≤ 0.93, 0.62 ≤ x2 ≤ 0.77}

we define domains

D[1] = {(x1, x2) : −0.54 ≤ x1 ≤ 0.97, 0.63 ≤ x2 ≤ 1.48} ,
D[2] = {(x1, x2) : 0.36 ≤ x1 ≤ 1, 0.46 ≤ x2 ≤ 1.34} ,
D[3] = {(x1, x2) : 0.7 ≤ x1 ≤ 1.03, 0.32 ≤ x2 ≤ 1.07} .

Computations show that the approximate determining system (20), (21) side by side
with the solution indicated in Table 1 for m = 1, 2, 7, 9 has another solutions, which
are presented in Table 2.

The graphs of the first, the seventh and the ninth approximations to the second
solution of the given BVP are shown on Figure 2.

The residual obtained as a result of substitution of the ninth approximation into
the given differential system (28) is estimated as follows:

max
t∈[0,1.9]

∣∣∣x′91(t)− 1

2
x292(t) +

t

4
x91(t)−

1

32
t3 +

1

32
t2 − 9

40
t
∣∣∣ = 1.5 · 10−7,

max
t∈[0,1.9]

∣∣∣x′92(t)− t

8
x91(t) + t2x92(t)−

15

64
t3 − 1

80
t− 1

4

∣∣∣ = 6 · 10−7.
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Figure 2. The components of the first (⋆), the seventh (◦) and the ninth (solid
line) approximations to the second solution
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12. Rontó, M. and Varha, Y., Successive approximations and interval halving for integral boundary
value problems, Miskolc Mathematical Notes, vol. 16 , No.2 (2015), 24 pages

Îäåðæàíî 11.11.2015

Íàóê. âiñíèê Óæãîðîä óí-òó, 2015, âèï. �2 (27)


