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THE CASCADE NEO-FUZZY NEURAL NETWORK AND ITS
LEARNING ALGORITHM

New hybrid system of computational intelligence called the Cascade Neo-Fuzzy Neural Network
(CNFNN) is introduced. This architecture has the similar structure with the Cascade-Correlation
Learning Architecture (CasCorLA) proposed by S.E. Fahlman and C. Lebiere, but differs from it in
type of artificial neurons. The CNFNN consists of neo-fuzzy neurons, which can be adjusted using
high-speed linear learning procedures. Proposed architecture is characterized by high learning
rate, low size of the learning sample and its operations can be described by the fuzzy linguistic “if-
then” rules providing transparency of received results, as compared with the conventional neural
networks.

Ó ñòàòòi çàïðîïîíîâàíî íîâó ãiáðèäíó ñèñòåìó îá÷èñëþâàëüíîãî iíòåëåêòó � êàñêàäíó íåî-
ôàççi íåéðîííó ìåðåæó (CNFNN), ùî ìà¹ îäíàêîâó ñòðóêòóðó ç êàñêàäíî-êîðåëÿöiéíîþ íåé-
ðîííîþ ìåðåæåþ Ôàëüìàíà�Ëåá'¹ðà (CasCorLA), îäíàê ó ÿêîñòi âóçëiâ âîíà âèêîðèñòîâó¹
íåî-ôàççi íåéðîíè, ùî íàâ÷àþòüñÿ çà äîïîìîãîþ øâèäêîäiþ÷èõ ëiíiíèõ ïðîöåäóð íàâ÷àí-
íÿ. Ïîðiâíÿíî ç iñíóþ÷èìè òðàäèöiéíèìè àïðîêñèìóþ÷èìè íåéðîííèìè ìåðåæàìè CNFNN
õàðàêòåðèçó¹òüñÿ âèñîêîþ øâèäêiñòþ íàâ÷àííÿ, ïîòðåáó¹ íàâ÷àëüíó âèáîðêó íåâåëèêîãî îá'-
¹ìó, à ¨¨ ôóíêöiþâàííÿ ìîæå áóòè îïèñàíî íå÷iòêèìè ëiíãâiñòè÷íèìè "ÿêùî-òî"ïðàâèëàìè,
çàáåçïå÷óþ÷è ïðîçîðiñòü ðåçóëüòàòiâ, ùî îòðèìóþòüñÿ.

Introduction. Nowadays artificial neural networks (ANNs) are widely applied for
solving a large class of problems related with the processing information given as
time-series or numerical ”object-property” tables generated by the non-stationary,
chaotic or stochastic systems. The most attractive properties of the ANNs are their
approximating possibilities and learning capabilities.

Traditionally by the learning we understand the process of the neural network’s
synaptic weights adjustment accordingly to selected optimization procedure of the
accepted learning criterion [1, 2]. Quality of the received results can be improved
not only by adjusting weight coefficients but also by adjusting architecture of the
neural network (number of nodes). There are two basic approaches of the neural
network architecture adjustment: 1) ”constructive approach” [3–5] — starts with
simple architecture and gradually adds new nodes during learning; 2) ”destructive
approach” [6–8] — starts with initially redundant network and simplifies it through-
out learning process.

Obviously, constructive approach needs less computational resources and within
the bounds of this technique the cascade neural networks (CNNs) [9–11] can be
marked out. The most efficient representative of the CNNs is the Cascade-Correlation
Learning Architecture (CasCorLA) [9]. This network begins with the simplest ar-
chitecture which consists of a single neuron. Throughout a learning procedure new
neurons are added to the network, producing a multilayer structure. It is important
that during each learning epoch only one neuron of the last cascade is adjusted.
All pre-existing neurons process information with ”frozen” weights. The CasCorLA
authors, S.E. Fahlman and C. Lebiere, point out high speed of the learning proce-
dure and good approximation properties of this network. But it should be observed
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that elementary Rosenblatt perceptrons with hyperbolic tangent activation func-
tions are used in this architecture as nodes. Thus an output signal of each neuron is
non-linearly depended from its weight coefficients. Therefore it is necessary to use
gradient learning methods such as delta-rule or its modifications, and speed of an
operation optimization becomes impossible. In connection with the above it seems
to be reasonable to synthesize the cascade architecture based on the elementary
nodes with linear dependence of an output signal from the synaptic weights. It
allows to increase a speed of synaptic weights adjustment and to reduce minimally
required size of training set.

In [12] the ortho-neurons were proposed as such nodes. Also it was shown how
simply and effectively an approximation of sufficiently complex function can be
performed using this technique. In [13–19] the orthogonal and the cascade orthog-
onal networks were introduced. These architectures have shown quite good results
during simulation modeling, significantly exceeding the conventional cascade neural
networks in training speed.

It is well known the main ANN’s disadvantage is a non-interpretability of re-
ceived results, i.e. trained neural network is a ”black box”, and often their usage
is restrained because of this reason. An interpretability and transparency together
with the learning capabilities are the main properties of the neuro-fuzzy systems [20],
which can be trained using backpropagation and in consequence the time required
for weights tuning and the size of a training set are significantly increase.

At this paper an attempt of the new computational intelligence hybrid system
synthesis is taken. This system has cascade architecture and uses nodes which
perform fuzzy inference and can be trained utilizing some optimization procedure.
From our point of view using the neo-fuzzy neurons [21–23] as such elements is
the most reasonable. They possess a high approximation possibilities and their
computation realization is a quite simple.
1. The Neo-Fuzzy Neuron. The neo-fuzzy neuron is a nonlinear multi-input
single-output system shown on Fig. 1. It realizes the following mapping:

ŷ =
n∑

i=1

fi(xi), (1)

where xi is the i-th input (i = 1, 2, . . . , n), ŷ is a system output. The structural
blocks of the neo-fuzzy neuron are nonlinear synapses NSi which perform transfor-
mation of i-th input signal in the form

fi(xi) =
h∑

j=1

wjiµji(xi)

and realizes the fuzzy inference

IF xi IS xji THEN THE OUTPUT IS wji,

where xji is a fuzzy set which membership function is µji, wji is a singleton (synaptic
weight) in consequent [22]. As it can be readily seen the nonlinear synapse in fact
realizes Takagi-Sugeno fuzzy inference of zero order.
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Figure 1. Neo-Fuzzy Neuron

Conventionally the membership functions µji(xi) in the antecedent are comple-
mentary triangular functions as shown on Fig. 2.

For the preliminary normalized input variables xi (usually 0 ≤ xi ≤ 1), the
membership functions can be expressed in the form:

µji(xi) =





xi − cj−1,i

cji − cj−1,i

, x ∈ [cj−1,i, cji],

cj+1,i − xi

cj+1,i − cji

, x ∈ [cji, cj+1,i],

0, otherwise,

where cji are arbitrarily selected centers of the corresponding membership functions.
Usually they are evenly spaced on the interval [0, 1]. This contributes to simplify
the fuzzy inference process. That is, an input signal xi activates only two neighbor-
ing membership functions simultaneously and the sum of the grades of these two
membership functions equals to unity (Ruspini partitioning), i.e.

µji(xi) + µj+1,i(xi) = 1.
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Figure 2. Triangular activation functions

Thus, the fuzzy inference result produced by the Center-of-Gravity defuzzification
method can be given in a very simple form:

fi(xi) = wjiµji(xi) + wj+1,iµj+1,i(xi).

By summing up fi(xi), the output ŷ of the equation (1) is produced.
When a vector signal x(k) = (x1(k), x2(k), . . . , xn(k))T (here k = 1, 2, . . . is a

discrete time) is fed to the input of the neo-fuzzy neuron, the output of this neuron
is determined by both the membership functions µji(xi(k)) and the tunable synaptic
weights wji(k − 1), which have been obtained at the previous training epoch:

ŷ(k) =
n∑

i=1

fi(xi(k)) =
n∑

i=1

h∑
j=1

wji(k − 1)µji(xi(k)),

and thereby the neo-fuzzy neuron contains h · n synaptic weights which should be
determined.

The authors of the NFN note [21–23] among its most important advantages, the
high rate of learning, computational simplicity, the possibility of finding the global
minimum of the learning criterion in real time, and also that it is characterized by
the fuzzy linguistic ”if-then” rules.

The learning criterion (goal function) is the standard local quadratic error func-
tion:

E(k) =
1

2
(y(k)− ŷ(k))2 =

1

2
e(k)2 =

1

2

(
y(k)−

n∑
i=1

h∑
j=1

wjiµji(xi(k))

)2

,

minimized via the conventional gradient stepwise algorithm, resulting in the follow-
ing weights update procedure:

wji(k + 1) = wji(k) + ηe(k + 1)µji(xi(k + 1)) =
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= wji(k) + η

(
y(k + 1)−

n∑
i=1

h∑
j=1

wji(k)µji(xi(k + 1))

)
µji(xi(k + 1)),

where y(k) is a target value of the output, η is a scalar learning rate parameter
which determines the speed of convergence and chosen empirically.

For the purpose of increasing training speed [24,25] Kaczmarz-Widrow-Hoff op-
timal one-step algorithm [26–28] was used in the following form:

w(k + 1) = w(k) +
y(k + 1)− wT (k)µ(x(k + 1))

‖µ(x(k + 1))‖2
µ(x(k + 1)), (2)

where

µ(x(k+1)) = (µ11(x1(k+1)), . . . , µh1(x1(k+1)), . . . , µh2(x2(k+1)), . . .

. . . , µji(xi(k+1)), . . . , µhn(xn(k + 1)))T ,

w(k) = (w11(k), . . . , wh1(k), . . . , wh2(k), . . . , wji(k), . . . , whn(k))T — (h·n)×1-vectors,
generated by the corresponding variables, and its exponentially weighted modifica-
tion{

w(k + 1) = w(k) + r−1(k + 1)(y(k + 1)− wT (k)µ(x(k + 1)))µ(x(k + 1)),

r(k + 1) = αr(k) + ‖µ(x(k + 1))‖2, 0 ≤ α ≤ 1,
(3)

which possesses both smoothing and filtering properties.
If we have a priori defined data set the training procedure can be performed in

a batch mode using the conventional least squares method.
On basis of the neo-fuzzy neurons in [29–34] the two-layer feedforward neuro-

fuzzy network was synthesized. It possesses improved approximation capabilities
in comparison with the conventional multilayer perceptron. Given ANN utilized
a backpropagation for weights adaptation and obviously it results in decreasing
rate of a convergence in the hidden layer. This circumstance also was a reason for
developing the cascade neo-fuzzy neural network described below.
2. The Cascade Neo-Fuzzy Neural Network Architecture. The CNFNN
architecture shown on Fig. 3 and the mapping which it realized have the following
form:

− the neo-fuzzy neuron of the first cascade

ŷ[1] =
n∑

i=1

h∑
j=1

w
[1]
ji µji(xi),

− the neo-fuzzy neuron of the second cascade

ŷ[2] =
n∑

i=1

h∑
j=1

w
[2]
ji µji(xi) +

h∑
j=1

w
[2]
j,n+1µj,n+1(ŷ

[1]),

− the neo-fuzzy neuron of the third cascade

ŷ[3] =
n∑

i=1

h∑
j=1

w
[3]
ji µji(xi) +

h∑
j=1

w
[3]
j,n+1µj,n+1(ŷ

[1]) +
h∑

j=1

w
[3]
j,n+2µj,n+2(ŷ

[2]),
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− the neo-fuzzy neuron of the m-th cascade

ŷ[m] =
n∑

i=1

h∑
j=1

w
[m]
ji µji(xi) +

n+m−1∑

l=n+1

h∑
j=1

w
[m]
jl µjl(ŷ

[l−n]). (4)
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Figure 3. The Cascade Neo-Fuzzy Neural Network Architecture

Thus the cascade neo-fuzzy neural network contains h · (n +
∑m−1

l=1 l
)

adjustable
parameters and it is important that all of them are linearly included in the descrip-
tion (4).

Let us define h(n + m − 1) × 1 the membership functions vector of the m-th
neo-fuzzy neuron

µ[m] = (µ11(x1), . . . , µh1(x1), µ12(x2), . . . , µh2(x2), . . .

. . . , µji(xi), . . . , µhn(xn), µ1,n+1(ŷ
[1]), . . . , µh,n+1(ŷ

[1]), . . . , µh,n+m−1(ŷ
m−1))T

and the corresponding vector of synaptic weights

w[m] = (w
[m]
11 , w

[m]
21 , . . . , w

[m]
h1 , w

[m]
12 , . . . , w

[m]
h2 , . . .

. . . , w
[m]
ji , . . . , w

[m]
hn , w

[m]
1,n+1, . . . , w

[m]
h,n+1, . . . , w

[m]
h,n+m−1)

T ,

which has the same dimensionality. Then we can represent expression (4) in the
vector notation:

ŷ[m] = w[m]T µ[m].
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3. The Cascade Neo-Fuzzy Neural Network Learning. The cascade neo-
fuzzy neural network learning can be performed in both the batch mode and the
mode of sequential information processing (an adaptive weights tuning).

Firstly, let us consider situation when the training data set is defined a priori,
i.e. we have a set of points x(1), y(1); x(2), y(2); . . . ; x(k), y(k); . . . ; x(N), y(N). For
the neo-fuzzy neuron of the first cascade NFN [1] a set of membership level values
µ[1](1), µ[1](2), . . . , µ[1](k), . . . , µ[1](N) (hn× 1 vectors) is evaluated, where

µ[1](k) = (µ11(x1(k)), . . . , µh1(x1(k)), µ12(x2(k)), . . . , µh2(x2(k)), . . .

. . . , µji(xi(k)), . . . , µhn(xn(k)))T .

Then using direct minimization of the learning criterion

E
[1]
N =

1

2

N∑

k=1

(e[1](k))2 =
1

2

N∑

k=1

(y(k)− ŷ[1](k))2

a vector of the synaptic weights can be evaluated

w[1](N) =

(
N∑

k=1

µ[1](k)µ[1]T (k)

)+ N∑

k=1

µ[1](k)y(k) = P [1](N)
N∑

k=1

µ[1](k)y(k), (5)

where (•)+ denotes the Moore-Penrose pseudoinversion.
In case a data proceeds sequentially more suitable to use a recurrent form of the

least squares method instead of (8)





w[1](k + 1) = w[1](k) +
P [1](k)(y(k + 1)− w[1]T (k)µ[1](k + 1))

1 + µ[1]T (k + 1)P [1](k)µ[1](k + 1)
µ[1](k + 1),

P [1](k + 1) = P [1](k)− P [1](k)µ[1](k + 1)µ[1]T (k + 1)P [1](k)

1 + µ[1]T (k + 1)P [1](k)µ[1](k + 1)
, P [1](0) = βI,

(6)

where β is a large positive number, I is a unity matrix with corresponding dimen-
sionality.

Using of adaptive algorithms (2) or (3) is also possible and leads to reducing
of computational complexity of learning process. In any case utilization of the
procedures (2), (3), (8), (6) essentially reduces a learning time in comparison with
the gradient algorithms underlying delta-rule and backpropagation.

After the first cascade learning completion, the synaptic weights of the neo-fuzzy
neuron NFN [1] become ”frozen”, all values ŷ[1](1), ŷ[1](2), . . . , ŷ[1](k), . . . , ŷ[1](N) are
evaluated and the second cascade of the network which consists of a single neo-fuzzy
neuron NFN [2] is generated. It has one additional input for the output signal of
the first cascade. Then the procedure (8) is again applied for adjusting a vector of
the weight coefficients w[2], which has dimensionality h(n + 1)× 1.

In on-line mode the neurons are trained sequentially, i.e. on basis of the input
signal x(k) the synaptic weights w[1](k) are estimated and the vector of outputs
ŷ[1](k) is obtained, then using vector of the second cascade inputs (xT (k), ŷ[1](k))
the weights w[2](k) and the outputs ŷ[2](k) are calculated. For this purpose algo-
rithms (2), (3) and (6) can be used equally well.

Íàóê. âiñíèê Óæãîðîä óí-òó, 2008, âèï. 17



THE CASCADE NFNN AND ITS LEARNING ALGORITHM 55

The neural network growing process (an increasing quantity of cascades) contin-
ues until we obtain required precision of the solved problem’s solution, and for the
adjusting weight coefficients of the last m-th cascade the following expressions are
used:

w[m](N) =

(
N∑

k=1

µ[m](k)µ[m]T (k)

)+ N∑

k=1

µ[m](k)y(k) = P [m](N)
N∑

k=1

µ[m](k)y(k),

in a batch mode or




w[m](k + 1) = w[m](k) +
P [m](k)(y(k + 1)− w[m]T (k)µ[m](k + 1))

1 + µ[m]T (k + 1)P [m](k)µ[m](k + 1)
µ[m](k + 1),

P [m](k + 1) = P [m](k)− P [m](k)µ[m](k + 1)µ[m]T (k + 1)P [m](k)

1 + µ[m]T (k + 1)P [m](k)µ[m](k + 1)
, P [m](0) = βI,

or
{

w[m](k + 1) = w[m](k) + (r[m](k + 1))−1(y(k + 1)− w[m]T (k)µ[m](k + 1))µ[m](k+1),

r[m](k + 1) = αr[m](k) + ‖µ[m](k + 1)‖2, 0 ≤ α ≤ 1,

in a sequential mode.
Thus, the proposed CNFNN significantly excels the Cascade-Correlation Archi-

tecture in learning speed and can be trained in both the batch mode and the se-
quential (adaptive) mode. A linguistic interpretation of received results considerably
extends functional facilities of the cascade neo-fuzzy neural network.
4. Simulation Results. In order to confirm the performance of the proposed
architecture the prediction of time-series is examined. We applied the Cascade
Neo-Fuzzy Neural Network for the forecasting of a chaotic process defined by the
Mackey-Glass equation [35]:

y′(t) =
0.2(t− τ)

1 + y10(t− τ)
− 0.1y(t). (7)

The signal defined by (7) was quantized with step 0.1. We took a fragment
containing 500 points for the training set. Our goal was to predict the time-series
value on six steps forward using its values at the time steps k, (k− 6), (k− 12), and
(k − 18). The testing set contained 9500 points, i.e. the time-series values at the
time steps from 501 to 1000.

For estimation of received result we used normalized mean square error:

NRMSE (k,N) =

∑N
q=1 e2(k + q)

Nσ
,

where σ is a mean square deviation of the predicted process on the training set.
During simulation modelling the CNFNN with 5 cascades was used. First cascade

contained 4 non-linear synapses for each input value of the time-series and each non-
linear synapse contained 10 activation functions (i.e. membership functions). The
input signal was recoded on interval [0, 1]. Obtained experimental results of the
the Mackey-Glass time-series prediction and its error are shown on Fig. 4 a) and b).
After the training of the CNFNN was complete an error on the testing set was 4·10−4.
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a)

b)

Figure 4. The CNFNN simulation results: a) network output and error; b)
predicted and original time-series

Conclusion. The Cascade Orthogonal Neural Network is proposed. It differs from
the known cascade networks in increased speed of operation, real-time processing
possibility and transparency due to linguistic interpretability of received results.
Theoretical justification and experiment results confirm the efficiency of developed
approach to cascade neo-fuzzy systems synthesis.
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