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MULTIPLE-VALUED THRESHOLD LOGIC
Those of us who do not read Russian could not benefit from the pioneering work of Prof. Naum
Aizenberg introducing multiple-valued threshold logic in the complex plane in the decade of the
70’s. Possibly the interest in building multiple-valued threshold ”gates” in hardware, motivated
work mostly on ternary threshold logic. This paper summarizes some early results as well as the
contributions of the author to the development of the area.

Òi ç íàñ, õòî íå ìîæå ÷èòàòè íà ðîñiéñüêié ìîâi, íå ìàëè ìîæëèâîñòi íîñîëîäæóâàòèñÿ ôóí-
äàìåíòàëüíèìè ðîáîòàìè ïðîôåñîðà Íàóìà Àéçåíáåðãà, â ÿêèõ â 1970-òi ðîêè áóëî ðîçâèíóòî
òåîðiþ áàãàòîçíà÷íèõ ïîðîãîâèõ ôóíêöié íàä ïîëåì êîìïëåêñíèõ ÷èñåë. ×åðåç ìîâíi ïåðåïî-
íè, ÿêi çàâàäèëè áàãàòüîì â÷åíèì, ùî ïðàöþâàëè â öié ãàëóçi, îçíàéîìèòèñü ç ïiäõîäîì Í.Í.
Àéçåíáåðãà äî áàãàòîçíà÷íî¨ ïîðîãîâî¨ ëîãiêè íàä ïîëåì êîìïëåêñíèõ ÷èñåë, âîíè ïðîäîâæó-
âàëè ðîçâèâàòè áàãàòîçíà÷íó ïîðîãîâó ëîãiêó íàä ìíîæèíîþ Zn

p âáóäîâàíó â Rn, àáî, iíàêøå
êàæó÷è, íàä [0, p]n. Äî ïîÿâè ðîáiò Í.Í. Àéçåíáåðãà ïðàêòè÷íi ðiøåííÿ â ãàëóçi áàãàòîçíà÷íî¨
ïîðîãîâî¨ ëîãiêè áóëè îáìåæåíi ïåðåâàæíî áàæàííÿì áóäóâàòè áàãàòîçíà÷íi ëîãi÷íi ñõåìè i
íå ïðîñòÿãàëèñÿ äàëi òðèçíà÷íî¨ ïîðîãîâî¨ ëîãiêè. Öÿ ñòàòòÿ ïðèñâÿ÷åíà öèì áiëüø ðàííiì
ïiäõîäàì äî áàãàòîçíà÷íî¨ ïîðîãîâî¨ ëîãiêè i ðåçóëüòàòàì, ùî áóëè îòðèìàíi â ðiçíi ÷àñè íà
îñíîâi öèõ ïiäõîäiâ, i áàçó¹òüñÿ çîêðåìà íà âëàñíîìó âíåñêó àâòîðà â ðîçâèòîê öi¹¨ ãàëóçi.

1. Introduction. Prof. Naum Aizenberg introduced the complex-valued threshold
logic in [1,2], in Russian. Due to the prevailing language difficulties this line was
not followed by other researchers, who chose to work in Zn

p embedded in Rn or,
simply, in [0, p]n. After some work on ternary threshold logic in the early 60s [3],
[4], the first important result may be traced back to [5], proving that multiple-
valued threshold logic is functionally complete, thus providing a theoretical support
to efforts to build hardware threshold gates and assemble circuits. On the other
hand, as in the binary case, the number of threshold functions relative to the total
number of functions for a given p and n is very small. This motivated studies in two
directions. On the one side it was important to determine the areas of application
where threshold gates might be used with advantage, like in the case of arithmetic
circuits. At the same time it was important to consider the increasing demands on
speed and minimal size, which has drawn attention to the use of resonant tunnel
diodes [6] and consider the possibilities of optical computing [7]. On the other hand,
extensions on threshold logic were introduced to alleviate the constraints imposed
by linear separability, by considering polynomial separability [8], as well as non-
necessarily parallel hyperplanes [9] and non-necessarily parallel hypersurfaces [10]
for the required separation of subdomains.
2. Formalisms.

Definition 1. Let Zp be the domain of p-valued variables. An n-place p-valued
function is a mapping f : (Zp)

n → Zp. Let x = x1x2 . . . xn denote an n-tuple in
(Zp)

n. If needed, n-tuples will be processed as vectors, this becoming clear from the
context. Then ∀k ∈ Zpf

−1(k) = def {x|x ∈ (Zp)
n and f(x) = k} will be called a

subdomain. (Notice that a subdomain may be empty). A p-valued function is a
threshold (or linear separable) function iff there are parallel hyperplanes in (Zp)

n

embedded in Rn separating f−1(0) from f−1,. . . , from f−1(p − 1) in a monotonic
way.
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Let w ∈ Rn be a vector of weights and T = (t1, . . . , tp1) be an ordered superset
of real valued thresholds. (A superset is a collection of objects allowing repetitions.)
Finally, let the notation a · b denote the inner product of vectors a and b.

Definition 2. A function f : (Zp)
n → Zp is a linear separable or threshold

function if there exist a weight vector w ∈ Rn and a threshold superset T with
real-valued components such that

f(x) = 0 ⇔ t1 > w · x
f(x) = i ⇔ ti+1 ≥ w · x > ti 1 ≤ i ≤ p− 2
f(x) = p− 1 ⇔ w · x > tp−1

(See example in Fig. 1). If f : (Zp)
n → Zp is a threshold function, then (w; T )

will be called its structure. In what follows this will be written f : (w; T ).

Symbols
0 1 2 3
¦ × • 2

Figure 1. Example of a 2-place 4-valued threshold function w = [2, 1], T = {2.5,
3.5, 7.5}

Definition 3. [8] A function f : (Zp)
n → Zp is polynomial separable if there

exists a set of parallel hypersurfaces separating the subdomains of Zn
p in a monotonic

way. Fig. 2 illustrates a 2-place 4-valued function which is not linear separable
(and therefore is not a threshold function), but exhibits polynomial separability, since
parallel parabolas separate the subdomains in a monotonic way.

Definition 4. [7] A function f : (Zp)
n → Zp is multilineal separable if there

exists a set of non necessarily parallel hyperplanes –(each one representing a binary
threshold function)– separating the subdomains of (Zp)

n. Notice that in this case
more than one hyperplane may be needed to separate two neighbour subdomains.
The summation of the separating binary threshold functions realizes the p-valued
function. (SeeF ig.3).
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Figure 2. Example of a 2-place 4-valued non-threshold function, which has
polynomial separability

Figure 3. Different possible multilineal separations of the function shown in Fig. 2

The combination of the above extensions leads to Adaptive Separable functions
[10]. Fig. 4 illustrates the adaptive separation of the same function as in Fig. 2,
where two of the polynomials are replaced by overlapping window literals (which are
1-place binary threshold functions on each argument) and the third by a straight
line, leading to the following realization:

if (1/3)x1 + x2 ≥ 3.5 then f2(x) = 1 else 0
if (x1)

(2) + x2 ≥ 2.5 then f11(x) = 1 else 0
if (x1)

(3) + x2 ≥ 1.5 then f12(x) = 1 else 0
∀x ∈ (Zp)

n f(x) = f11(x) + f12(x) + f2(x)
where (xi)

(j) = 1 if 0 ≤ j ≤ xi else 0.

Definition 5. Let x = p − 1 − x denote the complement of x ∈ Zp. Notice
that this is equivalent to a symmetric permutation of the domain of the variable. In
the case of x ∈ (Zp)

n, the complementation of the i-th component will be denoted
by χi(x) and the complementation of all components, by χ1(χ2(. . . (χn(x) . . .))) or
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Figure 4. Adaptive separation of the function shown in Fig. 2

simply, x.

Definition 6. [11] Let f : (Zp)
n → Zp be an n-place p-valued function. Moreover

define f(x) = f(χ1(χ2(. . . (χn(x) . . .))); let sym = {x|f(x) = f(x)} and nsym =
|sym|. Then σ = {σ1, σ2, . . . , σp−1} is the set of semidual functions of f , where
∀i, 1 ≤ i ≤ p− 1 and ∀x ∈ (Zp)

n

σi(f(x)) =





i− 1 if x ∈ sym and f(x) = i,
i if x ∈ sym and f(x) = i− 1,

f(x) otherwise.

See examples in Fig. 5, where the shaded entries identify the set sym of f(x).
Notice that σ3(f(x)) = f(x) and therefore it constitutes a trivial semidual function.

Remark 1. Given some x ∈ (Zp)
n, x represents a point which is symmetric x

with respect to the center point of (Zp)
n extended to Rn. The center point of (Zp)

n

has all its coordinates equal to (p− 1)/2.

Remark 2. If p is even, it is possible that nsym = 0, meanwhile if p is odd, the
smallest possible value of nsym is 1, since in this case the center point is in (Zp)

n

and it is its own complement.

Remark 3. It is easy to see from the definition, that σi is an involutive function:
∀x ∈ (Zp)

n holds that σi(σi(f(x))) = f(x).

Figure 5. From left to right: f(x) (with sym shaded), σ1(f(x)) and σ2(f(x))

3. Theorems
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Theorem 1. [12]. If f : (Zp)
n → Zp is a threshold function, then it is uniquely

characterized by the ordered superset (c1, c2, . . . , cn, n0, n1, . . . , np−1), where ∀i, 1 ≤
i ≤ n

ci =
∑
x∈Zn

p

xif(x)

and ∀j, 0 ≤ j ≤ p− 1, nj = |f−1(j)|.
Theorem 2. (Seee.g. [7]). Let Π = {π1, . . . , πn!} be the set of all permutations

of n objects and let f : (Zp)
n → Zp be a threshold function. Then the following

functions based on f are also threshold functions:
i) f(πj(x)) 1 ≤ j ≤ n!
ii) f(χi(x)) 1 ≤ i ≤ n
iii) f(x)
iv) Any combination thereof

Furthermore if f : (w; T ) then
f(πj(x)) : (πj(w); T )
f(χi(x)) : (w(i); T (i))
f(x) : (−w;−µ(T ))

where w(i) denotes a modification of w such that its i-th component is multiplied
by -1 meanwhile the others are preserved; µ is a mirroring function, reversing the
order of the elements of T , and T (i) is obtained from T as follows: ∀j, 1 ≤ j < p

t
(i)
j = tj − (p− 1)wi

Theorem 3. [11] Let f : (Zp)
n → Zp be a threshold function with a characteriz-

ing Nomura ordered superset as defined in Theorem 1. The following notation will
be used:

f(x) → (c1, c2, . . . , cn, n0, n1, . . . , np−1)
furthermore let here Σ denote the summation over all x in (Zp)

n. The following
holds:

i) f(πj(x)) → ((πj(c1, c2, . . . , cn), n0, n1, . . . , np−1) 1 ≤ j ≤ n!
ii) f(χi(x)) → (c′1, c

′
2, . . . , c

′
n, n0, n1, . . . , np−1) 1 ≤ i ≤ n

where c′k = ck, 1 ≤ k ≤ n, k 6= i
c′i = (p− 1)Σf(x)− ci

iii) f(x) → (c′′1, c
′′
2, . . . , c

′′
n, n′′0, n

′′
1, . . . , n

′′
p−1)

where c′′k = pn(p− 1)2/2− ck

and n′′i = np−1−i, 0 ≤ i ≤ p− 1

Theorem 4. [11] Let f : (Zp)
n → Zp be an n-place p-valued threshold function

with nsym > 0. There exists at least one non-trivial semidual function σi(f) that is
also a threshold function with structure (w; T (i)), where ∀j, 1 ≤ j ≤ p−1 and j 6= i,

t
(i)
j = tj meanwhile t

(i)
i will take such a value, that the original i-th hyperplane will

be parallel displaced to a new position, symmetric with respect to the center point
of (Zp)

n. If the i-th hyperplane contains the point (i1, i2, . . . , in) then the displaced
hyperplane contains the point (p − 1 − i1, p − 1 − i2, . . . , p − 1 − in). Particularly,
the i-th hyperplane contains the point (0, 0, . . . , ti, 0, . . . , 0); therefore after shifting,
the hyperplane must contain the point (p− 1, p− 1, . . . , p− 1− ti, p− 1, . . . , p− 1).
See example in Fig. 6.

In the example shown in Fig. 6, since the function has only two arguments, the
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Figure 6. (Left) A 2-place quaternary threshold function. (Right) The semidual
threshold function σ2(f(x)) showing for reference, fine dotted, the position of the

hyperplane before shifting.

hyperplanes are straight lines. The line separating the subdomain of 1’s from the
subdomain of 2’s in f(x) has the equation

x1 = -1/2 x2 + t2 = -1/2 x2 + 13/4,
which obviously contains the point (x2, x1) = (0, 13/4). According to the symmetry
condition stated in the theorem, the parallel-shifted separating straight line must
contain the point ((p− 1), ((p− 1)− 13/4)), and its equation will be

x1=-1/2 x2 + t′2,
from where t′2 = x1 + 1/2 x2 = ((p− 1)− 13/4) + 1/2 (p− 1) = 11/4 + 1/2(3) = 23/4.

From Fig. 6 (Right) it is easy to see that the threshold used by the semidual
function σ2(f(x)) for the shifted separating line is indeed 23/4.

Remark 4. Theorem 4 indicates that given a threshold function, some of its
semidual functions may be non-threshold functions. An example is shown in Fig.
7. This fact may also be seen from the opposite point of view: there are non-linear
separable functions such that some of their semidual functions are threshold. This
is based on the involutive character of semidual functions, as mentioned above in
Remark 3.

Figure 7. A non-threshold function obtained as σ3(f(x)) based on the threshold
function shown in Fig. 6 (Left)
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Notice that if the function of Fig. 7 is called g(x), then σ3(g(x)) = f(x), the
threshold function of Fig. 6, i.e., in this case, a semidual function of a non-threshold
function, is a threshold function.

Remark 5. Let f(x) be a threshold function such that for some z ∈ Zp, the set
sym equals the subdomain for z, i.e, there is no x outside sym such that f(x) = z
and there is no x inside sym such that f(x) z. Then σz(f(x)) and σz+1(f(x)) are
also threshold functions, since they eliminate the z subdomain by merging it with the
preceding or the succeeding domains, respectively. (SeeexampleinF ig.8). All other
semidual functions of f(x) are also threshold, but trivial, since they do not change
f(x).

Figure 8. Example of a 2-place 5-valued threshold function f(x) such that
f(x) = 2 iff x ∈ sym. Both σ2(f(x)) and σ3(f(x)) are threshold (meanwhile

σ1(f(x)) and σ4(f(x)) are trivial)

Remark 6. Nomura’s characterization of threshold functions is very strong. If
two functions have the same characterizing superset, then they are not threshold
functions. If two functions have permuted c-supersets and the same n-superset, then
these functions are related by the same permutation of their arguments. If one of
them is a threshold function, the other will also be a threshold function (Theorem3).

Theorems 2 and 3 have been used in the past to induce a partition on the set of
ternary functions of 2 and 3 variables and to generate tables with characterization
and realization supersets of canonical representative functions [13], [9]. Theorem 4
would allow to reduce the length of those ternary tables by slightly over 50% since
in the original table, a threshold function and its non-trivial semidual function(s)
are in different blocks [11].

4. New roads to be explored
With the advent of new technologies, other possibilities may appear to apply or

extend multiple-valued logic. As an example, in what follows the case of optical
computing using dual channel modulators (see e.g. [14]) will be considered.

It is well known that the function maximum is not a threshold function. In the
case of quaternary logic, however, if the domain for the variables and the function
is defined as {0, 1} and a function g(x2

1, x
2
2) = max(x1, x2) is considered, then, as

can be seen in Fig. 9, the function g is linear separable.
If 1/9 > (x2

1 + x2
2) then f(x) = 0

If 4/9 > (x2
1 + x2

2) ≥ 1/9 then f(x) = 1/3
If 1 > (x2

1 + x2
2) ≥ 4/9 then f(x) = 2/3
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If (x2
1 + x2

2) ≥ 1 then f(x) = 1
As usual in kernel methods, it is possible to project the linear separation of g

back to the original function maximum to obtain a set of concentric circles, centered
at (0, 0) and with increasing radius. Furthermore, as discussed in an earlier exam-
ple, it is possible to obtain equivalent results by replacing the circles with 1-place
literals, which are two-valued threshold functions. Such a realization would be more
expensive (in terms of area and energy consumption) than a classical analogue one,
but would exhibit a high S/N ratio.

Figure 9. (Left) The quaternary non-threshold maximum function. (Right) The
transformed function g(x), which is linear separable.

A direct realization of g in the frame of optical computing and using the idea
of multilineal separability – (a linear separable function is trivially multi-lineal
separable)– is however possible, as illustrated in Fig. 10. Double channel mod-
ulators provide for the squaring of the arguments. Lenses provide for summation of
light-signals, meanwhile non-linear optical devices [15] are appropriate for thresh-
olding purposes.

Figure 10. Optical realization of a quaternary maximum function based on
threshold logic

Last but not least, it should be pointed out that multiple-valued threshold logic is
closely related to neural networks. What gates are in one context, becomes neurons
in the other. A combination of methods and experiences from both areas of research

Íàóê. âiñíèê Óæãîðîä óí-òó, 2008, âèï. 17



178 C. MORAGA

can only lead to richer positive results [16]. This approach was also initiated by
Prof. Naum Aizenberg and is documented in [17], considering multiple-valued neural
networks in the complex plane. A recent contribution in the same direction may be
found in [18].
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