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CONDITIONS OF EXISTENCE WITH PROBABILITY ONE
GENERALIZED SOLUTION OF THE BOUNDARY-VALUE
PROBLEMS OF HYPERBOLIC EQUATIONS WITH RANDOM
INITIAL CONDITIONS

Conditions of existence with probability one generalized solution of hyperbolic equations type par-
tial differential equation of mathematical physics with random strongly Sub,(£2) initial conditions
are found in the multidimensional case.

B pobori 3HaiiieH0 yMOBY iCHYBaHHS 3 IMOBIPHICTIO OQWHUIA Y3araJbHEHOTO PO3B’sA3KY rinepbo-
JIYHOrO PiBHANHS B YACTHHHHUX IOXiNHWX MaTeMarudHol ¢izuxu 3 crporo Sub,()) BunagxoBuMu
MMOYATKOBHME YMOBAMH y DArOTOBUMIPHOMY BHIIAIKY.

Introduction. Boundary value problem for a homogeneous hyperbolic partial dif-
ferential equations of mathematical physics with random strongly Sub,(€2) initial
conditions is considered in the work. For such problem conditions of existence with
probability one generalized solution are found.

Similar problems are considered in [4], [5], [7], [8]. Further references can be
found in [1].

1. Stochastic processes of the space Sub,(f2).

Definition 1 ( [1]). Let T be a nonempty set. A function p: T xT — [0, 00)
1s called a pseudometric if

1) p(t,s)=p(s,t), t,seT,
%) plt.s) <pltv)+p(vs), tsvel,
3) p(t,s)=0,ift=s.

The pair (7, p) is called a pseudometric space.

Definition 2 ( [1]). Let (T, p) be a nonempty metric space and let € > 0. Denote
by N, (t,e) the minimum number of points of an e-net of the set T with respect to
the pseudometric p. The function N, (t, €), € > 0 is called the massiveness of the
set T" with respect to the pseudometric p.

Definition 3 ( [2]). A continuous even function u (x), z € R, such that u (0) =

u( u()

=0, u(x) >0 forx#0 cmdlin%—:(), lim

z r—00

= 00 1 called an N -function.
Lemma 1 ( [1]). Let u(x) be an N-function. Then

) u(lax)<au(z) for0<a<1andz € R;

2) u(az) > au(x) fora>1 and z € R;

9) w(lo]+yl) < u (@) + u(y) forz,y € R

4) the function @ is nondecreasing for x > 0.
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198 A. 1. SLYVKA-TYLYSHCHAK

Lemma 2 ( [1]). Let u(=Y (x) be the inverse to an N-function u (x) for x > 0.
Then u=Y (x) is a conver increasing function such that

1
D v (az) <auV(2) fora>1andz € R;
2) uV(az)>auY(z) for0<a <1 and z € R;
3) ul=(

4) the function @ 18 monincreasing for x > 0.

Definition 4 ( [2]). Let u(z) be an N-function. The function

2|+ lyl) = Y (2) +uly) for z,y € R;

u* () = sup (zy —u(y))

is called the Young-Fenchel transform of the function u (x).
The function u* (z) also is N-function.

Definition 5 ( [1]). Let ¢ (z) be an N-function for which there exist constants
zg > 0 and ¢ > 0 such that ¢ (x) = cx® for |x| < zo. The set of random variables
£ (w), w € s called the space Suby, () generated by the N-function ¢ (z) if E{ =0
and there exists a constants ag such that

Eexp{A} <exp{e(Aag)}

for all X\ € R'.
The space Sub, (£2) is a Banach space with respect to the norm

_) <
7 (€) = sup P! (In Eexp{\¢})
A£0 A

Definition 6 ( [1]). A stochastic process X = {X (t), t € T} belongs to the
space Sub, (1) (X € Sub, () if X(t) € Sub, () for allt € T.

Lemma 3 ( [1]). If £ € Sub, (2), then there exists a constants C' > 0 such that

(B(€)*)'? < Cry(€).

Definition 7 ( [1]). A random variable & € Sub, () is called strongly Sub, (£2)

random variable, if T, (§) = (E§2)1/2. The space of strongly Sub, () random vari-
ables is denoted by SSub, (€2).

Properties and applications of SSub,, (€2) random variables and stochastic pro-
cesses can be found in [1].

Definition 8 ( [3]). A family A of random variables & of the space Sub, () is
called SSub, (2) family

1/2

2
T <Z )\szi) =|E (Z Aifi) ;
i€l el

for all \; € R, where I is at most countable and & € A;, i € 1.
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Theorem 1 ( [3]). Let A be a strongly Sub, (2) family of random variables.
Then the linear closure A of the family A in the Lo () and in the mean square
sense is a strongly Suby, () family.

Definition 9 ( [1]). A stochastic process X; = {X;(t), t € T, i € I} is called
an SSub, () process if the family of random variables X; = {X; (t), t € T, i € I'}
is a SSub, () family.

Theorem 2 ( [3]). Let X; = {X, (t), t € T, i € I} be a family of jointly SSub, (£2)

stochastic processes. Then (T, 0, 1) is a measurable space. If
{cpkz. t),iel, k= l,oo}

is a family of measurable functions in (T, O, n) and the integral

& = / o0 (1) X () dye (1),

T

1s well defined in the mean square sense, then the family of random variables
Af = {gkl, 1el, k= 1,00}
is an SSuby, (Q) family.

Remark 1. A Gaussian stochastic process with zero mean is an SSub, (€2) pro-
cess for

2. The justification of the Fourier method for a partial differential
equation with random initial conditions.
Consider the equation
Pu L( )
=L, 1)

for
n n

0 ou
L(u) = — | aiy; (X)— | —a(X)u.
W= (5 3) ) = a0
The coefficients of the operator L are defined in a finite connected domain G of
dimension n, let
X = (x1, x9, ..., 7Tp)

be are arbitrary point of G. Assume that

n

a(X)=0, aj;=aj, Zaij’yﬁj2a2ﬁ, a>0

ij=1 i=1

in the domain G.
Consider the following problem for equations (1): solve equation (1) in the cylin-
der Q7 = G [0 < t < T for the initial conditions

ou

u|t:0:§(X)7 E _77<X) (2)

t=0
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and the boundary condition
ulg =0, tel0,T], (3)
where S is the boundary of the domain G. Assume that the initial conditions
€(X), X eq), (X)X eq)

are jointly SSub, (2) stochastic processes.
When solving similar problems by using the Fourier method, regardless of whether
initial conditions are random or nonrandom we look for a solution of the form [6]

u(X, t) = i (Ak cos \/Art + By sin \/)\_kt>vk (X), (4)

1

where

1
Ap= [ E(X) v (X)dX, Br=—F= [ n(X)uv(X)dX,

and the A\; and vy (X) are eigenvalues and eigenfunctions of the Sturm-Liouville
problem
L(v)+ M =0.

Definition 10. The solution (4) is called generalized solution of problem (1)—(3)
in the domain 0 < x; < S;, 0 <t < T if series (4) converge uniformly in probability.

Lemma 4 ( [4]). Let initial conditions
(€(X), X €G) and (n(X), X €G)

be jointly SSuby, (2) stochastic processes and assume that the series (4) converge
uniformly in probability. Then the random series (4) also are jointly SSub, ()
stochastic process.

For n > 0 put

n

S, = <Ak coS \/)x—kt + By, sin \/)\_kt> v (X) .

k=1

Theorem 3. Let {(X), X € G, and n(X), X € G, be a jointly SSub, (£2)
stochastic processes. In order that a generalized solution of problem (1)—(3) exist in
the domain of variables (t, x1, T3, ..., x,) such that 0 <t < T, G ={0 < z; <
< Si, i =1,...,n} (T is a positive constants), and be represented in the form of
series (4) it is sufficient that:

1) forall X € G and t € [0,T], the series

Z Z v (X) vy (X) [EAkAl coS \/)\_kt cos \/xt + E By, B sin \/A_kt sin \/)\_lH—

k=1 =1

+2F A B; cos \/ A\t sin \/)\_lt | < o0
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2) forn >1
sup  (E[Su(X,1) = Su(Y,9)[%)* < o(h),

|zi—y;|<h
[t—s|<h

where o (h) is a monotone increasing continuous function such that o (h) — 0

as h — 0, moreover
P | In —1 d 00 )
o= () €< (5)

0+

where U (u) = oY (¢) is the inverse function to o (g) .

_u
D (u)’

Proof. Condition 2) implies that series (4) converge in the mean square sense.
According to theorem 3.6 in the work [4] and Lemma 4, series (4) converge in
probability in the space C' (G x [0,77).

Example 1. Assume that £(X) and n(X) are jointly SSub, () stochastic pro-
cesses. Then theorem 2 and 1 (also see lemma 4) imply that S (t,X) are jointly
Suby, (2) stochastic processes. Let o(x) be a function such that o(x) = |x|? for some

p>1and all || > 1. Then ¥(z) = 2 7r for x > 1 and condition (5) holds for all

e>0: )
/ <1n S ) Cdu <. ©)
o (u)

0+

Conditions (6) holds if o (h) = |1n|h||5 ford > 1 -1 5 and C' > 0. In this case,

assumption 2) of theorem 3 is satisfied there exist constants C' > 0 such

12 _ C

E Sn —Sn S 2 X 7. 80
(15,0~ 5, ) " <

(7)

ford>1— 117 and sufficiently small |h|.
Lemma 5 ( [4]). Let

Gu(X,0) =Y (gl cos /Nt + 1 sin \//\_lt> Z(X), Xe€G te[0,T],
=1

let Z;(X) be a continuous function, and let & and n; be random variables such that
En? < oo and E& < oo. If

sup |Zy(X)| < 4,

XeG

1
sup |ZZ(X)—Z1(Y)| Szl—,
|‘Tz yz|<h ’1n’h“§

i=1,....m

S ((me)} +

1

d>0,lh| <1,

[NIES
SIS

(Enf) > (zl + 0;(In )\l)d) < 00,

~
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then o
sup E|Sn(Xat) _Sn(Y7 S)|2 2 = )
|$i—yi|Sh( ) |ln’hH§
4|f;3\§h

for |h| < 1 where

C = Z(Eglé Enf)%<z,+5l(1n<@+e5))6>).

Theorem 4. Let £(X), X € G, and n(X), X € G, be SSub,(Q2) stochastic
proceses, where p(x) is a function such that ¢(z) = |z|P for some p > 1 and all
|z| > 1. Set

B(X,Y) = EE(X)E(Y),

R(X,Y) = En(X)n(Y).

In order that a generalized solution of problem (1)—(3) exist with probability one in
the domain 0 <t <T,G={0<uz; < S;;i =1,...,m}, and be represented in the
form of series (4), uniformly convergent in probability, it is sufficient that:

1) for sufficiently small h

sup (B(X,X)+ B(Y,Y) —2B(X,Y))} < -
lzi —ys|<h |In h|
i=1,....m
1 C.
sup  (R(X,X)+R(Y,Y) —2R(X,Y))? < — 2,
i=1,....m
where § > 1—2:i=1, ..., n;

2) the series

Z ZTkT‘l |EAkAl| + |EBkBl| + 2|EAkBk|]

k=1 I=1

converges where 1y, = max (Aevr), v = )s(u;gv lu(X);
=Ly c

9) sup [u(X)| < pu, and
XeG

1
sup  [v(X) — o (V)] < %W’

3 ((EA,?)% + (EBE)%) N+ (In \)y) <00, i=1, ..., n,

=1

for arbitrary § > 1 — Ilj and |h| < 1.
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Proof. According to example 1, conditions of theorem 3.9 [4] hold for the
processes £(X) and n(X) if

C 1
oh)= ——=, 0>1—-.
)= T ’

It is clear that the series in condition 2) of theorem 3 converge if so do the series

in condition 2) theorem 4. Example 1 and Lemma 5 imply that condition 3) of
theorem 3 follows from condition 3) of theorem 4.
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