UDC 519.21

A. I. Slyvka-Tylyshchak (Uzhgorod nat. un-ty)

CONDITIONS OF EXISTENCE WITH PROBABILITY ONE GENERALIZED SOLUTION OF THE BOUNDARY-VALUE PROBLEMS OF HYPERBOLIC EQUATIONS WITH RANDOM INITIAL CONDITIONS

Conditions of existence with probability one generalized solution of hyperbolic equations type partial differential equation of mathematical physics with random strongly $S u b_{\varphi}(\Omega)$ initial conditions are found in the multidimensional case.

В роботі знайдено умови існування з імовірністю одиниця узагальненого розв'язку гіперболічного рівняння в частинних похідних математичної фізики з строго $S u b_{\varphi}(\Omega)$ випадковими початковими умовами у баготовимірному випадку.

Introduction. Boundary value problem for a homogeneous hyperbolic partial differential equations of mathematical physics with random strongly $\operatorname{Sub}_{\varphi}(\Omega)$ initial conditions is considered in the work. For such problem conditions of existence with probability one generalized solution are found.

Similar problems are considered in [4], [5], [7], [8]. Further references can be found in [1].

1. Stochastic processes of the space $S u b_{\varphi}(\Omega)$.

Definition 1 ([1]). Let T be a nonempty set. A function $\rho: T \times T \rightarrow[0, \infty)$ is called a pseudometric if

1) $\rho(t, s)=\rho(s, t), \quad t, s \in T$,
2) $\rho(t, s) \leqslant \rho(t, v)+\rho(v, s), \quad t, s, v \in T$,
3) $\rho(t, s)=0$, if $t=s$.

The pair (T, ρ) is called a pseudometric space.
Definition 2 ([1]). Let (T, ρ) be a nonempty metric space and let $\varepsilon>0$. Denote by $N_{\rho}(t, \varepsilon)$ the minimum number of points of an ε-net of the set T with respect to the pseudometric ρ. The function $N_{\rho}(t, \varepsilon), \varepsilon>0$ is called the massiveness of the set T with respect to the pseudometric ρ.

Definition 3 ([2]). A continuous even function $u(x), x \in R^{1}$, such that $u(0)=$ $=0, u(x)>0$ for $x \neq 0$ and $\lim _{x \rightarrow 0} \frac{u(x)}{x}=0, \lim _{x \rightarrow \infty} \frac{u(x)}{x}=\infty$ is called an N-function.

Lemma 1 ([1]). Let $u(x)$ be an N-function. Then

1) $u(\alpha x) \leqslant \alpha u(x)$ for $0 \leqslant \alpha \leqslant 1$ and $x \in R$;
2) $u(\alpha x) \geqslant \alpha u(x)$ for $\alpha>1$ and $x \in R$;
3) $u(|x|+|y|) \leqslant u(x)+u(y)$ for $x, y \in R$;
4) the function $\frac{u(x)}{x}$ is nondecreasing for $x>0$.

Lemma 2 ([1]). Let $u^{(-1)}(x)$ be the inverse to an N-function $u(x)$ for $x>0$. Then $u^{(-1)}(x)$ is a convex increasing function such that

1) $u^{(-1)}(\alpha x) \leqslant \alpha u^{(-1)}(x)$ for $\alpha>1$ and $x \in R$;
2) $u^{(-1)}(\alpha x) \geqslant \alpha u^{(-1)}(x)$ for $0 \leqslant \alpha \leqslant 1$ and $x \in R$;
3) $u^{(-1)}(|x|+|y|) \geq u^{(-1)}(x)+u(y)$ for $x, y \in R$;
4) the function $\frac{u^{(-1)}(x)}{x}$ is nonincreasing for $x>0$.

Definition 4 ([2]). Let $u(x)$ be an N-function. The function

$$
u^{*}(x)=\sup _{y \in R}(x y-u(y))
$$

is called the Young-Fenchel transform of the function $u(x)$.
The function $u^{*}(x)$ also is N-function.
Definition 5 ([1]). Let $\varphi(x)$ be an N-function for which there exist constants $x_{0}>0$ and $c>0$ such that $\varphi(x)=c x^{2}$ for $|x|<x_{0}$. The set of random variables $\xi(\omega), \omega \in \Omega$ is called the space $\operatorname{Sub}_{\varphi}(\Omega)$ generated by the N-function $\varphi(x)$ if $E \xi=0$ and there exists a constants a_{ξ} such that

$$
E \exp \{\lambda \xi\} \leqslant \exp \left\{\varphi\left(\lambda a_{\xi}\right)\right\}
$$

for all $\lambda \in R^{1}$.
The space $S u b_{\varphi}(\Omega)$ is a Banach space with respect to the norm

$$
\tau_{\varphi}(\xi)=\sup _{\lambda \neq 0} \frac{\varphi^{(-1)}(\ln E \exp \{\lambda \xi\})}{|\lambda|}
$$

Definition 6 ([1]). A stochastic process $X=\{X(t), t \in T\}$ belongs to the

Lemma 3 ($[1])$. If $\xi \in \operatorname{Sub}_{\varphi}(\Omega)$, then there exists a constants $C>0$ such that

$$
\left(E(\xi)^{2}\right)^{1 / 2} \leq C \tau_{\varphi}(\xi)
$$

Definition 7 ([1]). A random variable $\xi \in \operatorname{Sub}_{\varphi}(\Omega)$ is called strongly $\operatorname{Sub}_{\varphi}(\Omega)$ random variable, if $\tau_{\varphi}(\xi)=\left(E \xi^{2}\right)^{1 / 2}$. The space of strongly $\operatorname{Sub}_{\varphi}(\Omega)$ random variables is denoted by $\operatorname{SSub}_{\varphi}(\Omega)$.

Properties and applications of $\operatorname{SSub}_{\varphi}(\Omega)$ random variables and stochastic processes can be found in [1].

Definition 8 ([3]). A family Δ of random variables ξ of the space $\operatorname{Sub}_{\varphi}(\Omega)$ is called $\operatorname{SSub}_{\varphi}(\Omega)$ family

$$
\tau_{\varphi}\left(\sum_{i \in I} \lambda_{i} \xi_{i}\right)=\left(E\left(\sum_{i \in I} \lambda_{i} \xi_{i}\right)^{2}\right)^{1 / 2}
$$

for all $\lambda_{i} \in R^{1}$, where I is at most countable and $\xi_{i} \in \Delta_{i}, i \in I$.

Theorem 1 ([3]). Let Δ be a strongly $\operatorname{Sub}_{\varphi}(\Omega)$ family of random variables. Then the linear closure $\bar{\Delta}$ of the family Δ in the $L_{2}(\Omega)$ and in the mean square sense is a strongly $\operatorname{Sub}_{\varphi}(\Omega)$ family.

Definition 9 ([1]). A stochastic process $X_{i}=\left\{X_{i}(t), t \in T, i \in I\right\}$ is called an $\operatorname{SSub}_{\varphi}(\Omega)$ process if the family of random variables $X_{i}=\left\{X_{i}(t), t \in T, i \in I\right\}$ is $\operatorname{SSSub}_{\varphi}(\Omega)$ family.

Theorem $2([3])$. Let $X_{i}=\left\{X_{i}(t), t \in T, i \in I\right\}$ be a family of jointly $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic processes. Then (T, O, μ) is a measurable space. If

$$
\left\{\varphi_{k_{i}}(t), i \in I, k=\overline{1, \infty}\right\}
$$

is a family of measurable functions in (T, O, μ) and the integral

$$
\xi_{k_{i}}=\int_{T} \varphi_{k}(t) X_{j}(t) d \mu(t)
$$

is well defined in the mean square sense, then the family of random variables

$$
\Delta_{\xi}=\left\{\xi_{k_{i}}, i \in I, k=\overline{1, \infty}\right\}
$$

is an $\operatorname{SSub}_{\varphi}(\Omega)$ family.
Remark 1. A Gaussian stochastic process with zero mean is an $\operatorname{SSub}_{\varphi}(\Omega)$ process for

$$
u(x)=\frac{x^{2}}{2}
$$

2. The justification of the Fourier method for a partial differential equation with random initial conditions.

Consider the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=L(u) \tag{1}
\end{equation*}
$$

for

$$
L(u)=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(X) \frac{\partial u}{d x_{j}}\right)-a(X) u .
$$

The coefficients of the operator L are defined in a finite connected domain G of dimension n, let

$$
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

be are arbitrary point of G. Assume that

$$
a(X)=0, \quad a_{i j}=a_{j i}, \quad \sum_{i, j=1}^{n} a_{i j} \gamma_{i} \gamma_{j} \geqslant \alpha \sum_{i=1}^{n} \gamma_{i}^{2}, \quad \alpha>0
$$

in the domain G.
Consider the following problem for equations (1): solve equation (1) in the cylinder $Q_{T}=G[0<t<T]$ for the initial conditions

$$
\begin{equation*}
\left.u\right|_{t=0}=\xi(X),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\eta(X) \tag{2}
\end{equation*}
$$

Наук. вісник Ужгород ун-ту, 2008, вип. 17
and the boundary condition

$$
\begin{equation*}
\left.u\right|_{S}=0, \quad t \in[0, T] \tag{3}
\end{equation*}
$$

where S is the boundary of the domain G. Assume that the initial conditions

$$
(\xi(X), X \in G),(\eta(X) X \in G)
$$

are jointly $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic processes.
When solving similar problems by using the Fourier method, regardless of whether initial conditions are random or nonrandom we look for a solution of the form [6]

$$
\begin{equation*}
u(X, t)=\sum_{k=1}^{\infty}\left(A_{k} \cos \sqrt{\lambda_{k}} t+B_{k} \sin \sqrt{\lambda_{k}} t\right) v_{k}(X) \tag{4}
\end{equation*}
$$

where

$$
A_{k}=\int_{G} \xi(X) v_{k}(X) d X, \quad B_{k}=\frac{1}{\sqrt{\lambda_{k}}} \int_{G} \eta(X) v_{k}(X) d X
$$

and the λ_{k} and $v_{k}(X)$ are eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
L(v)+\lambda v=0
$$

Definition 10. The solution (4) is called generalized solution of problem (1)-(3) in the domain $0 \leq x_{i} \leq S_{i}, 0 \leq t \leq T$ if series (4) converge uniformly in probability.

Lemma 4 ([4]). Let initial conditions

$$
(\xi(X), X \in G) \text { and }(\eta(X), X \in G)
$$

be jointly $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic processes and assume that the series (4) converge uniformly in probability. Then the random series (4) also are jointly $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic process.

For $n \geqslant 0$ put

$$
S_{n}=\sum_{k=1}^{n}\left(A_{k} \cos \sqrt{\lambda_{k}} t+B_{k} \sin \sqrt{\lambda_{k}} t\right) v_{k}(X) .
$$

Theorem 3. Let $\xi(X), X \in G$, and $\eta(X), X \in G$, be a jointly $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic processes. In order that a generalized solution of problem (1)-(3) exist in the domain of variables $\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $0 \leq t \leq T, G=\left\{0 \leq x_{i} \leq\right.$ $\left.\leq S_{i}, i=1, \ldots, n\right\}$ (T is a positive constants), and be represented in the form of series (4) it is sufficient that:

1) for all $X \in G$ and $t \in[0, T]$, the series

$$
\begin{gathered}
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} v_{k}(X) v_{l}(X)\left[E A_{k} A_{l} \cos \sqrt{\lambda_{k}} t \cos \sqrt{\lambda_{l}} t+E B_{k} B_{l} \sin \sqrt{\lambda_{k}} t \sin \sqrt{\lambda_{l}} t+\right. \\
\left.+2 E A_{k} B_{l} \cos \sqrt{\lambda_{k}} t \sin \sqrt{\lambda_{l}} t\right]<\infty
\end{gathered}
$$

2) for $n \geqslant 1$

$$
\sup _{\substack{\left|x_{i}-y_{i}\right| \leq h \\|t-s| \leq h}}\left(E\left|S_{n}(X, t)-S_{n}(Y, s)\right|^{2}\right)^{\frac{1}{2}} \leq \sigma(h)
$$

where $\sigma(h)$ is a monotone increasing continuous function such that $\sigma(h) \rightarrow 0$ as $h \rightarrow 0$, moreover

$$
\begin{equation*}
\int_{0+} \Psi\left(\ln \frac{1}{\sigma^{(-1)}(\varepsilon)}\right) d \varepsilon<\infty \tag{5}
\end{equation*}
$$

where $\Psi(u)=\frac{u}{\varphi^{(-1)}(u)}, \sigma^{(-1)}(\varepsilon)$ is the inverse function to $\sigma(\varepsilon)$.
Proof. Condition 2) implies that series (4) converge in the mean square sense. According to theorem 3.6 in the work [4] and Lemma 4, series (4) converge in probability in the space $C(G \times[0, T])$.

Example 1. Assume that $\xi(X)$ and $\eta(X)$ are jointly $S_{S u b_{\varphi}}(\Omega)$ stochastic processes. Then theorem 2 and 1 (also see lemma 4) imply that $S_{n}(t, X)$ are jointly $\operatorname{Sub}_{\varphi}(\Omega)$ stochastic processes. Let $\varphi(x)$ be a function such that $\varphi(x)=|x|^{p}$ for some $p>1$ and all $|x|>1$. Then $\Psi(x)=x^{1-\frac{1}{p}}$ for $x>1$ and condition (5) holds for all $\varepsilon>0$:

$$
\begin{equation*}
\int_{0+}\left(\ln \frac{1}{\sigma_{k}^{(-1)}(u)}\right)^{1-\frac{1}{p}} d u<\infty \tag{6}
\end{equation*}
$$

Conditions (6) holds if $\sigma(h)=\frac{C}{|\ln | h| |^{\circ}}$ for $\delta>1-\frac{1}{p}$ and $C>0$. In this case, assumption 2) of theorem 3 is satisfied there exist constants $C>0$ such

$$
\begin{equation*}
\left(E\left|S_{n}(t)-S_{n}(s)\right|^{2}\right)^{1 / 2} \leqslant \frac{C}{|\ln | h| |^{\delta}} \tag{7}
\end{equation*}
$$

for $\delta>1-\frac{1}{p}$ and sufficiently small $|h|$.
Lemma 5 ([4]). Let

$$
G_{n}(X, t)=\sum_{l=1}^{n}\left(\xi_{l} \cos \sqrt{\lambda_{l}} t+\eta_{l} \sin \sqrt{\lambda_{l}} t\right) Z_{l}(X), \quad X \in G \quad t \in[0, T]
$$

let $Z_{l}(X)$ be a continuous function, and let ξ_{l} and η_{l} be random variables such that $E \eta_{l}^{2}<\infty$ and $E \xi_{l}^{2}<\infty$. If

$$
\begin{gathered}
\sup _{X \in G}\left|Z_{l}(X)\right| \leq \delta_{l}, \\
\sup _{\substack{\mid x_{i}-y_{i} \leq h \\
i=1, \ldots, m}}\left|Z_{l}(X)-Z_{l}(Y)\right| \leq z_{l} \frac{1}{\left.|\ln | h\right|^{\delta}}, \quad \delta>0,|h|<1, \\
\sum_{l=1}^{\infty}\left(\left(E \xi_{l}^{2}\right)^{\frac{1}{2}}+\left(E \eta_{l}^{2}\right)^{\frac{1}{2}}\right)\left(z_{l}+\delta_{l}\left(\ln \lambda_{l}\right)^{\delta}\right)<\infty
\end{gathered}
$$

then

$$
\sup _{\substack{\left|x_{i}-y_{i}\right| \leq h \\ \mid t-s, \leq h \\ i=1, \ldots, m}}\left(E\left|S_{n}(X, t)-S_{n}(Y, s)\right|^{2}\right)^{\frac{1}{2}} \leq \frac{C}{|\ln | h| |^{\delta}},
$$

for $|h|<1$ where

$$
C=\sum_{l=1}^{\infty}\left(\left(E \xi_{l}^{2}\right)^{\frac{1}{2}}+\left(E \eta_{l}^{2}\right)^{\frac{1}{2}}\left(z_{l}+\delta_{l}\left(\ln \left(\frac{\sqrt{\lambda_{l}}}{2}+e^{\delta}\right)\right)^{\delta}\right)\right) .
$$

Theorem 4. Let $\xi(X), X \in G$, and $\eta(X), X \in G$, be $\operatorname{SSub}_{\varphi}(\Omega)$ stochastic proceses, where $\varphi(x)$ is a function such that $\varphi(x)=|x|^{p}$ for some $p>1$ and all $|x|>1$. Set

$$
\begin{aligned}
& B(X, Y)=E \xi(X) \xi(Y) \\
& R(X, Y)=E \eta(X) \eta(Y)
\end{aligned}
$$

In order that a generalized solution of problem (1)-(3) exist with probability one in the domain $0 \leq t \leq T, G=\left\{0 \leq x_{i} \leq S_{i}, i=1, \ldots, m\right\}$, and be represented in the form of series (4), uniformly convergent in probability, it is sufficient that:

1) for sufficiently small h

$$
\begin{aligned}
& \sup _{\substack{x_{i}-y_{i} \mid \leq h \\
i=1, \ldots, m}}(B(X, X)+B(Y, Y)-2 B(X, Y))^{\frac{1}{2}} \leq \frac{C}{|\ln h|^{\delta}}, \\
& \sup _{\substack{\left|x_{i}-y_{i}\right| \leq h \\
i=1, \ldots, m}}(R(X, X)+R(Y, Y)-2 R(X, Y))^{\frac{1}{2}} \leq \frac{C_{z_{1}}}{|\ln h|^{\delta}},
\end{aligned}
$$

where $\delta>1-\frac{1}{p} ; i=1, \ldots, n$;
2) the series

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} r_{k} r_{l}\left[\left|E A_{k} A_{l}\right|+\left|E B_{k} B_{l}\right|+2\left|E A_{k} B_{k}\right|\right]<\infty
$$

converges where $r_{k}=\max _{i, j=1, \ldots, n}\left(\lambda_{k} v_{k}\right), v_{k}=\sup _{X \in G}\left|v_{k}(X)\right| ;$
3) $\sup _{X \in G}\left|v_{l}(X)\right| \leq \mu_{l}$, and

$$
\begin{gathered}
\sup _{\substack{\left|x_{k}-y_{l}\right|<h \\
k=1, \ldots, m}}\left|v_{l}(X)-v_{l}(Y)\right| \leq \gamma_{l} \frac{1}{|\ln h|^{\delta}}, \\
\sum_{l=1}^{\infty}\left(\left(E A_{l}^{2}\right)^{\frac{1}{2}}+\left(E B_{l}^{2}\right)^{\frac{1}{2}}\right) \lambda_{l}\left(\mu_{l}+\left(\ln \lambda_{l}\right)^{\delta} \gamma_{l}\right)<\infty, i=1, \ldots, n,
\end{gathered}
$$

for arbitrary $\delta>1-\frac{1}{p}$ and $|h|<1$.

Proof. According to example 1, conditions of theorem 3.9 [4] hold for the processes $\xi(X)$ and $\eta(X)$ if

$$
\sigma(h)=\frac{C}{|\ln | h| |^{\delta}}, \quad \delta>1-\frac{1}{p} .
$$

It is clear that the series in condition 2) of theorem 3 converge if so do the series in condition 2) theorem 4. Example 1 and Lemma 5 imply that condition 3) of theorem 3 follows from condition 3) of theorem 4.

1. V. V. Buldygin and Yu. V. Kozachenko. Metric Characterization of Random Variables and Random processes. - Providence.: American Mathematical Society, 2000. - 257 p.
2. M. A. Krasnoselskiy and Ya. V. Rutickiy. Convex Functions and Orlicz Spaces. - Moscow: Fizmatgiz, 1958. - 98 p.
3. Yu. V. Kozachenko and Ya. A. Kovalchuk. Boundary value problems with random initial conditions and series of functions of $\operatorname{Sub}_{\varphi}(\Omega) / /$ Ukr. Matem. Zh. - 1998. - 50, no. 4. P. 504-515.
4. Yu. V. Kozachenko and G. I. Slyvka. Justifications of the Fourier method for hyperbolic equations with random initials conditions // Theor. Probability and Math. Statist. - 2003. P. 63-78.
5. Yu. V. Kozachenko and G. I. Slyvka. Boundary-value problems for equations of mathematical physics with strictly $\operatorname{Sub}_{\varphi}(\Omega)$ random initials conditions // Theory of Stochastic processes. 2004. - 10 (26), no. 1-2. - P. 60-71.
6. N. S. Koshlyakov, E.V. Gliner and M. M. Smirnov. Differential equations of Mathematical Physics. - Moscow: "Vysshaya Shkola", 1962. - 710 p.
7. G. I. Slyvka. A boundary-value problem of the mathematical physics with random initials conditions // Visn. Kyiv Univ. Ser. Fiz.-Mat. Nauk. - 2002, no. 5. - P. 172-178.
8. G. I. Slyvka and K. Yo. Veresh. Justifications of the Fourier method for hyperbolic equations with random initials conditions from Orlicz Spaces // Nauk. visn. Yzh. univ. Ser. math. and inform. - 2008. - Vyp. 16. - P. 174-183.
