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REMARKS ON GENERALIZATIONS OF REED-MULLER
EXPRESSIONS FOR BINARY AND MULTIPLE-VALUED
FUNCTIONS

This paper discusses extensions and generalizations of Reed-Muller expressions for binary-valued
logic functions. Arithmetic expressions are viewed as extensions derived by the change of the
range of function values from the Galois field GF (2) which is usually assumed for binary logic
functions to the field or rational numbers. Generalizations are concerned with the change of the
domain allowing application of these expressions to multiple-valued logic functions and change of
the range to define word-level expressions for these functions. The considerations are focused on
functional expressions preserving properties of Reed-Muller expressions viewed as counterparts of
polynomial (Taylor series) expressions and Fourier series in classical mathematical analysis.

Â öié ñòàòòi îòðèìàíi äåÿêi ðîçøèðåííÿ òà óçàãàëüíåííÿ ïðåäñòàâëåíü Ðiäà-Ìàëåðà äëÿ äâî-
çíà÷íèõ ëîãi÷íèõ ôóíêöié. Àðèôìåòè÷íi ïðåäñòàâëåííÿ ðîçãëÿäàþòüñÿ ÿê ðîçøèðåííÿ, ùî
îäåðæóþòüñÿ çìiíîþ îáëàñòi çíà÷åíü ôóíêöi¨ ç ïîëÿ Ãàëóà GF (2), ùî çàçâè÷àé âèêîðèñòî-
âó¹òüñÿ äëÿ ïðåäñòàâëåííÿ ôóíêöié äâîçíà÷íî¨ ëîãiêè, äî ïîëÿ ðàöiîíàëüíèõ ÷èñåë. Óçà-
ãàëüíåííÿ äîçâîëÿþòü çàâäÿêè ðîçøèðåííþ îáëàñòi âèçíà÷åííÿ çàñòîñîâóâàòè òi ñàìi ïðåä-
ñòàâëåííÿ äî ôóíêöié áàãàòîçíà÷íî¨ ëîãiêè, à çàâäÿêè ðîçøèðåííþ îáëàñòi çíà÷åíü, âèâîäèòè
òàêîæ áàãàòî-ðîçðÿäíi ïðåäñòàâëåííÿ äëÿ òàêèõ ôóíêöié. Çàïðîïîíîâàíèé ïiäõiä ñêîíöåíòðî-
âàíèé íà îòðèìàííi ôóíêöiîíàëüíîãî ïðåäñòàâëåííÿ iç çáåðåæåííÿì âëàñòèâîñòåé ïðåäñòàâ-
ëåíü Ðiäà-Ìàëåðà, ùî ðîçãëÿäàþòüñÿ ÿê àëüòåðíàòèâà ïîëiíîìiàëüíîãî ïðåäñòàâëåííÿ (ðÿäè
Òåéëîðà) i ïðåäñòàâëåííÿ çà äîïîìîãîþ ðÿäiâ Ôóð'¹ â êëàñè÷íîìó ìàòåìàòè÷íîìó àíàëiçi.

Introduction. Discrete functions are usually defined as a mapping

f : ×n
i=1Si → L,

where Si, i = 1, . . . , n and L are finite non-empty sets of not necessarily equal
cardinalities |Si| and |L|, respectively, and × denotes the direct (Cartesian) product
of sets.

Binary-valued (switching) and multiple-valued logic functions are two classes of
discrete functions of particular interest in this paper. In these cases, Si = L = {0, 1}
and Si = L = {0, 1, . . . , p − 1}, for all i, for binary and multiple-valued (p-valued)
functions. Cases p = 3 and p = 4 are most often encountered in practice for practical
reasons. Ternary functions (p = 3) are most compact in the sense of the number
of data which can be encoded with ternary sequences of the given length, while
quaternary functions are convenient due to simple encoding of four values by binary
sequences and then implementation by two-stable state circuits.

Since discrete functions are mappings between finite sets, the simplest way to
specify a discrete function f is to enumerate its values at all the points of the
domain of f . This can be done in a tabular form or as a vector of function values,
or in some similar way. However, this method cannot be used for functions of a
large number of variables, i.e., defined in many points. For that reason, various
analytical representations as Sum-of-product or Product-of-sums expressions have
been investigated already from the time of the work by De Morgan in 1874 [10].
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This subject was of a continuous interest in the past, and nowadays it has a renewed
importance due to demands coming from features that are present in contemporary
or can be expected in future technologies for realization of digital system. We
provide few former and recent references illustrating different attempts to define
various functional expressions for discrete functions [2–6, 8, 11, 18, 19, 21, 22, 24–27,
30,31,33,34,39–41].

Reed-Muller expressions are particular functional expressions for binary valued
functions which can be viewed as a discrete analogue of either Taylor series or Fourier
series for functions on the real line R. They are defined in terms of a particular set
of basis functions defined as elementary products of binary variables. These are
products of all possible combinations of n binary-valued variables. For a given
function f , no identical products can appear in the Reed-Muller expression for f .

In this paper, we discuss extensions and generalizations of Reed-Muller expres-
sions defined by preserving the same set of basis functions for the binary case or its
straightforward generalizations for the multiple-valued case. We attempt to provide
explanations of differences and motivation to introduce few different expressions.
Various other expressions which can be related to the Reed-Muller expressions in
other ways are out of the scope of this paper, however, related references for initial
reading on this subject are provided in closing remarks.
1. Reed-Muller expressions. The elementary product of binary variables x1, . . . , xn

in Hadamard ordering can be determined as entries of the matrix

X(n) =
n⊗

i=1

Xi(1), Xi =
[

1 xi

]
,

where ⊗ denotes the Kronecker product.
Any binary-valued function f(x1, . . . , xn) can be represented as

f(x1, . . . , xn) =
2n−1∑
i=0

ris(i), calculations in GF (2),

where s(i) are entries of X(n) and ri ∈ {0, 1}.
In matrix notation, coefficients ri, written as entries of a vector Rf (n) = [r0, r1, . . . , r2n ]T

are determined as

Rf (n) = R(n)F,

where

R(n) =

(
n⊗

i=1

Ri(1)

)
, Ri(1) =

[
1 0
1 1

]
,

and F = [f(0), f(1), . . . , f(2n − 1)]T is the function vector of f .
Formally, Ri(1) is the inverse of the numerical version of Xi(1), which is Xi(1) =[

1 0
1 1

]
; but in GF (2) this matrix is its own inverse; therefore no explicit inversion

is needed.
Table 1 presents basic properties of the Reed-Muller expressions in terms of

operations in Boolean algebra and Boolean ring. As noticed in [20], resemblance
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Table 1.
Properties of the Reed-Muller transform in terms of Boolean operations.

h(x) = f(x)⊕ g(x) Sh(w) = Sf (w)⊕ Sg(w)

h(x) = f(x) ∨ g(x) Sh(w) = ⊕u∨v=wSf (u)Sg(v)

h(x) = f(x) ∧ g(x) Sh(w) = Sf (w)⊕ Sg(w)⊕u∨v=w Sf (u)Sg(v),

Convolution theorem
Sh(w) = Sf (w) ∨ Sg(w) h(x) = ⊕y∨z=xf(y)g(z)

to the properties of the Fourier transform on R is stronger if the Gibbs algebra is
assumed as the underlying algebraic structure for study the Reed-Muller expressions.

Definition 1 (Gibbs algebra [20]). The set R of n-tuples (x1, . . . , xn) of elements
from {0, 1} with pointwise addition modulo 2

(f ⊕ g)(x) = f(x)⊕ g(x),

where x = (x1, . . . , xn), is a linear space isomorphic to a subspace of the dyadic field
F.

The multiplication in F induces a multiplication in R defined by

(fg)(0) = 0,

(fg)(x) =

σ(x)−1∑
s=0

f(σ(x)− 1− s)g(x), x 6= 0,

where σ(x) =
∑n

i=1 xi2
n−i.

Table 2 presents basic properties of the Reed-Muller expressions in terms of
operations in the Gibbs algebra [20].

The optimization of the Reed-Muller expressions is usually considered as a re-
duction of the number of non-zero coefficients, which can be achieved by selecting
between the positive xi and negative xi = 1 ⊕ xi literals for each variable. In this
way, 2n different Fixed-polarity Reed-Muller can be assigned to a given function
f . The expansion with the minimum number of non-zero coefficients is usually se-
lected. Since there can be few expressions with the same number of coefficients, the
expansion with the smaller number of literals per products is selected.

An alternative (spectral) interpretation of Fixed-polarity Reed-Muller expres-
sions can be given as follows [7].

The negative literal can be viewed as permutation of the values 0 and 1 a binary
variable can take into 1 and 0. This results in a particular permutation of the
set of basis functions in terms of which the decomposition of a given function f
is preformed. This permutation is equivalent to a permutation of elements of the
function vector, and for some permutations, the basis functions (entries of function
vector) are distributed in a manner which reduces the number of coefficients.
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Table 2.
Properties of the Reed-Muller transform in terms of operations in the Gibbs

algebra.

Self-inverseness
SSf

(w) = f

Kronecker property
W (x) ≡ 1, ∀x ∈ {0, 1, . . . , 2n − 1}
SW q(w) = δ(q, w), δ - Kronecker delta

Translation formula

SW qf (w) =

{
Sf (w − q), w > q,
0, w ≤ q.

Parseval relation

〈f, g〉 =
∑2n−1

x=0 f(x)g(x)
g(x) is the dyadic conjugate defined as
g = RTg, where g is the function vector of g.

〈f, g〉 =
∑2n−1

w=0 Sf (w)Sg(w)

Convolution theorem
Sf ·g(w) = Sf (w) · Sg(w)

Arithmetic expressions. When representing multi-output functions, a separate
Reed-Muller expression is required for each output. Alternatively, k-outputs of a
multiple-output function can be viewed as binary encoding of integers which can
be represented by k bits. In this way, a multiple-output function is identified with
an integer function which can be represented by the arithmetic expressions defined
as integer counterpart of the Reed-Muller expressions [9, 23, 27–29]. This means,
we keep the same set of basis functions as determined by the primary products
of binary variables, or columns of the Reed-Muller matrix R(n), however, with
function values interpreted as integers 0 and 1 instead the logic values. This matrix
we denote by A−1(n). We take the inverse of it over the field of rational numbers
Q, as the arithmetic transform matrix A(n) which is used to define coefficients in
the arithmetic expressions. Since coefficients in arithmetic expressions are integers,
which means computer words are required to represent them, these expressions
belong to the broad class of various word-level functional expressions for binary-
valued functions.

Definition 2. (Arithmeticexpressions). Every function of n binary-valued vari-
ables taking values in the set of integers Z can be represented as

f(x1, . . . , xn) =
2n−1∑
i=0

ais(i), calculations in Q,
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where s(i) are entries of Xa(n) and ai ∈ Q, with

Xa(n) =
n⊗

i=1

Xa,i(1), Xa,i =
[

1 xi

]
,

with xi taking the values of integers 0 and 1.

The coefficients in arithmetic expressions written as a vector Af (n) = [a0, a1, . . . , a2n ]T

are calculated in matrix notation as

Af (n) = A(n)F,

where

A(n) =

(
n⊗

i=1

Ai(1)

)
, Ai(1) =

[
1 0

−1 1

]
= (Xa,i(1))−1.

Since the arithmetic expressions are defined with respect to the same set of basis
functions as the Reed-Muller expressions, the optimization of arithmetic expressions
is performed by selecting polarities of variables in the same way as in the Reed-Muller
expressions. In this way, Fixed-polarity arithmetic expressions are defined [27,28].
Generalizations to Multiple-Valued Functions. An approach towards general-
izations of the Reed-Muller expressions to multiple-valued functions f : {0, 1, . . . , p−
1}n → {0, 1, . . . , p−1} is to use the basis functions which are a direct generalization
of basis functions defined by X(n) and Xa(n). In the case of the Reed-Muller and
the arithmetic expressions, to each binary variable xi a matrix X(1) =

[
x0

i x1
i

]
is

assigned. By an analogy, to each p-valued variable xi ∈ {0, 1, . . . , p − 1} we assign
a matrix

Xp,i(1) =
[

x0
i x1

i . . . xp−1
i

]
,

where the exponentiation is defined as a purposely introduced operation or derived
from the multiplication in the underlying algebraic structure assumed for the con-
sidered class of p-valued functions. The Reed-Muller-Fourier expressions and Galois
field expressions are examples of functional expressions derived in these two different
approaches but by using the same principle to define the set of basis functions.

The set of basis functions is defined by elementary products of integer powers
of variables, which in matrix notation can be expressed as the Kronecker product
of matrices Xp,i(1) in the same way as in the case of Reed-Muller expressions for
binary functions

Xp(n) =
n⊗

i=1

Xp,i(1).

The coefficients in these expressions are determined by using the matrix inverse
to the matrix whose columns are the basis functions determined by Xp(n).
Galois field expressions. This generalization of Reed-Muller expressions will be
illustrated by the example of functions taking their values in GF (3) and GF (4).

Table 3 defines the addition and multiplication in GF (3), which are actually
addition and multiplication modulo 3.
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Table 3.
Addition and multiplication in GF (3).

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Each n-variable three-valued function can be represented as a polynomial of the
form

f(x1, . . . , xn) =
3n−1∑
i=0

aig(i), (1)

where ai, i ∈ {0, 1, 2, 3}, g(i) are the product terms defined in the Hadamard order
as elements of the vector X3GF (n) defined by

X3GF (n) =
n⊗

i=1

X3GF,i(1), X3GF,i(1) =
[

1 x1
i x2

i

]

and addition and multiplication are carried out in GF (3), i.e., modulo 3.
Therefore, when written explicitly, the set of basic functions for n = 1 is given

by columns of the matrix

X3GF,i(1) =




1 0 0
1 1 1
1 2 1


 .

In matrix notation, for a function f specified by the function vector F = [f(0), . . . , f(3n−
1)]T , the coefficients gi in the Galois field expression are calculated as

Gf = G3GF (n)F,

where

G3GF (n) =
n⊗

i=0

G3GF,i(1), G3GF,i(1) = (X3GF (1))−1 =




1 0 0
0 2 1
2 2 2


 in GF (3).

Example 1. For n = 2, the Galois field transform matrix for GF (3) is defined
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Table 4.
Addition and multiplication in GF (4).

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

as G3GF (2) =




1 0 0
0 2 1
2 2 2


⊗




1 0 0
0 2 1
2 2 2


 =

=




1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0
0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 2 2 2
2 0 0 2 0 0 2 0 0
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1




.

Table 4 shows addition and multiplication in GF (4).

Each n-variable four-valued function can be represented as a polynomial of the
form

f(x1, . . . , xn) =
4n−1∑
i=0

aig(i), (2)

where ai, i ∈ {0, 1, 2, 3}, g(i) are the product terms defined in the Hadamard order
as elements of the vector X4GF (n) defined by

X4GF (n) =
n⊗

i=1

X4GF,i(1), X4GF,i(1) =
[

1 x1
i x2

i x3
i

]

and addition and multiplication are carried out in GF (4).
When written explicitly, for n = 1,

X4GF (1) =




1 0 0 0
1 1 1 1
1 2 3 1
1 3 2 1


 .
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The inverse of it over GF (4) is

G4GF (1) =




1 0 0 0
0 1 3 2
0 1 2 3
1 1 1 1


 .

This matrix is used as the basic matrix to determine by Kronecker product the
transform matrix used to calculate coefficients in GF expressions for p = 4.

As obvious from Example 1, the GF -transform matrix does not preserve the tri-
angular structure of the Reed-Muller and arithmetic transform matrices for binary-
valued functions. A consequence is that in optimization by selecting different polari-
ties for variables we are restricted to p out of p! permutations of values a variable can

take. These permutations are defined as
p−
x = x⊕ i, i = 1, 2, . . . , p−1. All other per-

mutations do not change the number of non-zero coefficients, which follows from the
structure of the GF -transform matrix. This disadvantage in reduction of the num-
ber possible different functional expansions is overcome in the Reed-Muller-Fourier
transform discussed below.
Arithmetic Expressions for Multiple-Valued Functions derived from GF -
expressions. Extensions of GF -expressions for multiple-valued functions to the
corresponding word-level expressions can be done in two different ways. In the first
approach, the form of basis functions is preserved, i.e., basis functions are defined as
products of integer powers of variables xk

i , k ∈ {0, 1, . . . , p−1}, where exponentiation
is derived from multiplication in the set of integers.

The following example illustrates the definition of arithmetic expressions for
multiple-valued functions by the example of ternary functions.

Example 2. For ternary functions the basis matrix used in definition of the
arithmetic expressions is defined as

X3(1) =
[

x0 x1 x2
]
,

or in explicit form as

X3(1) =




1 0 0
1 1 1
1 2 4


 .

The arithmetic transform matrix used to calculate the coefficients in the arith-
metic expression is

A3(1) =




2 0 0
−3 4 −1

1 −2 1


 .

A problem with this approach towards definition of the arithmetic transform is
that values which take basis functions are large, especially for a large value of p,
since the exponent of xp−1 is taken. This can be overcome if we keep the same
set of basis functions as in GF -expressions and interpret their values as integers
instead of values in GF (p). Then, we will have the same set of basis functions as
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in GF -expressions, however, under different interpretation of function values, the
coefficients will be integers which when scaled by a normalization factor can be used
to represent multi-output functions in multiple-valued variables.

Example 3. If the basis functions X3GF (1), are interpreted as functions taking
the corresponding integer values, the matrix inverse over the filed of rational numbers
Q defines the basic ternary arithmetic transform. This matrix is given by

A3(1) =




2 0 0
0 −2 2

−2 4 −2


 .

The optimization of these both classes of arithmetic expressions can be done by
selecting polarities for variables in the same way as in Galois field expressions for
binary and multiple-valued case. The restrictions to use p complements of variables
remain valid also in this case due to the structure of the transform matrix.
Reed-Muller-Fourier Expressions. A disadvantage of GF -expressions is that
except for GF (2), the matrix expressing basis functions, and consequently the ma-
trix used to calculate the coefficients in the expressions, is not triangular. As no-
ticed above, this restricts the possible permutations which can be used in the cor-
responding fixed-polarity expressions. Thus, that approach to generalizations of
Reed-Muller expressions to multiple-valued logic functions has this feature as a lim-
itation in optimization of the expressions by selecting polarities of variables. At the
same time, the structure of the transform matrices reflect to the properties of the
related expressions in the same ways as discussed in the binary case (see Table 1 and
Table 2) and their resemblance to the properties of the classical Fourier transform.
That was a motivation for generalizations of the Reed-Muller expressions derived
by their interpretation presented in [20]. In this way, the Reed-Muller-Fourier ex-
pressions have been defined.

The Gibbs algebra for binary functions can be generalized to p-valued functions
in a straightforward manner [33]. The function W playing the role of exponential
functions in Fourier analysis is defined as

W (x) ≡ p− 1,∀x ∈ {0, 1, . . . , pn − 1},
where x = (x1, . . . , xn), xi ∈ {0, 1, . . . , p− 1}, and

σ(x) =
n∑

i=1

xip
n−1.

The addition is taken as componentwise addition modulo p,

(f ⊕ g)(x) = f(x)⊕ g(x), mod p,

and the multiplication is defined in the same way as in the case of binary-valued
functions,

(fg)(0) = 0,

(fg)(x) =

σ(x)−1∑
s=0

f(σ(x)− 1− s)g(x), x 6= 0.
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222 R. STANKOVIĆ J. ASTOLA, C. MORAGA

Table 5.
Addition and multiplication modulo 3.

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 6.
The Gibbs exponentiation 3EXP .

∗ 0 1 2
0 2 0 0
1 2 1 0
2 2 2 2

The set S = {W 1, . . . , W pn} is the basis in terms of which the Reed-Muller-
Fourier expressions are defined as

f(x1, . . . , xn) =

pn−1∑
i=0

riW
i+1, mod p.

In order to express the Reed-Muller-Fourier expressions in terms of p-valued vari-
ables, it is necessary to formally define the exponentiation as an operation derived
from multiplication defined above. The definitions will be illustrated by the example
of p = 3 and p = 4.

To define the Reed-Muller-Fourier-expressions for ternary functions, we introduce
the following notation and definitions [34,36,37].

Table 5 defines addition and multiplication modulo 3, and Table 6 defines a
new operation of exponentiation 3EXP , based on the Gibbs multiplication defined
above, and therefore called the Gibbs exponentiation.

In this way, the basis functions are defined as

X3RMF (n) =
n⊗

i=1

X3RMF,i(1),

where

X3RMF,i(1) =
[

x∗0i x∗1i x∗2i

]
=

[
2 x∗1i x∗2i

]
.

The Reed-Muller-Fourier expressions for ternary functions are defined in terms
of this set of basis functions as

f(x1, . . . , xn) = (−1)nX3RMF (n)Rf (n)

where

Rf (n) = R(n)F =

(
n⊗

i=1

R(1)

)
F,
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Table 7.
Addition and multiplication modulo 4.

⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 2
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 2
2 0 2 0 2
3 0 3 2 1

where

R(1) =




1 0 0
1 2 0
1 1 1




and calculations are performed modulo 3.

Example 4. For n = 2, the Reed-Muller-Fourier transform matrix is

R(2) =




1 0 0
1 2 0
1 1 1


⊗




1 0 0
1 2 0
1 1 1


 =

=




1 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0
1 2 0 2 1 0 0 0 0
1 1 1 2 2 2 0 0 0
1 0 0 1 0 0 1 0 0
1 2 0 1 2 0 1 2 0
1 1 1 1 1 1 1 1 1




.

For an illustration, consider the RMF-expression of a function f defined by the
function vector F = [1, 1, 2, 2, 0, 1, 2, 1, 0]T , the RMF-coefficients are given by the
vector Rf = [1, 0, 1, 2, 1, 1, 2, 0, 1]T , and the RMF-expression is

f = 1⊕ 2x∗22 ⊕ x∗11 ⊕ x∗11 x∗12 ⊕ x∗11 x∗22 ⊕ x∗21 ⊕ x∗21 x∗22 .

The definition of RMF-expressions can be uniformly extended to functions for p
non-prime. This will be illustrated for the example of p = 4.

Tables 7 and 8 define the operations of addition and multiplication modulo 4
and the Gibbs exponentiation 4EXP .

The Reed-Muller-Fourier expressions for quaternary functions are defined in
terms of this set of basis functions as

f(x1, . . . , xn) = (−1)nX4RMF (n)Rf (n)

where

Rf (n) = R(n)F =

(
n⊗

i=1

Ri(1)

)
F,
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Table 8.
The Gibbs exponentiation 4EXP .

∗ 0 1 2 3
0 3 0 0 0
1 3 1 0 0
2 3 2 3 0
3 3 3 1 1

Table 9.
Number of non-zero coefficients required to represent various two-variable

quaternary functions.

Function zero-polarity min-polarity
GF RMF GF RMF

x1 ⊕ x2 14 7 14 7
x1x2 GF 14 3 14 3
x1x2 mod 4 12 6 13 6
x1 + x2 12 7 12 7
max{x1, x2} 13 7 13 7
min{x1, x2} 13 6 13 6
max{x1x2} 13 7 14 10
min{x1x2} 14 8 14 9

x defined by the rule x⊕ x = 0.

where

Ri(1) =




1 0 0 0
1 3 0 0
1 2 1 0
1 1 3 3




and calculations are performed modulo 4.
Notice that both the matrices defining basis functions and transform matrices

used to calculate the coefficients are triangular matrices with upper right part con-
sisting of zero elements. Due to that, it is possible to exploit all p! permutations of
a p-valued variable as its complements. In this way, the number of different expres-
sions for a function of n variables is extended from pn into (p!)n, which increases
possibilities to determine expressions with reduced number of non-zero coefficients
compared to Galois field expressions. At the same time, all properties corresponding
to properties of the Fourier representations, as presented in Table 2 for the binary
case, are preserved.

To illustrate the impact of application of an extended set of (p!) logic com-
plements, we present the following examples comparing the number of non-zero
coefficients in GF and RMF -expressions [37].

Table 9 compares the number of non-zero coefficients in GF and RMF -expressions
for some functions, which are often met in practice and were used as examples also
in [38].
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Table 10 compares the number of non-zero coefficients in GF and RMF expres-
sions in some benchmark functions for binary-valued functions viewed as quaternary
functions after suitable modifications usually used in this area [37].

Table 10.
Number of non-zero coefficients in GF and RMF -expressions for benchmark

functions.

GF RMF
alu4-3 9696 6301
alu4-4 8609 6393
alu4-5 8515 6070
alu4-6 3117 1553
alu4-7 9308 6668
alu4-8 9266 6596
rd84-1 36 130
rd84-2 8 32
rd84-3 81 1
rd84-4 150 131
sao2-1 350 340
sao2-2 338 646
sao2-3 494 699
sao2-4 510 694
av 3605.57 2589.57

Table 11 shows the average number of nonzero-coefficients in GF and RMF -
expressions over 20 sets of 1000 randomly generated quaternary functions in each
set. In this table, r is the ratio of the number of coefficients. Considered are
functions of two and three variables [37].

Table 11.
Number of non-zero coefficients for randomly generated functions, p = 4.

n GF RMF r
2 12.547 7.367 41%
3 44.129 35.032 20%

A detailed analysis and comparison of efficiency of various expressions including
GF and RMF expressions is presented in [1].
Arithmetic counterpart of RMF-expressions. To extend applicability of RMF-
expressions to integer valued functions, the arithmetic RMF-expressions are defined
by using the same basis functions, however, with their values {0, 1, . . . , p− 1} inter-
preted as integers. Then, we calculate the inverse of the matrix XpRMF (n) over the
field of rational numbers Q. This matrix cannot be represented by the Kronecker
product, however, presses a recursive structure as will be illustrated below by the
example for functions in ternary variables [35, 37].

Definition 3. The Arithmetic RMF-transform matrix for ternary functions is
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defined as

A3(n) =




A3(n− 1) O3(n− 1) O3(n− 1)
B3(n− 1) −B3(n− 1) O3(n− 1)
C3(n− 1) B3(n− 1) A3(n− 1)


 ,

where O3(n − 1) is the (3n−1 × 3n−1) zero matrix, and matrices B3(n − 1) and
C3(n− 1) also express the same recursive structure,

B3(n) =




B3(n− 1) O3(n− 1) O3(n− 1)
C3(n− 1) −C3(n− 1) O3(n− 1)
A3(n− 1) C3(n− 1) B3(n− 1)


 ,

and

C3(n) =




C3(n− 1) O3(n− 1) O3(n− 1)
A3(n− 1) −A3(n− 1) O3(n− 1)
B3(n− 1) A3(n− 1) AC(n− 1)


 ,

with A3(0) = 2, B3(0) = −4, C3(0) = 2. If holds, A3(n) +B3(n) +C3(n) = O3(n).
Thus, for n = 1, it is

A3(1) =




2 0 0
−4 4 0

2 −4 2


 .

The matrix A3(n) is used to calculate coefficients in the arithmetic RMF-expres-
sions defined as

f(x1, . . . , xn) = 2a0 +
3n−1∑
i=1

ais(i),

where s(i) are columns of the matrix X3RMF (n), with entries interpreted as integers.
In other words, s(i) are 3AND product of ternary variables to the integer powers
in terms of 3EXP in Hadamard ordering.
Closing Remarks. This paper presents a review of definitions of extensions and
generalizations of Reed-Muller expressions for binary-valued logic functions. The
term extensions refers to the definition of world level expressions used to represent
integer valued functions in terms of binary-valued variables. These expressions are
known as arithmetic expressions and can be used to efficiently represent multi-output
binary logic functions.

The term generalizations refers to definitions of the corresponding expressions
for multiple-valued logic functions. In this case, bit-level (multiple-valued bits) and
word-level expressions can be also defined.

In this paper, we focus on the Reed-Muller expressions and their extensions and
generalizations derived by interpretation of logic AND and EXOR as operations
in Galois field GF (2) and the expressions itself as polynomial (Taylor series-like)
or spectral (Fourier series-like) expressions. Thus, we consider functional expres-
sions which can be written in terms of variables in functions to be represented and
preserving at the same time properties resembling these of Fourier representations.

Word-level expressions for multiple-valued functions which we considered are
defined in two ways

Íàóê. âiñíèê Óæãîðîä óí-òó, 2008, âèï. 17



REMARKS ON GENERALIZATIONS OF REED-MULLER . . . 227

1) By assigning to each p-valued variable a polynomial of order p in terms of
exponentiation as an operation in the field of rational numbers Q, and using
these polynomials to define the set of basis functions for n-variable functions,

2) By preserving the same set of basis functions as in modulo p structures, how-
ever, with interpretation of function values in the set of integers, to determine
coefficients in the expressions considered.

Various other generalizations in terms of combinations of either modular opera-
tions, or min and max operations, and literal operators, are not discussed. In a way,
the expressions based on min and max operations (as a generalization of logic AND
and OR), as well as literal operators, can be rather viewed as generalizations of Sum-
of-Product (SOP) expressions and related representations for two-valued (Boolean)
logic functions, than as a generalization of polynomial or spectral representations.
For these representations we refer to [11,12,26].

We also did not discuss representations where the main intention was to reduce
the number of non-zero coefficients while preserving fast calculation algorithms,
however, at the price of discharging other properties usually expressed by spectral
(Fourier series-like) expressions. For such generalizations of Reed-Muller expressions
we refer, for instance, to [13–18].
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35. Stanković, R.S., Moraga, C. An algebraic transform for prime-valued functions. Proc. 5th Int.
Workshop on Spectral Techiques, Beijing, China, 15.-17.3.1994, 205-209, also in Stanković,
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