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Abstract. The spin–spin mass splitting of light, heavy and mixed mesons are described within a good
accuracy in the potential model with screened potential. We conclude that the long-range part of the
potential cannot be pure scalar and that a vector–scalar mixture is favored. Excellent spin–spin splittings
of heavy quarkonia are obtained with the same parameters as the ones which give the correct average mass
spectrum. The results are obtained by going beyond the usually used perturbation method, namely using
a configuration interaction approach.

1 Introduction

The problem of hyperfine splitting in mesons still attracts
wide interest. It is widely accepted that the quark poten-
tial model gives a rather good description of the spin aver-
age mass spectrum of hadrons, considered as a composite
system of quarks [1]. However, the question of explaining
the influence of spin, namely the spin–orbit (“fine”) and
the spin–spin (“hyperfine”) interaction, is not solved yet.
The problem of mass splitting is due to the spin struc-
ture and it is closely connected with the Lorentz struc-
ture of the quark potential. These effects are far from
being solved yet. One of the first works in these fields
were [2,3] and references cited therein. Quite recently a
QCD motivated potential was applied to heavy quarkonia.
Unfortunately, the authors of [4] restricted themselves to
comparing the results to a single experimental value, the
J/Ψ–ηc mass difference. No attempt was made to calculate
other quark–antiquark pairs. The spectroscopy of heavy
mesons is studied also in [5]. The authors calculated only
the spectra mass of heavy mesons B, BS , D, DS including
the spin–spin interaction. In [5] the first- and second-order
calculations of the masses are in good agreement with the
experimental data, except for the higher spin states. Be-
sides, there are several works in which the authors take
a limited number of pairs (like ud) of particles for which
the splitting is calculated. Their results are quite good,
but in [6] the authors limited themselves to considering
only the π, ρ, K, K∗ mesons. Analogously Buchmuller
and Tye [7] also consider only two systems, namely cc and
bb, though in the states 1S and 2S. They obtained good
results for these particular pairs. There is another paper
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[8] in which both splitting and decay properties are stud-
ied. In this paper, also good results for hyperfine splitting
are obtained. But the authors calculate only a few special
mesons (J/Ψ–ηc). The authors in this paper come to the
conclusion that only the one-gluon term gives a contribu-
tion in the hyperfine splitting. From our paper, it is clear
that confinement also plays an essential role in the cal-
culations of the hyperfine effects in mesons. To illustrate
this, we show the results of the mass differences of the
(J/Ψ–ηc) mesons, where the one-gluon term gives in hy-
perfine splitting only 62MeV, while the confinement part
gives 38.8MeV (which is very essential).

2 Interaction potential

We turned to the use of a realistic potential, namely, a
screened potential, for obtaining acceptable results. In our
case the choice of the potential itself is motivated by the
consideration of the most accurate description of the av-
eraged mass spectrum.

Our approach is based on the model of the non-
perturbative gluon propagator, which was saggested by
Chikovani, Jenkovszky and Paccanoni (CJP) [9]. In this
model the propagator has the form

D
(
q2

)
=

c

(q2 − µ2)
− 1
q2 −M2 , (1)

and the corresponding potential assumes the form [9]

V (r) =
g2

6πµ
(1− exp [−µr])− 16π

25
exp [−Mr]

r · ln
(
b+ 1/ (Λr)2

) .
(2)
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In fact, we used the simple form for the one-gluon-
exchange type of the αs/r term with QCD-like asymptotic
freedom, in a numerical calculation, where

αs (r) =
12π

33− 2N
· 1

ln
(
1/

(
Λ̃r

)2
) , (3)

where Λ̃ is taken to be equal to Λ̃ = 0.14GeV. The initial
value of αs was defined via calculating the qq masses.

As Gerasimov pointed out [10], the QCD lattice calcu-
lations indicate that the spin–spin forces are rather short-
range. Also Laerman et al. [11] showed that the quark
confinement potential is lower than the linear confine-
ment potential, when r, the distance between the quarks,
becomes larger. The screened potential just satisfies this
condition. In this case, even the basic solutions for the
unperturbed Hamiltonian cannot be found in analytical
form. We found these solutions numerically and evaluated
the matrix elements numerically too. The final results for
hyperfine splitting for the screened potential are given in
Tables 1 and 2. The following parameters were used in the
screened potential: g2/(6π) = 0.224GeV2, µ = 0.054GeV.
All parameters were taken from [12]. Experimental values
were taken from [13].

However, there are more “exact” QCD-motivated po-
tentials, which are based on two loop back diagrams [14].
But by a more detailed consideration it appears that these
accounts were carried out only for the one-gluon-exchange
part.

Following many authors we assume an admixture of
the vector–scalar potential (soft model). We consider the
vector and scalar parts of a static potential [1]:

V (r) = VS (r) + VV (r) , (4)

where

VV = −aS
r
+ ε

g2

6πµ
(
1− e−µr

)
,

VS = (1− ε) g
2

6πµ
(
1− e−µr

)
, (5)

and ε is the mixing constant. Here the Lorentz nature
of the one-gluon and the confining potential is different,
the one-gluon potential being totally of vector type, while
the confining part has a vector–scalar mixture character.
This choice seems to be reasonable, since non-perturbative
vertex corrections are important at small q2, i.e. large dis-
tances and naturally are coupled only with the long-range
term in the potential. A very interesting review was given
in the work of Brambilla concerning the choice of the in-
teraction potential in [15].

3 Configuration interaction approach

The main problem of our work is to clarify some aspects of
the hyperfine interaction in the framework of the config-
uration interaction approach (CI approximation, or CIA

[16]). As is well known, the CIA approach was successfully
used in atomic physics [16], where the authors show that
the configuration interaction approach is more reasonable
than the perturbation method. The main advantage of the
CIA lies in the fact that in this approach one does not use
the interaction parameter α, which in this region of QCD
is rather large; because of that the perturbation theory
is out of use in CIA. The differences beetwen CIA and
perturbation theory are shown in [17], but the most im-
portant difference is that in CIA we take into account the
fifth order of the expansion, while in perturbation theory
we can obtain only the first and second orders; because of
this the CIA is more precise.

The Hamiltonian can be written as

H = H0 +HSS, (6)

where for the screened potential

H0 =
1
2m

∇2 − aS
r
+ ε

g2

6πµ
(
1− e−µr

)
, (7)

wherem is the reduced mass of the qq system and h = c =
1 units are used. We take into account HSS in (6), because
we calculate hyperfine splitting in S-waves. Then all terms
in which the orbital quantum number l are contained are
absent.

In the framework of the Breit–Fermi approach the
spin–spin interaction term is

HSS =
2

3mq1mq2

S1S2∆VV, (8)

where S1,2 are the spins of the particles; S1S2 = −3/4 for
pseudo-scalar mesons and S1S2 = 1/4 for vector mesons.

Now, we consider the Schroedinger equation

(H0 +HSS)Ψ (r) = EΨ (r) . (9)

Here we suggest to use the CI approach. The essence of
this approximation is that the wave function Ψ (r), which
is expanded in a set of eigenfunctions ϕn (r) of the Hamil-
tonian H0, is

Ψ(r) =
∑

n

anϕn(r). (10)

On substituting (10) into (9) and using the eigenvalue
E0

n, we obtain a homogeneous system of linear equations
for an:

an

(
E0

m − E)
= −

∑
n

an 〈ϕm|HSS|ϕn〉 (11)

or

a1
(
E − E0

1 − W11
) − a2W12 − a3W13 − . . . − anW1n = 0,

−a1W21 + a1
(
E − E0

2 − W22
) − a3W23 − . . . − anW2n = 0,

· · ·

−a1Wn1 − a2Wn2 − a3Wn3 − . . . + an

(
E − E0

n − Wnn

)
= 0,
(12)
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Table 1. Hyperfine splitting for light and mixed quark systems

[18]
∆MTHEOR

(MeV)

[19]
∆MTHEOR

(MeV)

[20]
∆MTHEOR

(MeV)

Our results
∆MTHEOR

(MeV)

∆MEXP

(MeV)

∆Mρ−π 634 550 651 923 635
∆Mρ′−π′ 329 - - 411 150
∆Mϕ−η 217 - 270 580 320
∆Mϕ′−η′ 135 - - 285 -
∆MK∗−K 405 461 393 707 398
∆MK∗′−K′ 195 - - 336 200
∆MD∗−D 92 147 150 186 143
∆MD∗′−D′ - - - 112 -
∆MB∗−B 32 52 58 57 45.9
∆MB∗′−B′ - - - 36 -

which have to be truncated for a reasonable large n. In
(11) E0

m is the eigenvalue of the non-perturbative Hamil-
tonian,

H0ϕm = E0
mϕm, (13)

and Wij = 〈ϕi|Ŵ |ϕj〉.
It is evident that the solution of (12) exists only if the

determinant which contains the coefficients an is equal to
zero. The diagonalization of this determinant gives the val-
ues of energies we are looking for. This is a good method
for the eigenvalues En. This procedure goes far outside
the perturbative method. Our calculations showed that
the next terms of the CIA method give a contribution of
order of 10% for heavy mesons (See AppendixA) and 35%
for light mesons. Let us stress that the first term of the
CIA method is in fact just a perturbative method result.
The CIA expansion better takes into account the interac-
tion between particles. A similar approach was suggested
in [18], where the expansion was carried out in the basis
functions of the oscillator potential. The proposed method
is of considerable interest, since the perturbation method
is still used as the practical method [5,6,19].

4 Hyperfine splitting

We compare our results with results obtained in the works
[18–20]. In [18] good results are obtained, but the authors
introduced additional parameters r0. In [19], the hyperfine
splitting is calculated in a first account of perturbation
theory. There it is shown that the first-order perturbation
theory gives a good description of the experimental data.
The best results are obtained in [20], but only the one-
gluon term is taken in the spin–spin forces into account.
In all these works there is one common flaw: they are
restricted to viewing a limited number of mesons.

In Table 1 we show the final data for light-quark sys-
tems, which have mainly a relativistic character, and we
compare them with other data. The results obtained for
light mesons indicates that a non-relativistic model is not

applicable. In the case of the average spin spectrum, this
model for light mesons gives similar results as in the rel-
ativistic approach [12,21]. The calculations are carried
out by using (1)–(13). In our quasi-relativistic approach
we should take into account in the Hamiltonian also the
term of order p4. In [20] it was shown that the spec-
trum of the Hamiltonian in non-relativistic potential mod-
els and the spectrum of the relativistic Hamiltonian for
the bound state and for the first radial excited state are
equivalent. On the other hand, Lucha and Shoeberl [1]
have shown that in some cases this relativistic kinemati-
cal term changes the mass spectrum drastically. In other
papers, the authors introduce new additional parameters
and obtain a good description of hyperfine splitting. In [22]
Faustov et al. also have made similar calculations using a
quasi-potential, but evidently this potential was chosen
unsuccessfully, as ε turned out to be -0.9. Evidently this
negative value lacks a clear physical meaning, as a mixing
parameter. Therefore this approach lost very much of its
heuristic value in understanding the results obtained.

In Table 2 we present the results of a hyperfine splitting
calculation in heavy-quark systems. Namely, exactly for
these systems our Breit–Fermi approach must be true to
a maximal extent. The obtained results for the hyperfine
splittings of the S-wave states agree with the measured
splittings. As is seen, most of our results have mainly a
predictive character. The results in Table 2 showed that
for 2S-states we obtain somewhat worse results for the
hyperfine splitting than for the 1S-states. This may mean
that in this state the mixing of S- and D-waves is very
essential. In the 2S-state, as is shown in [23], the mixing
can give a contribution of 10%, while in the case of 1S-
states the mixing correction is only of the order of 1%.
In other words, we believe that taking into account the
mixture of S- and D-waves would considerable improve
our results.

We suggest that the potential consists of a sum of vec-
tor and scalar parts. This idea of scalar–vector mixing was
discussed in [24–27]. The authors of these papers also came
to the conclusion that its mixing parameter must be dif-
ferent from zero. Franzinis et al. [24] showed that VCONF



358 V. Lengyel et al.: Calculation of hyperfine splitting in mesons using configuration interaction approach

Table 2. Hyperfine splitting for mixed and heavy-quark systems

[18]
∆MTHEOR

(MeV)

[19]
∆MTHEOR

(MeV)

[20]
∆MTHEOR

(MeV)

Our results
∆MTHEOR

(MeV)

∆MEXP

(MeV)

∆MD∗
S−DS 87 190 128 163 144

∆MD∗′
S −D′

S
- - - 100 -

∆MB∗
S−BS - - - 50 47

∆MB∗′
S −B′

S
- - - 33 -

∆MB∗
c −Bc - - - 49 -

∆MB∗′
c −B′

c
- - - 31 -

∆Mγ−ηb 31 39 82 46 -
∆Mγ′−η′

b
9 - - 26 -

∆MJ/Ψ−ηc 65 100 112 110 117
∆MΨ−η′

c 32 54 - 67 95

must be totally scalar, while VOGE must be totally vector,
but nevertheless they cannot give an adequate description
of the data concerning the fine splitting. In [25–27] De-
oghuria and Chakrabarty chose a confining potential of
the form

V = εVOGE + (1− ε)VCONF (14)

and found ε = 0.2, to be treated as an adjustable pa-
rameter. In this paper we have used the same approach
for a CJP-type potential and consider ε = 0.5, because
with this value of ε we obtained a good description of
spin–spin splitting in heavy mesons. With this value of ε
we described the hyperfine splitting of all mesons, from
heavy to light ones.

5 Conclusion

The results for heavy quarkonium are quite good for the
value of ε = 0.5, which coincides with results obtained
by Lai-Him Chan [28]. For light quarkonium the results
are worse, which means that relativistic effects have to
be taken into account more carefully. We believe that the
difference between these cases exactly reflects this fact.

We conclude, that it is very important to take confine-
ment into account in the spin–spin effect calculations. For
example the one-gluon term gives only 56% in the case of
the uu system and 38% in the cc system in the splitting.

Our calculations show that CIA gives better results
than the perturbation method. (See for example [16].)

Appendix

A Calculation of hyperfine splitting using
oscillator potential

In this part we obtain the hyperfine splitting for the J/Ψ
and ηc mesons using the configuration interaction
approach with an oscillator potential.

Let us write down for this case the Fermi–Breit equa-
tion for the two-quark system in the form(

− 1
2m
∆+Ar2 − αS

r
+HSS

)
Ψ(r) = EΨ(r), (A.1)

where

H0 = − 1
2m
∆+Ar2, (A.2)

HSS =
2

3mq1mq2

S1S2∆VV, (A.3)

and (A.3) is an addition to the non-perturbed Hamilto-
nian.

In this case the vector and scalar parts of the potential
are equal accordingly:

VV = −αS

r
+ εAr2 and

VS = (1− ε)Ar2. (A.4)

On the one hand the oscillator potential is not so bad in
describing the quarkonia data, on the other hand it allows
us to obtain analytic basis solutions. HSS is the additional
term which has to be taken into account in CIA. Also we
put the one-gluon-exchange term into the CIA. Substitut-
ing the expanded wave function into (A.1) and using the
condition of orthonormality of the basis functions, we ob-
tain an algebraic system of equations for the coefficients
an.

Two remarks are to be made in connection with (A.3).
First, we shall consider the contribution to the spin–spin
term of the potential consisting of both one-gluon and
many-gluon exchanges (A.4). Then we have

HSS =
2

3mq1mq2

S1S2 (4επαSδ(r) + 6A) . (A.5)

The second remark concerns the meaning of the pa-
rameter ε. According to the general point of view [1] only
a vector contribution is present in (A.3). In order to avoid
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Table 3. Hyperfine splitting between J/Ψ and ηc mesons

1 2 3 4 5 6 7 8 9 ∆MEXP

1S 37 41 44 46 47 48 49 50 51 117

2S − 39 43 46 48 49 51 52 53 95

introducing additional parameters, we shall consider the
mixing parameter ε to be same for many-gluon terms ap-
proximately equal to ε = 1 in the case of an oscillator
potential.

If we restrict ourselves to one term in the expansion (7)
then (8) is reduced to the perturbation method. We repre-
sent the wave function in (A.1) as the two basis functions
of (7),

Ψ(r) = a1ϕ1(r) + a2ϕ2(r), (A.6)

which immediately leads to a much better approximation.
Namely, one obtains for the energies

E1,2 =
E0

1 + E
0
2 +H11 +H22

2
(A.7)

± 1
2

√
(E0

1 − E0
2 +H11 +H22)

2 + 4H12H21,

where Hnm = 〈ϕm|HSS|ϕn〉.
Let us write for completeness the first two terms of the

oscillator wave functions:

ϕ1S (r) =
[
2β3/4

π1/4

]
e−βr2/2Y l

m,

ϕ1S (r) =

[√
6β3/4

π1/4

] (
1− 2

3
βr2

)
e−βr2/2Y l

m,

where β = (Amq)1/2. In this case the corresponding ma-
trix elements should have the form

H11 = −2αSβ
1/2

π1/4 +
S1S2

m2
q

{
4A+

8αSβ
3/2

3π1/2

}
,

H22 = −5αSβ
1/2

3π1/4 +
S1S2

m2
q

{
4A+

4αSβ
3/2

π1/2

}
,

H12 = H21 = −2αSβ
1/2

√
6π1/2

+
S1S2

m2
q

{
4
√
6αSβ

3/2

3π1/2

}
. (A.8)

Substituting (A.8) into (A.7) and using the standard
values of E0

m for the oscillator potential one can obtain
the values for the hyperfine splitting which are given in
Table 3. The parameters are chosen to be A = 0.014GeV3,
ε = 1, mq = 1.5GeV, αS = 0.32, since exactly these
parameters give the best results for the oscillator potential
in the meson masses.

Certainly, using the oscillator potential we obtain only
didactically relevant values.
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