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Abstract
Two-Coulomb-centre quasiradial and quasiangular wavefunctions asymp-

totic for large distances between the fixed positive charges (nuclei) are de-
rived for the entire space of the negative particle (electron).

1. Introduction

The two-Coulomb-centre problem shares its origin with quantum mechanics,
and since then extensive work has been devoted to it. In spite of this, much
interest in this problem still exists. The reason is twofold. On one hand, the two-
Coulomb-centre system is an important model for the theory of diatomic molecules,
much as the hydrogen atom is for the theory of multielectron atoms. On the other
hand, this system has many applications, such as in the study of certain scattering
problems and the characterization of plasma radiation.

Accurate calculations of the two-Coulomb-centre wavefunctions in the asymp-
totic region require formidable computational efforts [1]. A number of algo-
rithms are now available which calculate the energy terms and wavefunctions
for the Z;eZs quasi-molecule numerically, within a given accuracy, for both the
same [2, 3, 4] and different [5, 6, 7] Coulomb centres.

In spite of the progress achieved in numerical calculations, the asymptotic
methods used in different limiting cases play an important role. The reason is
that the asymptotic methods yield results in an analytical form, while the usual
numerical methods require formidable computational efforts, and the asymptotic
methods provide results useful in the appropriate regions to check and replace the
difficult numerical methods.
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The two-Coulomb-centre problem also was investigated in the relativistic case (8],
study of exchange interactions in molecular ion dimers [9], at small intercenter dis-
tances in two-dimensional [10] and arbitrary dimensional [11] cases.

The energy terms for the Z;eZ, quasi-molecule can be expanded for large dis-
tances R between the Coulomb centres by the sum of asymptotic expressions of
two types. Energy requires the so-called long-distance interaction terms (propor-
tional to different powers of 1/R), which describe the interaction of charge Z;(Z2)
with the multipole moments of the hydrogen-like ion and exponentially small terms
that describe the exchange interaction between nucleus and the hydrogen-like ion.
Despite smallness, the exponential terms are of significance when two energy terms
of the system ZjeZ, pseudo-cross each other at finite R, or when symmetric and
antisymmetric terms converge as R — co. An asymptotic expression for the ex-
change interaction is more difficult to obtain than is the long-distance one, because
. .perturbation theory is not valid for the calculation of exchange interactions [12].

2. Basic equations

The motion of the electron in the field of two fixed nuclei with charges Z; and
Z is described by the following Schrédinger equation:

(__;_A 4 é) (7, R) = E(R)®(7, R) (1)

1 T2

where r; and rp are the distances from the electron to nuclei 1 and 2, E(R) is
the electron energy and R is the distance between the nuclei. The Schrédinger
equation (1) is separable in the prolate spheroidal coordinates:

_r1+re _T1—T2 _ . Y
5_ R ’ n= R I W—arCtan (1‘), (2)
€ € [1;00], n€[-11], ¢ € [0;27].

If we replace the wave function ®(7, R) by the product function

e:i:imgo .
(", R) =X, R)Y(n,R)— 3
(L R) = X (& R)Y (1. R) ®)
we obtain the quasiradial and quasiangular equations X (¢, R) and Y (n, R)
d dX ER? m?

&gt [Aa+7(52—1)+(21+ZQ)R§—£2—_1]X=0, @)

d dY ER? m? -
%(1—772) an T [‘/\vﬁ‘T (1-n*) - (24 —ZQ)Rn—l_—ng]Y=O' (5)

Here )¢ and ), are the separation constants on R, and m is the modulus of the
magnetic quantum number. The two one-dimensional equations (4) and (5) are
equivalent to the original Schrodinger equation provided the separation constants

are equal:
Ae = Ay (6)
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Let us use the new functions

U =(-1DiX(ER), V() =Q1-1)Y(n,R)
and introduce new variables

pr=7R(E—-1), p1€[0,00]; p2=7vR(1+n), p2€l0,2vR]

where v = (—2E)'/2. In the terms of new variables we can rewrite equations (4)
and (5) in the following form:

1 (Zi+Ze+X/R 1-m2\ 1 1-m?
" _ - _ ) -
U(”l”[ 4+( 2 DR ) AR
n Z1+Z2—)\§/R 1—m? 1
4y2R 8y2R?2 ) 1+ p1/29R
1 —m? 1
+ UPl =07
167232(1+p1/27R)2] ()
(M
1 Zy—Zy—MR 1-m2\ 1 1-m?
VI/ _ - n i -
(p2)+[ 4+( 2y WE ) 45
B Zl—Z2-|-)\§/R_].-—m2 1
4v2R 8y2R2 ) 1—pa/29R
1 —-m? 1
+ V(p2) =0.
16Y2R? (1 — p/2vR)*
(8)

When R is much larger than the size of electron shells centred on the left-hand
nucleus (R > r, < 2n?/Z;, where n is the principal quantum number), the ratios
p1/R and pa/R are small quantities in intra-atomic space (p1, p2 < r,). This fact
allow us to use the perturbation theory to equations (7) and (8) in intra-atomic
space to find the separation constants A¢, A, and energetic parameter .

3. Perturbation theory

Let us assume that when R tends to infinity, A has the same order as R. Then
in a zero-order approximation (i.e. at R = 00) the equation (7) takes the following

form: )
1 1—-m
0O (o) + -2+ 22—

P+ 2 WO () =0 ©)

where

_ A +Zz+)\(0)/R

= 2 )

The solution of (9) satisfying the boundary condition when p; — 0 is

1

m+1

u® (p1) = N{” exp (—p1/2) p{" D2 F ( 5

—xl,m+1,p1) (10)
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where NI(O) is the normalization constant, which is determined from the condition

00 1/2

|
(0) 2d =1 N(O) — (nl + m)
u =
0/ [ (er) P ny! (m!)? 2n1+m+1)

and F(a,B ) is the confluent hypergeometric function. For the solution (10) to
satisfy the boundary condition at infinity, the parameter (m+1)/2 — 5¢; should be
equal to zero or a negative integer (m+1)/2 — 51 = —ny,(n; =0,1,2,...). Hence
for the separation constant A(%) (R) we obtain

AO(R) = Ry(2n1 + m + 1) — (Z1 + Z2)].

To find the solution at large but finite values of the parameter R, we shall
use the perturbation theory. In equation (7), we shall consider the energy as a
parameter with a certain given value and the separation constant A as an eigenvalue
of the corresponding operator. Then the computation of the corrections to the
eigenvalue and eigenfunction acquires a standard character We expand the desired
wavefunction U(p;) to the unperturbed wavefunctions uls (pl) series:

Ulpr) =Y et (R)ugy (p1)-

Substituting this expansion into (7), multiplying the obtained equality by u(o)*

and integrating, we find

1—m? -
(r=29 -157) et e

i( 1)kt [zl+z2 MR
= (2vR)* 2y

1—m?
+ (043 | T tntlabiedeng. (1)

Here the matrix elements of the operator 1/p; are diagonal. Relation (11) allows
us to calculate any order of corrections to the eigenvalue and eigenfunction.
Let us express the separation constant and expansion coefficient in the following
forms
A=20 £ D L@ 4 Cnp = 6(9) +c(1) +C(2)

Here A(*) and c(’f) are the values of the R~%*! and R~* orders respectively.
To determlne the corrections to the nth elgenvalue and eigenfunction, we put

©) (0) = 0. To find the first-order approximation, we substitute A =

cny = land c,

A© £ 2D and Cny = c(q) (1,) into equation (11) and we kept only the terms of
l

order one. The obtamed equation with n} = n; gives

2(Z1 + Z2)

1
)\glll)zi (2n1+m+1)(2n1+m+1— )+1—m2].
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Equation (11) with n} # n; for the coefficients 61(11'1) gives us

W _ 1 2(Z1+ Z3)] (nh]p%Ina)
—_—— 2y +m+1-— — .
" " 4yR(ny — nl) ' ¥ A

All other coefficients and separation constants we can find in the same way.
Matrig elements are calculated in standard way. Here we give the values of some
of them:

_ 1
(nalpytlng) = pT—— (na]pdn1) =1
(nalpt ) = 6n1(n; +m+1) + (m 4+ 1)(m +2)
1

2ni+m+1

ni(n1 +m) )1/2
(2n1 +m+1)(2n; +m —1)

(n1 4+ 1)(ny +m+1) )1/2
(2n1 +m+1)(2n1 + m+3)

(na — 11Slna) = (1 — 1]plma) = — (

(m + 1) = (na + 1) = — (

ny(n1 +m)(2n; +m)? )1/2

(n1 — 1lpi|na) = (n1 — 1|p|na) ((2n1 +m+1)(2n+m—1)

(n1 +1)(ny +m + 1)(2ny +m + 2)2>”2
(2n1 +m+1)(2n1 + m+3)

In the quasiangular case the situation is similar to quasiradial one — all of the
formulae will work if we change the sign of R and Z» and also replace the parabolic
quantum number n; by ns. Note that the upper limit of the variable py is 2y R,
but if R is large, the 2R is also large, and we can extend the upper limit of the
variable ps to infinity. The replacement of 2yR by infinity corresponds to the
calculations of the integrals with the accuracy of the exponentially small terms
when determining the matrix elements.

After calculations we get the separation constants in the form

(ma + 1o ina) = (ma + 1elma) = —2 (

(2

A
Aem = EAD R+ L) + ;’7 ¥ .. (12)

where
)\(O) = ’)’(2’)1112 +m + 1) — (Z1 + Z2)

1 221+ Z
)\22)=— 2n12+m+1—M (2n12+m+1)_2_(_z.1_:t_2_él
8y ’ g ’ g

—8n12(nig+m+1) — (m+1)(m+3)] - (2n12+m+1) (1-m?)} (13)

where 11,1y and m are parabolic quantum numbers.
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The parameter 7 can be determined from the (6). Taking into consideration
that n; +ny +m+1 =n we get

L mm
’Y—’)’0+R+R2+... (19)
where
_4 _ 2
Yo = w’ M= Z1 )
n%Z
Yo = *——32 [3(711 — ng)Zl + TLZQ] . (15)
2773
As we mentioned above, E = —2/2, so energy E and (14) give the well known

[1] multipole expansion for the energy of hydrogen-like ion eZ; being perturbed
by the remote nucleus Z,.

Using (14) and (15) we can write the expression for the separation constant in
form

A
Anyng,m(R) = AR+ Ay + ~§2 + ... (16)
where

Z
Ao = *nl(nl —ng) — Zy,

A1 = —2n1ng — (m + 1)(n - 1),
Yo = gzl = ma)l2mne + (m + (n - )2,
+n[3(m + 1)(ny + n2) + 6ning + (m + 1)(m + 2)] Z}. (17)

We note that the right-hand-side state is given by the above formulae if Z; is
replaced by Zs, and the parabolic quantum numbers n;,ny are replaced by the
right-hand-side parabolic quantum numbers n/, n}, that satisfy the condition nj +
ny+m+1=n'

4. Asymptotic spheroidal wavefunctions

Now we can determine the eigenfunctions of quasiradial (7) and quasiangu-
lar (8) equations in the region 0 < p; < 2yRand 0 < py < 2yR, when R > 2n?/Z;.
After some simple transformations, we rewrite (7) and (8) as follows:

U”_|_[__9‘_%+§l 1-m? Zi+Z; - AR _pi/29R
4 " pp 403 4R 14+p/29R )
1-m? p1/7R+3p¥/872R2] U0 (18)
8v2R*  (1+ p1/2vR)?
V//_*_[_a_g_,__ﬂz l—mz_Zl—Z2+)\/R p2/2vR
4 py 4p3 492R  1-p2/2vR

1 —m? p/yR — 3p3/87°R?
8v2R? (1 —p2/2vR)?

+ ]V:O (19)
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where
Zi+ZyF AR 3(1—m?)]? Arg
a12=|1F > - 53 ~1F s
YR 4v?R 2voR
B2 Cip
Yoot g
5  Z1+Zy+ AR _1-—m? L2mtm41l A2 +m+1) N
L2 = 2 TR © 2 4R
where

A172 = 2n2,1 +m+41+ 2’)’1
By =4\ —3(1 - m2) - A21,2 +8v1A12
Cir2 = A12B12+ 4 (24122072 — 37%) F (4 —3(1 — m?)) £ 2v0)2) .

If we neglect the last two terms in the square brackets of (18) and (19), we obtain
the Whittaker equation. The solution regular at p; 2 = 0 is

m+l  a1.2p1,2
— 2z

F (—0‘1,2 + B

, M + 1, al,2P1,2>

where 012 = f1,2/a1,2. Let us find the solutions of (18) and (19) as a product

Un1 (pl) = Mﬂ1 (pl)fn1 (p1)7 (20)
Vs (p2) = M, (p2) frz (P2)- (21)

where mi1 o1 amia
My, ,(p12) =p13 € 2 F(-mig,m+1,012p12) (22)

Substituting (20) and (21) to (18) and (19) for functions f,, ,(p1,2) we get the
equations

o 2M,'Mf, [Z2£ZF AR pr12/27R Aipae 1
I VAL PR 1+p12/2YR 8%R? piy

1 —m? p12/7R+ 3p? 5 /8y*R?

+
8v2R? (1% p12/2vR)?

far.=0. (23)

Here a1 5 = 6n12(n12 + m+ 1) + (m+ 1)(m + 2).

The fraction p; 2/vR appearing in (23) is O(R™!) when p; 2 < 1, and O(R°)
when p; 2 ~ R. This means that to O(R~2) equation has different asymptotic forms
inside and outside the intra-atomic region. To overcome this difficulty, we consider
separately the two regions 0 < p; 2 < 1, = /2YR and v/27R < p12 < 2yR.

In the region 0 < p1.2 < 1/27R the ratio of p; 2/vR is a small quantity. That’s
why we can expand the expression in the square brackets of (23) in powers of
p1,2/vR. We will have the equation

2M7/L A1 2 1-— m2 — )\1
ot a2 P ) s =0 @
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Here

3y, ) Pla , Pla _ap
K _ 1 _on ’ _I_ _——
1,2(p1,2) ( wR) 2T 2R T 12RE T s

The solution of (24) is

P1,2

Pl 2
fnl,z(m,z)=exp( M2 (0 2) / Pra(p ) M7, (07 2)dp] dplz) (25)

where AL, 2y
1—m*— 1
Pi2(p] o) = 2R2 —==G12(p] ) £ Wﬁ'{,z-

In the region /2yR < p1.2 < 2yR our wavefunctions can be constructed using
iterative method. For this region we expand the function f,, ,(p1,2) in equa-
tions (23) using the well known [13] expansion for the confluent hypergeometric
function:

ml(—a,2p1,2)™? G
(n1,2 +m)!

F(—mg2,m+1,a12p12) = (—n1,2, —n1,2 — M, —1,2P1,2)

where

G(—a1,2p1,2) _1_ nl,z(m,z + m) nl,z(nl’z — 1)(711,2 + m)(nl,z +m+ 1) _

1!(a1,2p1,2) 2!(a,2p1,2)?
Using this expansion we can write
2M], (p1,2 2mia+m+1  2nia(niz+m
ni, 2( ) — '—'al’z 1,2 + 1,2( ;,2 ) + (26)
My, ,(p1,2) p1,2 P32

)

and the desired functions fy, ,(p1,2) in the region /2R < p1 2 < 2vR satisfying
the equations

277,1)2 +m+1 2’)’7,1,2(77,1,2 + m)
fnl 2 _a1,2 + + 2 f;fl,Z
P1,2 P12

[Z1 +Z2FANR prp/27yR - a1pAip 1

— 27
4v2R 1+p12/2YR 8v2R? p1o @7)

1-m?p12/7R+ 3%’1,2/8’721‘32
+ fm 2 —

872 R2? (1 £ p1,2/27R)?
We seek the solutions of the last equation as a series

Frna(pr2) = £, (p12) + £, (p1.2) + £12, (p12) + -

where fn1 2 (p1,2) is of order R~*. Substituting this expansion and expansmns (12)
and (14) to (27) and keeping only terms, which proportional to R~ we get the
equation

A2 p12/2%R
4R 1% p12/2v0R

£ (pr.2) + £ (p12) =0,
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which solution is

£O P12 A12/2 A1 2012 98
n12(p12)~ 1i27R €xp ¢m . (28)

The equations for f?gj?z (p1,2) and f'lgg?z (p1,2) we can obtain keeping the terms
which”are proportional to R~2 and R™3. All of these equations will be linear
nonhomogeneous differential equations of the first order. After integrating them,

we have 51 ) Tia(prs)
(0 1,2\01,2 1,2(P1,2
fn1,2 (p172) - f'l(ll?z (p1,2) [1 + 2’)’0R 4,Y§R2 ] (29)
where
Si,2(p12) = _B_13_m_2_ —2vi(ntm)Inxi2 F [n21(n2 +m) — (1 F )l J“,
’ ’ 4 2vR ’ ’ ’ X1,

Ty ( )zB%,z p3a Ci2 p12
120012 = T35 12 R2 4 27R

In
271 (£ ) (n2,1 (2,1 +m) Fy (L £m)) BX12

+ 27? (n+ 71)2 In? X1,2

X1,2
B L9
I (ntm) |6(n £ (1 —n2)) - ;2 2[;107;2} toxe 521—2— Xiz2
P1,2
=1%
2’)/0R

B
Pra=lraa (naa-+m) 5o (1)) (252 4 200 ot 1)

+27 (£ 1) (2n12 + mE2y1) — 2412 (7 —Y072) £ ™ (n2 —(n1 — n2)2) ,

Q12 =z [(n21(n21+m) Fyi(1xm)) (21 —1)(ne1+m—1) Fy1 (3£ m))

—24127F £ 71 (1 —m?)].

In the quasiangular case these formulae are invalid for ps =~ 2yoR (in close
vicinity to nucleus Z3), where 1/(1 — p2/27oR) is not a quantity of the order of
unity but is greater, although it should be noted that the width of this "prohibited”
region is small in comparison with the whole region [0;2yR], and, besides, the
wavefunctions corresponding to the left-hand-side state are extremely small there.

NO| =

5. Conclusions

The quasiradial and quasiangular wavefunctions are derived for the electron
moving in the field of two Coulomb centres with arbitrary charges, Z; and Zs,
when the distance between the centres is large.
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The two-Coulomb-centre wavefunctions of the symmetric quasi-molecule Z;eZ;
are either the sum or the difference of the wavefunctions centred on the left- and
right-hand nuclei. The non-symmetric (Z; # Z) but resonance case (Z1/n =
Zs/n') needs special consideration.
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