-22-

УДК 544.013:(546.81+546.185+546.23)

ДОСЛІДЖЕННЯ ОБЛАСТІ ГОМОГЕННОСТІ Sn₂P₂Se₆ У ПОТРІЙНІЙ СИСТЕМІ Sn–P–Se

Пріц І.П., Малаховська-Росоха Т.О., Кохан О.П., Макауз І.І., Милян Ж.І.

ДВНЗ «Ужгородський національний університет», НДІ фізики і хімії твердого тіла, 88000, м. Ужгород, вул.. Підгірна, 46 e-mail: <u>malakhovska@rambler.ru</u>

Одним i3 головних завдань напівпровідникового матеріалознавства € розробка методів синтезу й одержання принципово нових речовин для сучасної електронної техніки, де необхідні різні за своїми властивостями напівпровідникові та діелектричні матеріали. Це, у свою чергу, ставить завдання більш досконалого розуміння механізмів перебігу хімічних реакцій, що лежать в основі методів одержання матеріалів електронної техніки, та стимулює дослідження областей гомогенності сполук перспективних для практичного застосування [1].

Протягом останніх років все більшого напівпровідниковому значення v набувають матеріалознавстві складні халькогенідні речовини хімічні _ й структурні аналоги сполук Sn₂P₂S₆(Se₆), що володіють комплексом цінних фізикохімічних властивостей: високими електрооптичними та пірокоефіцієнтами, ефектом самофокусування лазерного променя тощо [2-4]. Однак детальні відомості про характер фазових рівноваг у потрійній системі Sn-P-Se та про область гомогенності тернарної фази Sn₂P₂Se₆ або практично відсутні в науковій літературі, або ж істотно суперечливі.

З огляду на вищесказане, головною метою даного етапу дослідження було вивчення потрійної системи Sn-P-Se в околі існування тернарного селеніду Sn₂P₂Se₆. Детальне вивчення області гомогенності фази Sn₂P₂Se₆ дозволить на наступних етапах наукового дослідження одержувати

монокристалічні зразки вищезгаданої фази з оптимальними властивостями, а також виявити хімічні склади прогнозованих "сингулярних точок" області гомогенності Sn₂P₂S₆(Se₆).

Для дослідження характеру фізикохімічної взаємодії у потрійній системі Sn–P–Se в околі існування тернарного селеніду Sn₂P₂Se₆ було синтезовано 20 зразків різного вмісту вихідних елементарних компонентів. Характерною особливістю вибору концентрації вихідних компонентів було те, що всі зразки (за винятком стехіометричного зразка Sn₂P₂S₆) лежали поза межами вже досліджених квазібінарних перерізів потрійної системи Sn-P-Se [2, 5].

Синтез проводили з елементарних компонентів високої чистоти (олово ОВЧ-000 (0.99995), селен Ос.ч. 17-3 (0.99998), фосфор – Ос.ч. 9-3 (0.99993)) у вакуумованих до 0.13 Па кварцових ампулах, використовуючи однотемпературний прямий метод. Компоновку вихідних речовин здійснювали з точністю до 1×10⁻³ г на аналітичних терезах AD-200. Режим синтезу підбирали на основі відомих Т-х діаграм стану квазібінарних перерізів потрійної системи Sn-P-Se [2, 5]. Максимальна температура синтезу складала 1020 К. При максимальній температурі зразки витримували протягом 72 годин, всі компоненти і продукти взаємодії знаходилися у розплавленому стані, що забезпечувало повноту проходження хімічної взаємодії з утворенням необхідних фаз. Охолодження здійснювали із швидкістю 20-30 К/ год.

Одержані зразки досліджувались класичними методами фізико-хімічного аналізу: диференціального термічного (ДТА) (хромель-алюмелеві термопари) [6] і рентгенівського фазового (РФА) (ДРОН-4, Си Ка – випромінювання, Ni - фільтр, швидкість сканування кута 20 – 0.5÷1 град./хв.) аналізів [7-9].

При визначенні температур перетворень, які супроводжуються виділенням або поглинанням малої кількості тепла, використовують один з найбільш чутливих і досконалих методів термічного аналізу – ДТА. При ДТА використовують одночасне нагрівання (охолодження) еталонної і досліджуваної речовин. У цьому випадку в момент фазового перетворення виникає різниця температур між зразком і еталоном, яка фіксується диференціальною термопарою.

Експериментально одержані досліджуваних дифрактограми зразків порівнювались із теоретично розрахованими (для очікуваних фаз кожного зразка) за допомогою програми PowderCell 2.4 [9]. Розрахунок дифрактограм виконувався із врахуванням можливого ефекту текстури. Параметри гратки розраховувались з високою точністю методом повнопрофільного аналізу дифрактограм (методом Рітвельда) [10] за допомогою програми **QUANTO** [11]. управління якою здійснювалось v автоматичному режимі. Дані розрахунки були використані для встановлення фазового складу зразків (табл.1).

У таблиці 1 подається хімічний склад, ендотермічних температури (крива температури нагрівання), екзотермічних (крива охолодження) ефектів і фазовий склад кожного окремого зразка. Для зручності хімічний склад кожного зразка виражався в індексах хімічної формули Sn_xP_ySe_z. На рис. 1 зображені термограми типових зразків системи Sn-P-Se. Дифрактограму типового системи двохфазного зразка Sn–P–Se наведено на рис. 2. Область гомогенності тернарної сполуки $Sn_2P_2Se_6$ вілповілає складам. що містять єдину фазу обмежується складами, що відповідають двохфазним зразкам (табл.1).

Рис.1 Термограми типових зразків в системі Sn–P–Se (а – крива нагрівання, b – крива охолодження).

-24-

Рис. 2 Дифрактограма двохфазного зразка (Sn₂P₂Se₆ + SnSe₂) в системі Sn–P–Se (* – видимі рефлекси фази SnSe₂)

T 7 1 D	•	•		a		A DIA
	πορπιπωρυμα	2022V1D	CUCTEMU Sn_P	<u>- Se 22 n</u>	аними /ГГ	Δ το ΡΩΔ
таолица т гозультати	дослідження	Spasnib		-ысыад	цапими д і	π ia i $\Psi \pi$
		1			. , ,	

№ Склад		ат.%			Температури	Температури	ΦC arrest
		Sn	Р	S	ефектів. К	ефектів. К	ФС СПЛАВІВ
1	$Sn_2P_2Se_6$	20	20	60	943	870	$Sn_2P_2Se_6$
2	Sn _{2.1} P ₂ Se _{5.9}	21	20	59	873; 917; 940	873; 885	$Sn_2P_2Se_6$ + SnSe
3	Sn _{2.2} P ₂ Se _{5.8}	22	20	58	923; 945	873; 875	$Sn_2P_2Se_6 + SnSe$
4	$Sn_{2.3}P_2Se_{5.7}$	23	20	57	927; 949	883; 925	$Sn_2P_2Se_6 + SnSe$
5	$Sn_{2.4}P_2Se_{5.6}$	24	20	56	753; 920	859	$Sn_2P_2Se_6 + SnSe$
6	$Sn_{2.5}P_2Se_{5.5}$	25	20	55	755; 915	899	$Sn_2P_2Se_6 + SnSe$
7	$Sn_{1.9}P_2Se_{6.1}$	19	20	61	922; 944	885	$Sn_2P_2Se_6$
8	$Sn_{1.8}P_2Se_{6.2}$	18	20	62	932	922	$Sn_2P_2Se_6$
9	$Sn_{1.7}P_2Se_{6.3}$	17	20	63	915; 952	873	$Sn_2P_2Se_6$
10	$Sn_{1.6}P_2Se_{6.4}$	16	20	64	913; 941	845	$Sn_2P_2Se_6$
11	$Sn_{1.5}P_2Se_{6.5}$	15	20	65	919	946	$Sn_2P_2Se_6 + SnSe$
12	Sn _{1.99} P _{1.98} Se _{5.94}	20.08	19.98	59.94	885; 956	892; 930	$Sn_2P_2Se_6$ + SnSe
13	Sn _{1.98} P _{1.96} Se _{5.88}	20.16	19.96	59.88	885; 953	898; 941	$Sn_2P_2Se_6 + SnSe$
14	Sn _{1.97} P _{1.94} Se _{5.82}	20.25	19.94	59.81	885; 951	864	$Sn_2P_2Se_6 + SnSe$
15	Sn _{1.98} P _{1.98} Se _{5.95}	19.98	19.98	60.04	901; 958	901; 932	$Sn_2P_2Se_6 + SnSe$
16	Sn _{1.96} P _{1.96} Se _{5.9}	19.96	19.96	60.08	923; 933; 949	886; 915; 944	$Sn_2P_2Se_6 + SnSe$
17	$Sn_{1.94}P_{1.94}Se_{5.85}$	19.94	19.94	60.12	883; 958	889; 925	$Sn_2P_2Se_6 + SnSe$
18	$Sn_{2.94}P_2Se_{9.6}$	20.22	13.76	66.02	857; 904; 929	890; 923	$Sn_2P_2Se_6 + SnSe_2$
19	$Sn_{2.14}P_2Se_{6.46}$	20.16	18.88	61.02	885; 918; 953	894; 919	$\overline{Sn_2P_2Se_6} + SnSe_2$
20	Sn _{2.44} P ₂ Se _{7.67}	20.16	16.51	63.33	859; 920	878; 899	$\frac{Sn_2P_2Se_6}{+SnSe_2}$

-25-

Таким результати чином, термографічного рентгенофазового та зразків досліджень синтезованих € актуальними вивчення для детального області гомогенності тернарного селеніду. Відомості про область гомогенності монокристалічні дозволять одержувати зразки на основі Sn₂P₂Se₆3 оптимальними властивостями.

Робота виконана за підтримки Державного фонду фундаментальних досліджень (ДФФД) Державного агентства з питань науки, інновацій та інформатизації України - НДР Ф40/143-2011

Література

- Таиров Ю.М., Цветков В.Ф. Технология полупроводников и диэлектрических материалов. –М.: Высшая школа, 1990. – 424 с.
- 2. Olega A., Salazar A., Kohutych A.A., Vysochanskii Yu.M. Critical behavior near the Lifshitz point in $Sn_2P_2(Se_xS_{1-x})_6$ ferroelectric semiconductors from thermal diffusivity measurements // J. Phys.: Condens. Matter. – 2011. – V. 23. – P.025902-1 - 025902-8.
- 3. Vysochanskii Yu., Glukhov K., Fedyo K., Yevych R. Charge transfer and anharmonicity in

 $Sn_2P_2S_6$ ferroelectrics // Ferroelectrics. – 2011. – V.414. – P.30-40.

- Say A., Mys O., Adamenko D., Grabar A., Vysochanskii Y., Kityk A., Vlokh R. Critical exponents of phase transition in ferroelectric Sn₂P₂S₆: comparison of optical and dilatometric data // Phase Transitions. – 2010. – V.83. – P.123-139.
- Поторий М.В., Приц И.П., Ворошилов Ю.В. Характер образования гексатио (селено) гиподифосфатов олова и свинца и выращивание их монокристаллов // Неорган. матер. – 1990. – Т.26, №11. – С. 2363–2366.
- 6. Берг Л.Г. Введение у термографию. М.: Наука, 1969. – 395 с.
- Липсон Г., Стипл Г. Интерпретация порошковых рентгенограмм: пер. с англ. – М.: Мир, 1972. – 384 с.
- 8. Ковба Л.М. Рентгенография в неорганической химии. М.: Изд-во МГУ, 1991. 256 с.
- Nolze G., Kraus W. PowderCell 2.0 for Windows // Powder Diffraction. – 1998. – V.13, No4. – P.256-259.
- Rietveld H.M. A Profile Refinement Method for Nuclear and Magnetic Structures // J. Appl. Crystallogr. – 1969. – V.2. – P.65-71.
- Altomare A., Burla M. C., Giacovazzo C., Guagliardi A., Moliterni A. G. G., Polidori G., Rizzi R. Quanto: a Rietveld program for quantitative phase analysis of polycrystalline mixtures // J. Appl. Crystallogr. – 2001. – V.34. – P.392-397.

INVESTIGATION OF THE HOMOGENEITY AREA OF THE Sn₂P₂Se₆ PHASE IN THE Sn–P–Se TERNARY SYSTEM

Prits I.P., Malakhovska-Rosokha T.A., Kokhan A.P., Makauz I.I.,Milyan Zh.I.

The homogeneity area of the $Sn_2P_2Se_6$ phase in the Sn–P–Se ternary system has been investigated by using differential thermal analysis (DTA) and X-ray powder diffraction technique (XRD); and the concentration limits for the above homogeneity area have been detected.