COX PROCESSES SIMULATION

O. O. POGORILIAK

Simulation of the Cox processes directed by random intensity will be considered. Let $\{\mathbf{T}, \mathfrak{B}, \mu\}$ be a measurable space, $\mu(\mathbf{T}) < \infty$.

Definition 1. [1] Let $\{Z(t), t \in \mathbf{T}\}, \mathbf{T} \subset \mathbf{R}$ be a not negative random process. If $\{\nu(B), B \in \mathfrak{B}\}$ under fixed simple function Z(t) is Poisson process with intensity function $\mu(B) = \int_{B} Z(\cdot, t) dt$, that $\nu(B)$ is said to be a random Cox process driven by process Z(t).

Let $Z(t) = \exp\{Y(t)\}$, where $\{Y(t), t \in \mathbf{T}\}, \mathbf{T} \subset \mathbf{R}$ – be a Brownian motion process, then $\nu(B)$ is said to be a Cox process directed by the Brownian motion.

Since $\{\nu(B), B \in \mathfrak{B}\}$ is a double stochastic random process, then the model of this process is constructed in two stages. At first we simulate the Brownian motion process $\{Y(t), t \in \mathbf{T}\}$, then we consider some partitioning $D_{\mathbf{T}}$ of the domain \mathbf{T} and on every element of the partitioning $D_{\mathbf{T}}$ we construct the model of Poisson random variable with corresponding mean.

References

 Kozachenko, Yu., Pogoriliak O., Tegza A. Modeljuvannja gaussovyh vypadkovyh procesiv ta procesiv Koksa. Karpaty, 2012.

14 MYNAJSKA ST., APT. 63, UZHGOROD, UKRAINE, 88000 E-mail address: alex_pogorilyak@ukr.net

The first author is supported by Uzhgorod National University.