УДК 546.536.42

СИСТЕМА SnSe₂–TlBiSe₂

Козьма А.А., Переш Є.Ю., Барчій І.Е., Цигика В.В., Барчій О.І.

Ужгородський національний університет, 88000, Україна, м.Ужгород, вул. Підгірна 46

Серед розмаїття неорганічних функціональних матеріалів особливе місце займають складні халькогеніди. Однією з причин цього є те, що у порівнянні, наприклад, оксидними матеріалами 3 халькогеніди (завдяки наявності у своєму складі халькогенів) мають більшу суттєво розширює поляризуємість, яка робоче вікно оптичної прозорості халькогенідних матеріалів в ІЧ діапазоні. Крім того відомо, що окремі представники складних халькогенідних сполук € перспективними акустооптичними матеріалами, проявляють сегнетоелектричні властивості, мають обнадійливі нелінійнооптичні характеристики. А бінарні та тернарні халькогеніди, що реалізуються в системах Tl-Me^{III(IV)}-халькоген, володіють високими термоелектричними показниками.

З огляду на сказане, за останній час все більше уваги приділяється дослідженню характеру взаємодії компонентів у складних халькогенідних системах, одержанню та вивченню властивостей тернарних сполук (або твердих розчинів), що утворюються в цих системах. Дана робота присвячена дослідженню квазібінарного перерізу SnSe₂–TlBiSe₂ квазіпотрійної системи Tl₂Se– SnSe₂–Bi₂Se₃.

Аналіз раніше одержаних результатів показав, що квазіподвійна система Tl₂Se-SnSe₂ характеризується утворенням трьох проміжних сполук – Tl₄SnSe₄, Tl₂SnSe₃, які плавляться конгруєнтно при 715 і 730 К відповідно, також $Tl_2Sn_2Se_5$, а що утворюється за перитектичною реакцією L+SnSe₂⇔Tl₂Sn₂Se₅ при 723 К і твердофазно розкладається Tl₂Sn₂Se₅⇔SnSe₂+Tl₂SnSe₃ при 655 K [1,2]. У системі $Tl_2Se-Bi_2Se_3$ утворюються тернарні сполуки TlBiSe₂ і Tl₉BiSe₆, плавляться які 3 відкритим

максимумом при 989 та 786 К відповідно [3]. Відомості про утворення проміжних сполук у системі SnSe₂–Bi₂Se₃ у літературі відсутні.

Тріангуляція системи Tl₂Se-SnSe₂-Bi₂Se₃ на основі експериментальних досліджень диференційнометодами термічного (ДТА) та рентгенофазового (РФА) аналізів показала, що досліджувана квазіпотрійна система ділиться чотирма квазібінарними перерізами SnSe₂-TlBiSe₂, Tl₂SnSe₃–TlBiSe₂, Tl_4SnSe_4 -TlBiSe₂ та Tl₄SnSe₄-Tl₉BiSe₆ п'ять вторинних на квазіпотрійних систем SnSe₂-TlBiSe₂-Bi₂Se₃, $SnSe_2-Tl_2SnSe_3-TlBiSe_2$, $Tl_2SnSe_3-Tl_4SnSe_4-$ TlBiSe₂, Tl₄SnSe₄-TlBiSe₂-Tl₉BiSe₆ Ta Tl₂Se-Tl₄SnSe₄-Tl₉BiSe₆, які потребують подальшого вивчення [4].

Синтез вихідних бінарних селенідів стануму (IV) та бісмуту (III) талію (I), проводили з елементарних компонентів [5-7]. Сполуку TlBiSe₂ одержували сплавленням стехіометричних кількостей бінарних Tl₂Se та Bi₂Se₃. Використовували компоненти наступного ступеня чистоти: Талій марки Tl-000, Станум ОВЧ-000, Вісмут Ос.ч.11-4, Селен Ос.ч.17-3. Одержані селеніди додатково очищували методом зонної перекристалізації. Контроль за ступенем здійснювали хіміко-спектральним чистоти аналізом на приладі ИСП-30. Ступінь вихідних речовин (за чистоти вмістом домішок Al, Fe, Cd, Cu, Ag, Bi, Pb, Si) $2 \times 10^{-4} \div 3 \times 10^{-5}$ mac.%. складала У холі виконання експериментальних досліджень використовували класичні методи фізикохімічного аналізу. ДТА здійснювали за швидкістю методикою [8]. Контроль за нагрівання та охолодження (250-320 град/год) використанням проводили 3 програмованого пристрою РИФ-101. Температуру реєстрували хромельалюмелевою термопарою з точністю ± 5 К. РФА проводили методом порошку на дифрактометрі ДРОН-3М (Си_{ка}випромінювання, Ni-фільтр) [9]. Інтенсивність рефлексів оцінювали за площиною піків і нормували за стобальною шкалою. Кристалохімічні параметри вихідних сполук розраховували з використанням програми Unit Cell [10], які наведено у таблиці 1.

Таблиця 1.

Сполука		Сингонія	Пр. група	Параметри комірки, нм	$ρ_{peht}$, γ/cm ³
SnSe ₂	літ. [11]	тригон.	P-3m1	a=0,3811; c=0,6137; γ=120	5,94
	розрах.	тригон.	P-3m1	a=0,3814; c=0,6254; γ=120	5,83
TlBiSe ₂	літ. [12]	тригон.	R-3mH	a=0,4240; c=2,2330; γ=120	8,19
	розрах.	тригон.	R-3mH	a=0,4260; c=2,2354; γ=120	8,10

Кристалохімічні параметри сполук у системі SnSe₂-TlBiSe₂

Для вивчення характеру фізикохімічної взаємодії в системі SnSe₂-TlBiSe₂ синтезовано 8 сплавів y всьому концентраційному інтервалі. Сплави одержували сплавленням необхідних кількостей бінарного селеніду талію(І) з тернарною сполукою TlBiSe₂ прямим однотемпературним методом у вакуумованих до 0,13 Па кварцових

ампулах. Максимальна температура синтезу складала 1053 К, нагрів до максимальної температури здійснювали із швидкістю 100 град/год. З метою приведення сплавів у рівноважний стан їх гомогенізували при 423 К протягом 336 годин з наступним загартуванням. Одержані сплави досліджували методами ДТА і РФА (таблиця 2, рис.1).

Таблиця 2.

№ сплаву	Склад сплавів, моль.%		Температура ендотермічних	Фазовий склад
	SnSe ₂	TlBiSe ₂	ефектів, К	сплавів
	100,0	0	918	α
5	85,0	15,0	723, 840	$\alpha + \beta$
6	70,0	30,0	730, 786	α+β
7	50,0	50,0	727, 791	α+β
1	33,3	66,7	723, 873	α+β
8	20,0	80,0	687, 898	α+β
9	10,0	90,0	852, 953	β
	0	100	979	β

Результати ДТА та РФА сплавів системи SnSe₂-TlBiSe₂.

90

Вісник УжНУ. Серія Хімія

Рис.1. Дифрактограми сплавів системи SnSe₂-TlBiSe₂

91

Випуск 20. 2008

На основі одержаних результатів побудовано діаграму стану системи SnSe₂-TlBiSe₂ (рис.2).

Рис.2. Діаграма стану системи SnSe₂-TlBiSe₂

Досліджувана система є квазібінарним перерізом загальної квазіпотрійної системи Tl₂Se–SnSe₂–Bi₂Se₃ i відноситься ЛО евтектичного типу взаємодії (V тип діаграм стану за Розебомом). У системі утворюються граничні тверді розчини на основі вихідних компонентів: α – на основі бінарного SnSe₂, β - на основі тернарної сполуки TlBiSe₂. Гілки первинних кристалізацій перетинаються у евтектичній точці координатами 3 40 моль%TlBiSe₂ (727 K). Нонваріантний рівноважний евтектичний процес характеризується взаємодією $L \leftrightarrow \alpha + \beta$. Граничні тверді розчини на основі α- та β-фаз при температурі евтектичного перетворення не перевищують 10 та 25 3 моль.% відповідно. пониженням температури спостерігається звуження областей гомогенності.

Утворення нових проміжних фаз у системі SnSe₂–TlBiSe₂ не зафіксовано.

Література

- Барчий И.Е., Глух О.С., Переш Е.Ю., Цигика В.В. Система Tl₄GeSe₄-Tl₂Se-Tl₄SnSe₄ // ЖНХ.- 2005.- Т.50, №5.- С. 835-837.
- Барчій І.Є., Глух О.С., Переш Є.Ю., Цигика В.В., Сабов М.Ю. Система Tl₂GeSe₃-Tl₄Ge_xSn_{1-x}Se₄-Tl₂SnSe₃ // Укр. хім. журнал.-2006.- Т.72, №7.-С. 6-10.
- Барчий И.Е., Переш Е.Ю., Лазарев В.Б., Ворошилов Ю.В., Ткаченко В.И. Фазовые равновесия в системах Tl₂Se(Te)-Bi₂Se₃(Te₃), Tl₉Bi-Se(Te) и свойства образующих-ся соединений. //Неорган. материалы. –1988. T.24, №11. –С.1791–1795.
- 4. Козьма А.А., Барчій І.Є., Переш Є.Ю., Барчій О.І. Тріангуляція квазіпотрійної системи $Tl_2Se-SnSe_2-Bi_2Se_3$. // Proceeding of IV International workshop "RNAOPM'2008". Lutsk, Jine 1–5, 2008, p.40–42.
- 5. Рипан Р., Читяну И. Неорганическая химия. М.: Мир, 1971. Т.1. С.560.
- Мелех Б.Т., Степанова Н.Б., Фомина Т.А., Семенкович С.А. Термодинамические свойства соединений в системе олово-селен // Ж. физ. химии.– 1971.– Т.55, № 8.– С. 2018– 2020.
- 7. Оболочник В.А. Селениды. М.:Металургія. 1972. С.296.
- 8. Берг Л.Г. Введение в термографию. М.: Наука, 1969. С.395.
- Липсон Г., Стипл Г. Интерпретация порошковых рентгенограмм. М.: Мир, 1972. С.384.
- Holland T.J.B., Redfern S.A.T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. // Mineralogical Magazine. –1997. –V.61. –P.65-77.
- Palosz B., Salje E. Lattice parameters and spontaneous strain in AX₂ polytypes: CdI₂, PbI₂, SnS₂ and SnSe₂. // Journal of Applied Crystallography. –1989, –V.22, –P.622-623.
- Ворошилов Ю.В., Гурзан М.И., Киш З.З., Лада Л.В. Фазовые равновесия в системе Tl-Pb-Te и кристаллическая структура соединений Tl₄B(IV)X₃ и Tl₉B(V)X₆. // Неорган. материалы. –1988, –T.24. –C.1479-1484

THE SnSe₂-TlBiSe₂ SYSTEM

Kozma A.A., Peresh E.Yu., Barchij I.Y., Tsygyka V.V., Barchij O.I.

The physicochemical interaction was studied in the $SnSe_2$ -TIBiSe₂ system. The phase diagram was plotted. The $SnSe_2$ -TIBiSe₂ system is characterized by the eutectic type of interaction L \leftrightarrow SnSe₂+ TIBiSe₂ (40 mol.% TIBiSe₂, 727 K). The limited solid solution on the base of binary selenides SnSe₂ (α) and ternary TIBiSe₂ (β) compounds are formed in the quasibinary system.