УДК 539.1.08, 539.198

Л.О. Бандурина¹, С.В. Гедеон²

¹Інститут електронної фізики НАН України, вул. Університетська, 21, Ужгород, 88000 ²Ужгородський національний університет, вул. Волошина, 54, Ужгород, 88000 e-mail: gedsv@narod.ru

ДИФЕРЕНЦІАЛЬНІ ПЕРЕРІЗИ РОЗСІЯННЯ ЕЛЕКТРОНІВ НА АТОМІ БОРУ

Методом *R*-матриці з *B*-сплайнами (BSR) здійснено розрахунки диференціальних перерізів розсіяння електронів на атомі бору в основному стані $1s^22s^22p$ ²*P* для енергій від порогу реакції до ~30 еВ. Для генерування і точного представлення хвильових функцій мішені був використаний багатоконфігураційний метод Хартрі-Фока з неортогональними орбіталями. Розклад сильного зв'язку включав 28 станів атома бору: 8 фізичних і 20 псевдостанів. Представлено диференціальні 3D-перерізи пружного розсіяння, а також збудження найважливіших переходів з основного стану бору.

Ключові слова: атом бору, розсіяння електронів, метод *R*-матриці з *B*сплайнами, диференціальні 3D-перерізи розсіяння.

Вступ

При реалізації керованого термоядерного синтезу у токамаках поверхня стінок і внутрішніх елементів камер установки піддається сильному опроміненню частинками плазми. Покриття цих поверхонь матеріалами з малим зарядом ядра Z, такими як берилій, бор і вуглець, виявилося ефективним способом отримання дуже чистої плазми, необхідної при керованих термоядерних реакціях [1, 2]. Зрозуміло, що при проведенні експериментів з термоядерного синтезу контроль за ступенем ерозії вказаних легуючих матеріалів, а також моделювання переносу плазми вимагає повної і точної інформації щодо розсіяння електронів на названих легких елементах.

Для берилію і вуглецю систематичні розрахунки для значної кількості швидкостей збудження та іонізації вже виконані раніше (див. напр., [3-6]). Хоча електронна оболонка атома бору $1s^22s^22p \ ^2P^o$, що містить всього п'ять електронів, належить до достатньо простих атомних структур, експериментальні перерізи збудження його станів електронним ударом не визначені. Експеримент Кученєва і Смірнова [7] з вимірювання перерізів переходів $2s^22p \ ^2P^o$ – $2s^23s \ ^2S$ та $2s^22p \ ^2P^o - 2s2p^2 \ ^2D$ в атомі В при зіткненні з електронами є доволі неоднозначним. З теоретичних даних, які відповідали б сучасним критеріям щодо точності та систематичності отримуваних результатів, варто згадати розрахунки [8-10], проведені у різних наближеннях методу *R*матриці з псевдостанами (RMPS). Аналіз результатів, отриманих у [8-10], був проведений у недавньому дослідженні нашої наукової групи [11]. У ньому метод *R*матриці з В-сплайнами (BSR) [12] був застосований до вивчення збудження електронним ударом атома бору в діапазоні енергій від порогу і до 60 еВ. Для генерування і точного представлення хвильових функцій мішені використовувався багатоконфігураційний метод Хартрі-Фока з неортогональними орбіталями. Розклад сильного зв'язку включав 28 станів атома бору: 8 фізичних станів атома-мішені, розміщених нижче першого порогу іонізації, і 20 псевдостанів. Для найважливіших переходів з основного стану в нижні збуджені стани у роботі [11] були представлені інтегральні перерізи (ІП) розсіяння.

Метою даної роботи є подальше BSR-дослідження процесів розсіяння е + В, розпочате в [11]. Нижче ми наводимо набори кутових залежностей диференціальних перерізів (ДП) розсіяння електронів на атомі бору в основному стані $2s^22p\ ^2P^o$. Представлені також 3D-поверхні енергетично-кутових залежностей ДП пружного розсіяння та переходів у п'ять нижніх збуджених станів з основного стану бору. Незалежні розрахунки ДП розсіяння *e* + В здійснені нами з використанням високоточних хвильових функцій мішені, описаних в [11], зі значно поліпшеним у порівнянні з попередніми роботами [8, 9] описом структури атома В.

Методи розрахунку

Оскільки дана робота спирається на розрахунки структури мішені та процесу розсіяння e + B, детально описані у праці [11], наведемо тут тільки їх основні моменти.

А. Розрахунки структури. Будова атома бору була розрахована методом *R*матриці з В-сплайнами за допомогою програмного пакету BSR [12]. Останній неодноразово використовувався нами для досліджень електрон-атомного розсіяння, починаючи від перших застосувань до атомів С [5] і Са [13-14] та закінчуючи недавніми розрахунками атома F [15]. Ключовою особливістю цього підходу є істотне поліпшення опису мішені шляхом використання компактних розкладів взаємодії конфігурацій, що включають неортогональні набори залежних від терму одноелектронних орбіталей. Особливістю пакета BSR є можливість застосування неортогональних орбіталей для представлення як хвильових функцій зв'язаних станів, так і хвильової функції неперервного спектру (N+1)-електронної задачі розсіяння. Це дозволяє незалежно оптимізувати атомні хвильові функції для різних станів і отримати точніший опис мішені, ніж ті, що були використані в більш ранніх розрахунках зіткнення е + В. При цьому побудова багатоелектронного базису функцій конфігураційних станів (т. з. CSF-базису [16, 17]), використовуваного для розкладу хвильової функції нерелятивістського рівняння Шредінгера для атома, а також відповідного В-сплайнового базису є найскладнішим етапом реалізації даного методу.

Стани мішені атома бору в даних розрахунках були отримані шляхом поєднання багатоконфігураційного методу Хартрі-Фока (MCHF) [16-17] з *В*-сплайновим обмеженим у "боксі" методом сильного зв'язку [18]. Зазначимо, що кор-валентна кореляція була врахована *ab initio*, шляхом включення в розгляд конфігурацій зі збудженими станами мішені. Остаточно багатоканальні розклади для мішені атома бору мали структуру:

$$\Phi(2s^{2}nl, LS) = A \sum_{i,L',S'} \{ \phi(2s^{2}, L'S') P(n_{i}l_{i}) \}^{LS} + A \sum_{i,L',S'} \{ \phi(2s^{2}p, L'S') P(n_{i}l_{i}) \}^{LS} + \dots, (1) + \sum_{i} \chi(2sn_{i}l_{i}(L'S')n_{i}'l_{i}') \}^{LS} + \dots, (1)$$

де А – оператор антисиметризації. Перша сума відповідає за далекодійну кореляцію, в той час як друга сума містить члени короткодійної кореляції. Для стислості позначень, будемо вважати, що коефіцієнти розкладу включені в невідомі функції *P(nl)* для зовнішніх валентних електронів. Ці *P*(*nl*)-функції були розкладені за *B*сплайновим базисом, і відповідні рівняння були розв'язані за умови, що хвильові функції перетворюються в нуль на границі внутрішньої *R*-матричної області. Така схема дає набір ортогональних одноелектронних орбіталей для кожного зв'язаного стану, що належить до певного терму. Але орбіталі з різних наборів не є ортогональними одна до одної, тобто залежні від терму ефекти безпосередньо включені в хвильові функції мішені. Кількість фізичних станів, які можна генерувати в цьому методі, залежить від r – розміру Rматричного "боксу". Вибираючи $r = 60 a_0$ (де а0 – радіус Бора), ми отримали хороший опис для всіх включених у розгляд нижчих станів атома В, аж до $2s7d^{2}S$. Поряд з фізичними станами, описана вище схема використовує також набір псевдо-Вводячи у розкладі сильного станів. зв'язку (1) достатню кількість каналів, можна врахувати і валентну кореляцію.

Даний розклад сильного зв'язку включав вісім зв'язаних станів атома В, отриманих із конфігурацій $1s^22s^22p$, $1s^22s^2p^2$, $1s^22s^23l$ (l = 0, 1, 2), і двадцять псевдостанів. Перелік фізичних станів мішені, включених у розрахунки розсіяння, наведено у таблиці 1. Їхні енергії збудження E_{ex} порівняні з такими ж енергіями рекомендованими NIST [19] та даними RMPS-обчислень [10]. Загальне узгодження між експериментом і теорією є добрим.

Таблиця 1 Енергії збудження *E*_{ex} фізичних станів бору, включених у даний розклад сильного зв'язку (в еВ)

№ п/п 1	Стан 2 <i>s</i> ² 2 <i>p</i> ² <i>P</i> ^o	<i>E</i> _{ex} NIST, [19] 0.000	<i>E</i> _{ex} BSR28 0.000	$\begin{array}{c} \Delta E_{\rm ex} \\ {\rm BSR28} \\ 0.000 \end{array}$	$\begin{array}{c} \Delta E_{\rm ex} \\ {\rm RMPS} \\ [10] \\ 0.000 \end{array}$
2	$2s2p^2 {}^4P$	3.580	3.545	0.035	0.029
3	$2s^23s$ 2S	4.964	4.986	-0.022	-0.029
4	$2s2p^2 {}^2D$	5.934	5.936	-0.002	-0.066
5	$2s^2 3p \ ^2P^{\rm o}$	6.027	6.014	0.013	0.014
6	$2s^23d \ ^2D$	6.790	6.722	0.068	0.002
7	$2s2p^{2} {}^{2}S$	7.881	7.868	0.013	
9	$2s2p^2 {}^2P$	8.992	9.045	-0.053	

Б. Розрахунки розсіяння. Розрахунки розсіяння були здійснені нами в наближенні *R*-матриці з *B*-сплайнами [12]. Тут В-сплайновий базис використовується не тільки для побудови хвильової функції *N*електронної мішені, але і для представлення континуальних функцій у внутрішній області. Основною перевагою В-сплайнів є те, що вони ефективно утворюють повний базис і, отже, ніякі додаткові корекції Яматриці в даному випадку не потрібні. Амплітуди хвильових функцій на межі "боксу", які необхідні для оцінки Rматриці, задаються коефіцієнтом останнього сплайна, який є єдиним ненульовим сплайном на границі. Інша особливість пакету програм BSR стосується згаданої неортогональності одноелектронних радіальних функцій мішені. При цьому і орбіталі неперервного спектру не повинні бути ортогональними з орбіталями зв'язаних станів. Це дозволяє незалежно оптимізувати атомні хвильові функції для різних станів, і отримати в результаті опис мішені, точніший за використані в попередніх розрахунках розсіяння [8-10].

R-матричний радіус ($r = 60 a_0$) і кількість *B*-сплайнів (k = 86) у розрахунках розсіяння були обрані такими ж, як і при розрахунку зв'язаних станів. Радіус $r \epsilon$ достатньо великим, щоб всі зв'язані орбіталі ефективно занулялися на межі "боксу". Чисельно розраховано парціальні хвилі до L = 15. Для спін-дозволених переходів була використана т. з. "top-up"процедура – для оцінки внесків у переріз від не врахованих явно вищих значень L. Розрахунок для зовнішньої області проводився за допомогою гнучкого асимптотичного *R*-матричного пакету FARM [20].

Результати і обговорення

За відсутності в літературі результатів інших авторів з розрахунку ДП розсіяння e + B, дані наближення BSR28 були порівняні в робочому порядку з нашими ж результатами, отриманими для атома бору в наближенні MCHF-BSR, детально описаному в праці [21]. В підході МСНГ-ВЅК ми врахували в розкладі сильного зв'язку ті ж 28 станів, що і в наближенні BSR28. Отримані методом MCHF-BSR28 результати практично дуже близькі до даних BSR28, що свідчить про стійкість вибраних нами для розрахунку розсіяння е + В обчислювальних процедур. Це позбавляє нас необхідності окремо виділяти результати наближення MCHF-BSR28, і в даній роботі наводяться тільки дані BSR28.

На рис. 1 представлена 3D-поверхня ДП пружного розсіяння електронів на атомі бору в основному стані $2s^22p$ ² P° . На рис. 2 відображені характерні зрізи цієї поверхні в площині кутових залежностей при фіксованих значеннях енергії зіткнення. З рис. 1 та 2 видно, що, починаючи з енергії зіткнення ~0.5 eB, на кутових залежностях ДП просліджується чітко сформована впадина, яка з ростом енергії стає чи не основним структурним елементом вказаних перерізів. Цей мінімум на кутових залежностях ДП має тенденцію переміщуватися з ростом енергії в область все менших кутів: від $\sim 135^{\circ}$ при E = 0.5 eB і до ~110° при E = 10 eB. 3 порівняння рис. 1. та 2 видно, що енергетично-кутові 3Dзалежності ДП пружного розсіяння е + В більш зручні для якісного аналізу поведінки ДП з ростом енергії чи кута розсіяння, у той час як кутові залежності ДП при фіксованих енергіях дають можливість точного кількісного порівняння різноманітних ДП.

Рис. 1. Поверхня енергетично-кутових залежностей ДП пружного розсіяння електронів на атомі бору в основному стані $2s^22p \ ^2P^{\circ}$.

Рис. 2. Кутові залежності ДП пружного розсіяння електронів на атомі бору в основному стані $2s^22p \ ^2P^{\circ}$ при енергіях зіткнення 0.1, 0.5, 2, 5 та 10 еВ.

3D-поверхня диференціальних перерізів, як це видно з рис. 1, являє собою складну структуру і містить практично всю інформацію про пружне розсіяння електронів на борі в основному стані. Питання за малим: створенні ефективних методів для опрацювання інформації, прихованої в структурах 3D-поверхні ДП. Детально аналізуючи "хребти" і "впадини" вказаної 3D-поверхні ДП пружного розсіяння, ми отримуємо ключ для визначення наскільки важливими є супутні до пружного розсіяння елементарні процеси, що утворюють різні канали процесу розсіяння е + B. На рис. 3-4 представлені, відповідно, 3D-поверхня енергетично-кутових залежностей ДП збудження електронним ударом переходу $2s^22p \ ^2P^{\circ} - 2s2p^2 \ ^4P$ в атомі бору та криві кутових залежностей ДП збудження цього ж переходу при фіксованих енергіях зіткнення. Фактично лінії на рис. 4 являють собою зрізи розглядуваної 3D-поверхні в площині кутових залежностей при цікавій для нас енергії зіткнення.

Рис. 3. Поверхня енергетично-кутових залежностей ДП збудження електронним ударом переходу $2s^22p \ ^2P^\circ - 2s^2p^2 \ ^4P$ в атомі бору.

Рис. 4. Кутові залежності ДП збудження електронним ударом переходу $2s^22p\ ^2P^{\circ} - 2s2p^2\ ^4P$ в атомі бору при енергіях зіткнення 4, 5, 8, 10, 15 та 20 еВ.

На рис. 5-6, 7-8, 9-10 та 11-12 попарно представлені такі ж залежності для збудження з основного стану бору станів $2s^23s\ ^2S$, $2s2p^2\ ^2D$, $2s^23p\ ^2P^\circ$, $2s^23d\ ^2D$, відповідно.

Рис. 5. Те, що і на рис. 3 для переходу $2s^22p {}^2P^{\circ} - 2s^23s {}^2S$.

Рис. 6. Те, що і на рис. 4 для переходу $2s^22p \ ^2P^{\circ} - 2s^23s \ ^2S$ при енергіях зіткнення 5, 6, 8, 10, 15 та 20 еВ.

Рис. 7. Те, що і на рис. 3 для переходу $2s^22p \ ^2P^{\circ} - 2s2p^2 \ ^2D$.

Рис. 8. Те, що і на рис. 4 для переходу $2s^22p {}^2P^{\circ} - 2s2p^2 {}^2D$ при енергіях зіткнення 6, 7, 9, 10, 15, 20 та 24 еВ.

Рис. 9. Те, що і на рис. 3 для переходу $2s^22p \ ^2P^{\circ} - 2s^23p \ ^2P^{\circ}$.

Рис. 10. Те, що і на рис. 4 для переходу $2s^22p\ ^2P^{\circ} - 2s^23p\ ^2P^{\circ}$ при енергіях зіткнення 6.04, 8, 10, 15 та 24 еВ.

Рис. 11. Те, що і на рис. 3 для переходу $2s^22p \ ^2P^{\circ} - 2s^23d \ ^2D$.

Рис. 12. Те, що і на рис. 4 для переходу $2s^22p \, {}^2P^{\circ} - 2s^23d \, {}^2D$ при енергіях зіткнення 7, 8, 10, 15, 20 та 25 еВ.

Гладкий характер 3D-поверхонь ДП, відсутність на них збрижень, а також псевдорезонансних структур, свідчить про достатню кількість врахованих при обчисленні ДП парціальних хвиль, як це має місце для пружного розсіяння - в області енергій налітаючого електрона до 10 eB (рис. 1). І навпаки: збрижена 3D-поверхня ДП, усіяна дрібними складками (див. рис. 11) для переходу $2s^22p \ ^2P^{\circ} - 2s^23d \ ^2D$ при енергіях вище ~20 eB, вказує на необхідність врахування більшого числа парціальних хвиль у розрахунках розсіяння. Основна проблема аналізу 3D-поверхонь полягає у відсутності адекватних математичних методів і розрахункових методик "обробки" цифрової інформації з візуально "зрозумілих" зображень.

Для порівняння відносної величини ДП при фіксованій енергії (10 еВ) і різних кутах розсіяння на рис. 13 представлені кутові залежності ДП для елементарних процесів пружного розсіяння та збудження з основного стану п'яти нижніх станів $2p^{2} {}^{4}P$, $3s {}^{2}S$, $2p^{2} {}^{2}D$, $3p {}^{2}P^{\circ}$, $3d {}^{2}D$ атома бору при зіткненнях e + B.

Рис. 13. Кутові залежності ДП пружного розсіяння та збудження електронним ударом п'яти нижніх збуджених станів атома бору при енергії 10 еВ.

Висновки

Представлено теоретичні ДП для низькоенергетичних зіткнень електронів з атомом бору. Розрахунки здійснені у наближенні сильного зв'язку методом Rматриці з В-сплайнами на неортогональними орбіталями, що дозволило отримати більш точні описи структури мішені, ніж ті, що використовувалися в попередніх розрахунках розсіяння e + B. У роботі вперше представлені 3D-поверхні ДП для переходів з основного стану у п'ять нижніх збуджених станів атома бору при його зіткненні з електронами. Найбільш дивною видається біляпорогова поведінка 3Dповерхні ДП для переходу 2s²2p ²P^o – $2s2p^2$ ⁴*P*, зі "зворотною" логікою кутової залежності ДП – з максимальними значеннями цих перерізів при розсіянні назад, а не вперед, як для інших переходів. Відзначено значний евристичний потенціал аналізу 3D-поверхонь ДП з точки зору отримання повної інформації про процес зіткнення.

Автори висловлюють подяку проф. Зацарінному О.І, проф. Бартшату та доц. Гедеону В.Ф. за допомогу в реалізації досліджень, які сприяли появі цієї статті.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Winter J. Plasma deposition of boroncontaining hard carbon films a-C/B:H from organic boron compounds / J. Winter, L. Grobusch, T. Rose, J. von Seggern, H. Esser, P.Wienhold // Plasma Sources Sci. Technol. – 1992. – V. 1, Iss. 2. – P. 82-86.
- Davis J.W. Impurity release from low-Z materials under light particle bombardment / J.W. Davis, A.A. Haasz // J. Nucl. Mater. - 1997. - V. 241-243. -P. 37-51.
- Colgan J. Electron-impact ionization of all ionization stages of beryllium / J. Colgan, S.D. Loch, M.S. Pindzola, C.P. Ballance, and D.C. Griffin // Phys. Rev. A. - 2003. - V. 68, Iss. 3. -P. 032712 (9).
- Ballance C.P. Electron-impact excitation of beryllium and its ions / C.P. Ballance, D.C. Griffin, J. Colgan, S.D. Loch, M.S. Pindzola // Phys. Rev. A. 2003. .V 68, Iss. 6. P. 062705(11).
- Zatsarinny O. Electron-impact excitation of carbon / O. Zatsarinny, K. Bartschat, L. Bandurina, V. Gedeon // Phys. Rev. A. – 2005. – V. 71, Iss. 4. – P. 042702 (9).
- Wang Y. B-spline R-matrix-withpseudostates calculations for electronimpact excitation and ionization of carbon / Y. Wang, O. Zatsarinny, K. Bartschat // Phys. Rev. A. – 2013.– V. 87, Iss. 2. – P.012704 (8).
- Kuchenev A. Electron-impact excitation cross-sections of boron / A. Kuchenev, Yu. Smirnov // Opt. Spectr. – 1981. – V. 51. – P. 116-118.
- Marchalant P. Electron-impact excitation of boron / P. Marchalant, K. Bartschat, K. Berrington, S. Nakazaki // J. Phys. B: At. Mol. Opt. Phys. 1997. V. 30, No 8. P. L279-L284.
- Marchalant P.J. *R*-matrix with the pseudostates calculations for electron-impact excitation and ionization of boron / P.J. Marchalant, K. Bartschat // J. Phys. B: At. Mol. Opt. Phys. 1997. V. 30, No 19. P. 4373-4382.

- Ballance C.P. Electron-impact excitation of neutral boron using the R-matrix with the pseudostates method / C.P. Ballance, D.C. Griffin, K.A. Berrington, N.R. Badnell // J. Phys. B: At. Mol. Opt. Phys. 2007. V. 40, No 6. P. 1131–1139.
- Bandurina L.O. Electron scattering by the boron atom / L.O. Bandurina, V.F. Gedeon // Uzhhorod University Scientific Herald. Series Physics. – 2013. – Iss. 33. – P. 100-105.
- Zatsarinny O. BSR: B-spline atomic Rmatrix codes / O. Zatsarinny // Comput. Phys. Commun. 2006. – V. 174, No 4.– P. 273-356.
- Zatsarinny O. Low-energy electron scattering from Ca atoms and photodetachment of Ca⁻ / O. Zatsarinny, K. Bartschat, S. Gedeon, V. Gedeon, V. Lazur // Phys. Rev. A. 2006. V. 74, Iss. 5. P.052708 (10).
- 14. Zatsarinny O. Electron-impact excitation of calcium / O. Zatsarinny, K. Bartschat, L. Bandurina, S. Gedeon // J. Phys. B: At. Mol. Opt. Phys. 2007. V. 40, No 5. P. 4023-4031.
- Gedeon V. B-spline R-matrix-withpseudostates calculations for electronimpact excitation and ionization of fluorine / V. Gedeon, S. Gedeon, V. Lazur, E. Nagy, O. Zatsarinny, K. Bartschat // Phys. Rev. A. – 2014. – V. 89, Iss. 5. – P.052713 (9).
- Froese Fischer C. The MCHF atomicstructure package / C. Froese Fischer // Comput. Phys. Commun. – 1991. – V. 64, No 3. – P. 369-398.
- 17. Froese Fischer C. Computational Atomic Structure. An MCHF Approach / C. Froese Fischer, T. Brage, O. Jonsson // London: Institute of Physics Publishing, Bristol, 1997. 279 p.
- Zatsarinny O. Oscillator strengths for transitions to high-lying excited states of carbon / O. Zatsarinny, C. Froese Fischer // J. Phys. B: At. Mol. Opt. Phys. – 2002. – V. 35, No 22. – P. 4669-4684.

- NIST Atomic Spectra Database, http://physics.nist.gov) Ralchenko Yu., Kramida A.E., Reader J., and NIST ASD Team (2011). NIST Atomic Spectra Database (ver. 4.1.0), [Online].
- 20. Burke V.M. Farm A flexible asymptotic *R*-matrix package / V.M. Burke,

Стаття надійшла до редакції 16.01.2015.

L.O. Bandurina¹, S.V. Gedeon²

¹Institute of Electron Physics NAS Ukraine, Universytetska Str., 21, Uzhgorod, 88000 ²Uzhhorod National University, Voloshina Str., 54, Uzhhorod, 88000

THE DIFFERENTIAL CROSS SECTIONS OF ELECTRON SCATTERING ON NEUTRAL BORON

The calculation of differential cross sections of electron scattering on neutral boron in ground $1s^22s^22p$ ²*P* state is carried out with the *B*-spline *R*-matrix method (BSR) for energy from reaction threshold to ~30 eV. The multiconfiguration Hartree-Fock method with nonorthogonal orbitals was used to generate and represent precisely the target wavefunctions. The close-coupling expansion includes 28 bound states of neutral boron: 8 physical states and 20 pseudostates. The differential 3D cross sections of elastic scattering, and the excitation of important transitions from ground state of boron is presented.

Key words: the boron atom, electron scattering, the *B*-spline *R*-matrix method, differential 3D-cross section of scattering.

Л.О. Бандурина¹, С.В. Гедеон²

¹Институт электронной физики НАН Украины, ул. Университетская, 21, Ужгород, 88000 ²Ужгородский национальный университет, ул. Волошина, 54, Ужгород, 88000

ДИФФЕРЕНЦИАЛЬНЫЕ СЕЧЕНИЯ РАССЕЯНИЯ ЭЛЕКТРОНОВ НА АТОМЕ БОРА

Методом *R*-матрицы с *B*-сплайнами (BSR) осуществлены расчеты дифференциальных сечений рассеяния электронов на атоме бора в основном состоянии $1s^22s^22p$ ²*P* для энергий от порога реакции до ~30 эВ. Для генерирования и точного представления волновых функций мишени был использован много-конфигурационный метод Хартри-Фока с неортогональными орбиталями. Разложение сильной связи включало 28 состояний атома бора: 8 физических и 20 псевдосостояний. Представлены дифференциальные 3D-сечения упругого рассеяния, а также возбуждения важнейших переходов из основного состояния бора.

Ключевые слова: атом бора, рассеяние электронов, метод *R*-матрицы с *B*-сплайнами, дифференциальные 3D-сечения рассеяния.

C.J. Noble // Comput. Phys. Commun. – 1995.– V. 85, No 3.– P. 471-500.

 Гедеон С.В. Розрахунки перерізів розсіяння електронів на атомі Са / С.В. Гедеон, В.Ю. Лазур // Наук. вісн. Ужгородського університету, сер. "Фізика". – 2009. – Вип. 25. – С. 130-140.