
УДК 681.5: 519.7 

Kotsovsky V. M., 

Uzhgorod National University, Pidgirna St. 46, Uzhgorod, 88000, Ukraine 

LEARNING OF COMPLEX NEURONS 

© Владислав Коцовський, 2017 

The paper deals with the problems of realization of Boolean functions on neural-like 

units with complex weight coefficients. The relation between classes of realizable function is 

considered for half-plane-like activation function. We also introduce the concept of sets 

separability, corresponding to our notion of neuron. The iterative online learning algorithm is 

proposed and sufficient conditions of its convergence are given. 
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Стаття присвячена проблемі реалізації булевих функцій на комплексних 

нейронах. Розглянуто питання про зв’язок між класами функцій, які можна реалізувати 

на комплексних нейронах із різними функціями активації. Запропоновано поняття 

сепарабельності множин у n-вимірному просторі, яке вводиться за допомогою комп-

лексних нейронів. Наведено ітеративний online алгоритм навчання комплексних ней-

ронів та вказано достатні умови його збіжності. 

Ключові слова – Комплексний нейрон, нейромережа, пороговий елемент, порогова 

функція, навчання. 

Introduction 

Artificial neural networks based on neural-like units have numerous applications in different areas, 

such as artificial intelligence, objects classification, pattern recognition, data compression, forecasting, 

approximation or extrapolation of functions of many variables and many others [1]. Different networks 

architectures and neuron kinds are described in [1, 2]. One of most important task in the theory of feed-

forward neural networks with discrete activation functions is the one concerning the realization of a 

Boolean function on a single neuron. Its importance follows from the fact that for networks on the base of 

neurons with threshold-like activation function outputs of each network levels have two possible values 

(binary, bipolar, etc.). Minsky and Papert [3] proved that classical threshold units have enough weak 

capacity for recognition. Numerous improved models of neuron are proposed for overcome the mentioned 

limitations (see [1] for details). 

In paper we deal with the one type of such extensions, namely complex neurons, which are 

introduced in [4]. There exists many way of complexification, e.g. [5]. 

Let  2 1,1E    be the bipolar set and 2

nE  is an n-th Cartesian power of 2E . A Boolean function in 
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1nw   — inner product of vectors w and x (sometimes called a weighted sum). Thus, for any threshold 

function f:    sgn ,f x w x , where    1,..., nf f x xx  and sgn is sign function given by 

1 if 0,
sgn

1 if 0.
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Complex neurons 

Now we extend the notion of threshold function to the complex domain. Let us consider Boolean 

function over alphabet  ,   where α and β are complex number. Let l be an arbitrary line dividing the 

complex plane C on two half-plane C+ and C–. We may regard following sign function 

1 if  C ,
sgn

1 if  C .
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A Boolean function    : , ,
n

f      is a complex Boolean threshold function (CBTF) in the 

alphabet  ,   if there exists a complex weight vector 1Cnw  and line l such that     sgn ,lf x w z , 

where z  is a complex conjugate vector for z (here we used the definition of inner product in complex 

vector spaces). 

Note that we do not use the notion of the threshold in our definition, because it is convenient to 

include the threshold in the weight vector. 

It is easy to see that using rotation and fitting of the free term 
1nw 
 we can restrict the class of 

possible sign function to the following function 

1 if  Re 0,
Resgn

1 if  Re 0.
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Note that "small" change of term 1nw   allows avoiding the possibility that the weighted sum  ,w z  

value lies on the division line. 

Let  C ,T    be a class of all CBTF in alphabet { , }  . The question arises about relations existing 

among the classes of CBTF in different alphabets. The answer is given by the following proposition. 

Proposition 1. There exists an bijective correspondence between the classes  C ,T    and  C ,T    

for arbitrary alphabets { , }  , { , }  . 

Proof. Let  C( ) ,f z T   . Then there exists 1Cnw  such that for all  ,
n
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 ( ) Resgn ,f z w z . The transformation  z z
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Let  g z  be a Boolean function in alphabet { , }   realizable on the complex neuron with the 

weight vector 'w . It is easy to see that the correspondence f g  is bijective one between the functions 

from  C ,T    to  C ,T   . 

Note, in particular, that one cannot obtain the class of CBTF more powerful that  C 1,1T   by 

altering the alphabet. 
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The next question is how the cardinality of the class of CBTF changes if we restrict the set of 

possible value for weight vector coefficients. Let  ,n

DT    be the class of all CBTF of n variables 

realizable on neurons with weight vectors from the set 1nD  ,    
0

, ,n

D D

n

T T   




 , where CD . 

Proposition 2. If Re Re  , then    C R, ,T T    . 

Proof. Let us proof that equality    C R, ,n nT T     holds for all non-negative integer n. From 

proposition 1 it follows that    C C, Re ,Ren nT T    . Let f be an arbitrary member of  C Re ,RenT   , 
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It follows from the last equality that the classes  C Re ,RenT    and  R ,nT    have the same 

cardinality. Then the same holds for classes  C ,T    and  R ,T   . Since    C CRe ,Re ,T T    , 

these classes are equal. 

Note that for the alphabet 2E  the last proposition is proved in [4]. 

From the previous proposition also follows that usage of neurons with weights belonging to the real 

line enable us to generate all CBTF. We will prove that similar fact is true for neurons with weights lying 

on any line in complex space. 

Proposition 3. If  C, R | R    x x  and complex numbers , ,    satisfy conditions 

 arg , Re 0
2


      , then classes  C ,T    and  R ,T    coincide. 

Proof. Let us consider an arbitrary CBTF    C ,f T  z . Then there exists 1Cnw  such that for 
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where  1, 1, ,j j j jw w z z j n     , 1 1n nw w 
  . So, for all CBTF  f z  in alphabet { , }   

there exists unique CBTF  g z  in alphabet { , }   such that for each  ,
n

 z  equality ( ) ( )f g z z  

holds. Using proposition 2 to function  g z  we obtain 
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    . Thus, the Boolean function ( )f z  is realizable on 

complex neuron with weight vector 1Rn w . 

Learning algorithm 

We have seen that    C R, ,T T    , and question how find some weight vector  R ,T  w , 

corresponding to given CBTF f  naturally arises. That is, we need a learning algorithm for the class of 

CBTF. 
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Let A , A  be two finite disjunctive subsets of vectors from the set C { }n  ,  0   (i.e. 

A A   ) and A A A   . We call sets A  and A  γ-separable, if there exists vector 1nR w  

such that for all Az  following conditions hold 
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z A

z A





 

 

w z

w z
 

Next, we will suppose that there exists an angle   and real number c such that 

   Re 0 1,i

jA e z c j n    z .             (1) 

We will assume (1), without any loss of generality, because A is a finite set. Let the training sample 

of vectors  k
z  satisfies following two conditions:  

1) , Nk A k z ; 

2) each element of the set А repeats in learning sample infinitely many times. 

Without any loss of generality we will assume that ie   , where 
2 2

 
   . Let the initial 

weight vector be  0 0, ,0w . Let us build the sequence of vectors  k
w  as follow: 
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The algorithm of weights updating according to the rule (2)-(3) we call "the online learning 

algorithm" for the complex neural unit. The next proposition gives the sufficient condition for our learning 

algorithm to be convergent. 

Proposition 4. If finite sets A  and A  are  -separable, then there exists finite natural m such that 

the sequence (2) of weight vector, obtaining according to the rules (2)-(3) of online learning algorithm 

yield after m updates the weight vector m
w , which separates sets A  and A . 

Proof. We do our proof by contradiction. Suppose that the opposite is true. We can assume that at 

each step of the learning algorithm the coefficients 0kt   (in opposite case we can simply throw away 

such k
z , for which 0kt  , because weights are persistent on respective steps of the algorithm). Then 

 1 1
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 z . Now find the inner product of both sides of the last equality by 

 1nR w , which separates sets A  and A . Without loss of generality we can assume there exists d > 0 

such that A z  the following inequality holds   , 0h d  w z  (we always can satisfy it by changing 

in corresponding way the free term 1nw  ). It follows from Cauchy-Schwartz inequality that 
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and, hence, 

2 2
2

1

2

m m d w
w

.              (4) 

In other way, if we square the both sides of (2), then we have that 
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Accordingly to the learning algorithm all vectors k
w  satisfy the conditions k i ke w u , where 

1Rk nu . Therefore, 
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From (3) it follows that  1Re , 0k k

kt
 w z . Then, according to last equalities and condition (1)  
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     w w z . 

Let us sum the last equality by k from 0 to m. Then 
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Inequalities (4) and (5) contradict for sufficiently large m. Hence, the learning process (2)-(3) cannot 

last infinitely long. 

Conclusion 

Artificial complex neurons with the half-plane surface of activation function are enough simple and 

powerful computational units. Main our results concerning complex neurons with Resgn activation 

function are following: 

1. The choice of the alphabet of Boolean functions representation has no importance for 

representative power of class of respective realizable Boolean functions. 

2. The restriction of possible weights to ones on an almost every line in complex plane does not 

shrink the class of respective complex Boolean threshold functions. 

3. Neurons with restricted weights can be learned by using perceptron-like learning technique. 
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