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АНОТАЦІЯ Робота присвячена питанням, які стосуються навчання нейронних елементів і нейромереж із двопороговою 

функцією активації. Показано, що задача навчання двопорогового нейрона належить до класу NP-повних задач. Наведено 

достатні умови, які забезпечують можливість генерації двопорогових булевих функцій за допомогою списків рішень. 

Досліджена задача навчання нейромереж прямого поширення, функції активації яких є згладженими аналогами 

двопорогових функцій. Продемонстровано результати комп’ютерних експериментів навчання модельних функцій, які 

свідчать про переваги запропонованого у роботі підходу із використанням функцій активації двопорогового типу. 

Ключові слова: нейронний елемент, двопороговий нейрон, нейромережа, навчання, алгоритмічна складність. 

 

АННОТАЦИЯ Работа посвящена вопросам обучения нейронных элементов и нейросетей с двупороговой функцией 

активации. Показано, что задача обучения двупорогового нейрона принадлежит к классу NP-полных задач. Приведены 

достаточные условия реализуемости двупороговых булевых функций с помощью списков решений. Рассмотрена задача 

обучения нейросетей прямого распространения, функции активации которых являются сглаженными аналогами 

двупороговой функции. Также приведены результаты компьютерных экспериментов обучения модельных функции, 

которые демонстрируют преимущества нейросетей с функциями активации двупорогового типа. 

Ключевые слова: нейронный элемент, двупороговый нейрон, нейросеть, обучение, алгоритмическая сложность. 
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ABSTRACT The paper is devoted to the study of the properties of the simplest multithreshold generalization of McCulloch-Pitts 

neurons, namely bithreshold neurons. The main reason of application of multithreshold device is their more powerful capabilities in 

comparison with classical threshold units. But multithreshold devices are quite unused because the effective learning algorithm is 

unknown for such units. 

It is possible to mark out three main goals of the present paper. The first one is the study of the existence of effective learning 

technique for bithreshold neurons and networks. The second one is the analysis of the relation between Boolean function realizable 

on bithreshold units and decision lists. The last goal is the study of capabilities of feedforward neural networks with smoothed 

bithreshold activation function and closely related question of their learning by means of backpropagation. 

It is shown that the learning of one bithreshold neural unit is NP-complete. Furthermore, the paper contains the proof of the 

fact that the task of verification of the bithreshold separability of the finite sets A  and A  is NP-complete even in the case 

 ,
n

A A a b   , where Ra , Rb   a b  and the weight coefficients of the neuron may be restricted to be from the set 

 1, 1  . Two ways of overcoming the intractability of bithreshold neurons learning are proposed. Firstly, we can restrict ourselves 

to consider only those bithreshold units, which are capable to be learned in polynomial time. In particular, it is shown that if we have 

the decision list        1 2 1,1 , ,1 ,..., ,1 , ,1r rf f f f f , where 
if  ( 1,2,..., 1)i r   is an arbitrary Boolean function of two variables 

assigned the value 1 on two points, and the function
rf  is realizable on bithreshold unit, then the same is true for Boolean function f. 

The second way is based on gradient learning algorithms for neural networks with smoothed bithreshold-like activation function. 

The simulation results are given confirming the validity of this approach. 

Keywords: neuron, bithreshold neuron, neural network, learning, complexity. 

 

 

Introduction 

 

Neural-like units (neurons) are intensively used for 

solving numerous important practical problems [1]. Many 

different models of neuron has been proposed. The one of 

more important features of these units is the activation 

function determining their outputs. Historically, the first 

proposed units had activation functions of threshold type 

according to developed models of brain cells. Using this 

type of activation Rosenblatt [2] designed the incremental 

consistent algorithm for the perceptron learning. The 

simple proof of its convergence is due to Novikoff [1]. 
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Then Minsky and Papert [3] proved that Rosenblatt's 

algorithm is inefficient in general case. Peled and 

Simeone were the first to produce a polynomial time 

algorithm for the threshold recognition problem [4]. They 

proposed linear programming approach based on 

polynomial-time Karmarker's algorithm. 

It is well known that the threshold unit is incapable 

solving many rather easy recognition tasks (e. g. the 

famous XOR-problem [1, 3]). The using of neurons with 

more complicated activation functions allowed 

surmounting this constrain. Historically, the one of the 

first designed advanced device were multithreshold neural 

units [4, 5]. But the efficient learning techniques for 

multithreshold neuron based neural networks aren't 

developed even in the case of the network with one node. 

 

Goal 

 

The present paper has three main goals. The first 

one is study of the existence of effective learning 

technique for bithreshold neurons and networks. The 

second one is the analysis of the relation between Boolean 

function realizable on bithreshold units and decision lists. 

The last goal is the study of capabilities of feedforward 

neural networks with smoothed bithreshold-like activation 

function and related question of their learning by means 

of backpropagation. 

 

Basic definitions 

 

The bithreshold neurons with n inputs is defined 

by a triplet  1 2, ,t tw , where Rnw  is the weight vector 

and  1 2 1 2, Rt t t t   are the thresholds. The neuron 

output y is defined by 

 1 2, if , ,

, otherwise.

a t t
y

b

  
 


w x
        (1) 

The graph of corresponding activation function of bi-

threshold neuron is shown in Fig. 1 (in the case where 

1, 1a b   ). 

 

 
 

Fig. 1. − The graph of bithreshold activation function 

 

We consider neurons with binary   2, Za b   or 

bipolar   2,a b E  outputs, where  2Z 0,1 , 

 2 1,1E   . If 
1t   , then we obtain the ordinary 

threshold neuron. The triplet  1 2, ,t tw  is the structure 

vector of the bithreshold neuron. 

The bithreshold neuron with bipolar output per-

forms a classification of Rn  by mapping every vector in 

Rn  to +1 or –1. Geometrically, the bithreshold neuron 

has two separating parallel hyperplanes that define its 

decision region, as opposed to just one separating surface 

that defined the decision region of the traditional 

threshold neuron. 

Let A be the finite set in the space Rn . Then bi-

threshold neuron makes such dichotomy  ,A A   of the 

set A: 

  1 2| ,A A t t    x w x , \A A A  . 

This partition we call a "bithreshold" dichotomy 

and we call "bithreshold separable" the sets A  and A . 

In the most important special case 
2ZnA   or 

2

nA E . We 

call Boolean function  1 2 2,..., : Z Zn

nf x x   a "bi-

threshold function", if exists bithreshold neuron with the 

structure  1 2, ,t tw  that    1 20 ,f t t   x w x . Let 

nLBT  denote the set of all n-place bithreshold Boolean 

functions. 

 

Complexity of learning procedure 

 

A polynomial time algorithm is one with running 

time  sO r , where r is the size of input and s is some 

fixed integer  1s  . The size of an input to an algorithm 

can be measured in various ways. For algorithms working 

with neurons it is naturally to take as a size of input the 

capacity of learning sample.  

We shall show that if the P NP  conjecture is 

true, then don't exist a polynomial time verification 

algorithm checking the possibility of realization of the 

arbitrary Boolean function on one bithreshold unit. The 

learning of bithreshold Boolean function is NP-complete 

all the more. 

Let C be a class of Boolean function:  
1n n

C C


 , 

Nn ,  2 2| : Z Zn

nC f f  . In the complexity theory 

the following problem is well-known. 

MEMBERSHIP(C) 

Instance:  A disjunctive normal form formula φ in 

n variables. 

Question: Does the function f represented by φ 

belong to C. 

Anthony proved [6] that MEMBERSHIP(C) is 

NP-complete for all classes satisfying following pro-

perties: 



1) for every 
nf C  and arbitrary  1,...,i n , both 

functions  1 1 1,..., ,1, ,...,i i nf x x x x 
 and 

 1 1 1,..., ,0, ,...,i i nf x x x x 
 belong to 

1nC 
; 

2) for every Nn , the identically 1-function 

belongs to 
nC ; 

3) there exists Nk  such that 

 2 2| : Z Zk

kC f f  . 

Proposition 1. The task of verification of the 

membership to the class of bithreshold Boolean functions 

is NP-complete. 

Proof. We show that class  
1n n

LBT LBT


  

satisfies conditions 1-3. Condition 1 follows from 

Shannon expansion    1 1 1,..., ,..., ,0n n nf x x f x x x   

 1 1,..., ,1n nf x x x . If Boolean function  1, , nf x x  

can be realized on the bithreshold neuron with the 

structure   1 1 1 2,..., , , ,n nw w w t tw , then the functions 

 1 1,..., ,1nf x x   and  1 1,..., ,0nf x x   can be realized on 

bithreshold neurons with structures   1 1,..., ,nw w   

1 2,n nt w t w   respectively,   1 1 1 2,..., , ,nw w t t . Con-

dition 2 is evident. Condition 3 follows from the fact that 

if 2n   Boolean function 
1 2 ... nx x x    doesn't 

belong to 
nLBT  [7]. Therefore subject to [6] MEMBER-

SHIP(LBT) is NP-complete. 

Proposition 2. The task of verification of the 

bithreshold separability of the finite set A  and A  is 

NP-complete even in the case  ,
n

A A a b   , where 

Ra , Rb   a b  and the weight coefficients may 

be restricted to be from the set  1, 1  . 

Proof. We use the results of Blum and Rivest from 

[8], where was shown that the following training problem 

is NP-complete: 

The 3-Node Network with AND output node 

restricted so that any or all of the weights for one hidden 

node are required to be opposite to the corresponding 

weights of the other and any or all the weights are 

required to belong to  1, 1  , since the well-known NP-

complete problem Set-Splitting [9] can be reduced to this 

task. 

It is easy to verify that the arbitrary dichotomy 

 ,A A 
 is bithreshold if and only if it can be realized on 

neural network of mentioned type. Really, 

  2,A t  x w x  and   1, t  w x  and the trans-

formation from the basis  ,a b  to the basis 
2Z  can be 

made using a standard linear transformation of variables 

(the same is true for synaptic weights). 

 

Representation of bithreshold Boolean functions by 

decision lists 

 

Decision lists were proposed by Rivest in [10]. For 

many application [10, 11] decision lists are more useful 

than classical disjunctive or conjunctive normal forms. 

Let  1 2, ,..., rK f f f  be an arbitrary finite 

sequence of Boolean functions of n variables. A function 

2 2: Z Znf   is said to be decision list based on sequence 

K if it can be evaluated using a sequence of if then else 

command as follows, for some fixed  1 2, ,..., rc c c , 

2( Z , 1,...., )ic i r  : 

if  1 1f x  then set   1f cx  

else if  2 1f x  then set   2f cx  

…………………..……………………………… 

else if   1rf x  then set   rf cx  

   else set   0f x . 

More formally, a decision list based on K is 

defined by a sequence  

     1 1 2 2, , , ,..., ,r rf f c f c f c , 

where 
2, Z , ( 1,2,..., )i if K c i r   . The values of the 

function f  are defined by 

 
  , if min : 1 exists,

0,     otherwise.

j ic j i f
f

  
 


x
x  

Example. Let  1 3 2 1, ,K x x x x . The decision list 

     1 3 2 1,0 , ,1 , ,1f x x x x  may be thought of as 

operating in the following way on 3

2Z . First, those points 

for which 
1 3x x  is true are assigned the value 0: these are 

   1,0,0 , 1,1,0 . Next the remaining points for which 
2x  

is satisfied are assigned the value 1: these are 

     0,1,0 , 0,1,1 , 1,1,1 . Finally, the remaining points for 

which 
1x  is true are assigned the value 1: this accounts 

for  0,0,0 ,  0,0,1 , leaving only  1,0,1 , which is 

assigned value 0. At easy to verify that we obtain the 

following function 
1 2 1 3 2 3x x x x x x  . 

The relationship between decision lists and 

threshold Boolean functions was established in [10]. 

Antony showed (see [6]) that any 1-decision list (that is, a 

decision list based over the set K of single literals) is a 

threshold function. 

We present the similar result concerning the 

representation of bithreshold Boolean functions. 

Proposition 3. If the members of the decision list 

       1 1 2 2 1 1, , , ,..., , , ,r r r rf f c f c f c f c   



satisfy following conditions:  

1) 
if  is an arbitrary Boolean function of two 

variables assigned the value 1 on two points 

( 1,2,..., 1)i r  ; 

2) 1, 1,2,...,ic i r  , 

and the function
rf  is bithreshold, then f is the bithreshold 

Boolean function. 

Proof. We use the induction on r (the number of 

members in the decision list). The base case, 1r  , is 

easily seen to be true because every Boolean function of 

two variables is bithreshold (it is sufficient to verify the 

realizability of the functions x y  and x y , as other 

14 functions can be realized on single threshold units). 

Suppose, as an inductive hypothesis, that our proposition 

is true for all decision lists of cardinality no more r. Let 

we have the following decision lists 

       1 1 2 2 1 1, , , ,..., , , ,r r r rf f c f c f c f c   of the length 

r + 1. By the inductive hypothesis the decision list 

     2 2 1 1, ,..., , , ,r r r rf f c f c f c 
   defines a bithreshold 

Boolean function. Let the corresponding bithreshold 

neuron has structure  1 2, ,t t  w , and let 

1 21
1

n

ii
d w t t


    . From conditions 1)-2) follow 

that the term  1 1,f c  can has the following values: 

1) (0,1); 

2) (1,1) 

3)  ,1ix ; 

4)  ,1ix ; 

5)  ,1i j i jx x x x ; 

6)  ,1i j i jx x x x . 

In the first case let 
1 1 2 2, ,t t t t    w w . In the 

second case let 
1 20, 1, 2t t  w . In the third case let 

id w w e , 
1 1 2 2,t t t t   , where  0,...,0,1,0,...,0i

i
e . 

In the fourth case let id w w e , 1 1 2 2,t t d t t d     . 

In the fifth we can assume i jd d  w w e e , 
1 1t t d  , 

2 2t t d  . In the last case let i jd d  w w e e , 
1 1t t , 

2 2t t . 

Prove that in each case the decision list f is the 

bithreshold Boolean function realizable on the bithreshold 

unit with the structure  1 2, ,t tw . It is evident in two first 

cases. 

In the third case for every  1,..., ,...,i nx x xx  

     , , ,i id dx    w x w e x w x . 

If 1ix  , then the output value of the decision list 

is equal to 1 and  

    2 2 2

1 1

, , 1
n n

j j

j j

d w w t t t
 

             w x w x . 

Thus, in this case the output value for the 

bithreshold neuron is equal to one for the decision list. If 

0ix   then    , ,w x w x . By the inductive hypothesis 

the decision list  2 2, ,...f f c  ,    1 1, , ,r r r rf c f c 
 is 

the bithreshold function realizable on the bithreshold 

neuron with the structure  1 2, ,t t  w . Since 
1 1 2 2,t t t t    

that in the case 0ix   the output of the bithreshold 

neuron is identical to the out of the decision list. Thus, the 

function f is realizable on the bithreshold with the 

structure  1 2, ,t tw . In case 4 the proof is similar. 

Let us consider case 5. Let 
2Znx . If 0ix   and 

0jx  , then  

    2 1 1

1 1

, , 1
n n

k k

k k

w w t t d t
 

            w x w x . 

If 1ix   and 1jx  , then 

    2

1

, , 2 2
n

k

k

d w d t


        w x w x  

1 2 2 2

1

1
n

k

k

w t t t d t


          . 

In both cases the output of the bithreshold neuron 

is equal to 1. It corresponds to the output value of the 

decision list. If 1ix  , 0jx   or 0ix  , 1jx  , then 

   , , d w x w x . 

Since 
1 1 2 2,t t d t t d     , then in both cases the 

output value of bithreshold neuron with the structure 

 1 2, ,t tw  is equal to one of the neuron with the structure 

 1 2, ,t t  w , which by the inductive hypothesis is equal to 

the output of the decision list. The proof in case 6 can be 

given by similar reasons. 

Corollary 1. If a Boolean function of n variable 

can be represented as follows: 

    1

11 1,..., ,..., ... l

ln n i if x x g x x x x


      

1 1 1 1

1 1 1 1
... m m m m

m m m mj k j k j k j kx x x x x x x x
      

     , 

where  1,..., ng x x  is an arbitrary bithreshold Boolean 

function, 1x x , 0x x , 2Z ( 1,..., ),i i l    2Zj  , 

2Z ( 1,..., )j j m   , then  f  is the bithreshold function. 

The proof follows from the proposition 3 and the 

evident fact [6] that if the decision list satisfies 

1, 1,...,ic i r  , then 1 ... rf f f    

Corollary 2. The Boolean function f defined by the 

following decision list 

       1

1 1 1,1 , , ,1 , , , , ,m

r r r r m r mf f f x c x c


    , 



where 
2 2Z , Z , 1,...,i r ic i m     is a bithreshold 

Boolean function if 
1, , rf f  satisfy the conditions of the 

proposition 3. 

The proof follows from the proposition 3 and from 

[6] (according to the theorem 3.9 from [6] the decision list 

of the following form    1

1 1, , , ,m

r r r m r mx c x c


   
 is a 

threshold and so a bithreshold Boolean function). 

 

Feedforward neural nets with smoothed bithreshold 

activation function 

 

Let us consider the problem of learning the neural 

net on the base of bithreshold neurons. As we have shown 

earlier these task is hard even for one neuron. These 

difficulties can be overcome in the same way as for 

traditional threshold neurons. It is enough to consider the 

neurons with continuous differentiable activation 

function. We call it the smoothed bithreshold function. 

Corresponding neuron can be named smoothed 

bithreshold neurons. It is possible to consider numerous 

smoothed analogue of hard bithreshold activation function 

(1). The ones of simplest are following: 

2

1 2 xy e  ,  (2) 

10( 1) 10( 1)

2 2
1

1 1x x
y

e e   
  

 
. (3) 

Their graphs are shown on Fig. 2 (the graph of the 

function (3) is "closer" to the graph of the hard bi-

threshold function (1)). 

 

 
 

Fig. 2. − The graphs of the smoothed bithreshold 

activation functions (2)-(3) 

 

We describe here a fairly simple neural net based 

on smoothed bithreshold neurons, namely the feedforward 

net (i.e. the multilayer perceptron). We used back-

propagation to learn such nets. The network error and 

weight corrections are traditional and corresponding 

formulas are omitted. 

 

Simulation 

 

To compare the performance of feedforward neural 

nets based on smoothed bithreshold neurons and sigmoid 

nets we have implemented a simulation tests. We describe 

results of two typical tests of nets learning in online 

mode, in which we use the activation function (2) or (3), 

modified logistic sigmoid 
2

1
1 x

y
e

 


, tanhy x  and 

rational sigmoid 
1

1 | |
y

x



. 

In the first test we learned feedforward 100-10-3 

nets (100 inputs, 10 hidden nodes and 3 outputs) for 

different activation functions on 100 different learning 

samples, each containing 500 training examples 

uniformly distributed in hypercube  
103

1,1 . Then 

1000000 iterations of backpropagation procedure are 

applied for every net. The learning rate parameter was 

individually chosen for every type of activation function.  

 

Table 1 − Learning in the case of uniform 

distributed samples 

Activation 

function 

Average total sample 

error 

Maximum error 

on example 

modified lo-

gistic 

31,27 0,38 

tanh x 44,81 0,34 

rational sig-

moid 

53,49 0,85 

smoothed bi-

threshold (2) 

30,04 0,35 

 

As seen in table 1, the empirical results prove that 

average total sample error was the least for smoothed 

bithreshold (2). The maximum error on example for this 

function is also fine in respect of other functions. 

In the second test we trained 100-40-1 feedforward 

nets to map classical "hard" function XOR of 100 

variables (strictly speaking we use the bipolar form of 

XOR). In the table 2 are given the result of computer 

simulation. The learning sample size was equal to 1000. 

For every net 300000 iterations of backpropagation 

procedure are applied. 

 

Table 2 − Learning XOR function 

Activation function  Maximum error 

on example  

modified logistic  1,99  

tanh x  1,99  

rational sigmoid  1,87  

smoothed bithreshold (3)  0,24  

 

As seen in table 2, learning finished successively 

only in the case of network based on smoothed bi-

threshold (3). 



 

Results and discussion 

 

It was demonstrated that the basic forms of the 

task of learning one bithreshold neural unit are hard. For 

example, it was proved that the task of verification of the 

bithreshold separability of the finite sets A  and A  is 

NP-complete even in the case  ,
n

A A a b   , where 

Ra , Rb   a b  and the weight coefficients of the 

neuron may be restricted to be from the set  1, 1  .  

The relation between bithreshold realizability and 

realizability by means of decision list was stated. The 

main result in this domain asserts that if we have the 

decision list        1 2 1,1 , ,1 ,..., ,1 , ,1r rf f f f f , where 

if  is an arbitrary Boolean function of two variables 

assigned the value 1 on two points ( 1,2,..., 1)i r  , and 

the function
rf  is realizable on bithreshold unit, then the 

function f is also bithreshold. 

The simulation results given in last section show 

that multilayer feedforward neural network with 

smoothed bithreshold-like activation functions can be 

learnt on the training sample using backpropagation. The 

data of table 2 confirms that they are capable to solve 

hard problem of the learning of the XOR-function of 

several variables. 

 

Conclusions 

 

Neural-like systems on the base of bithreshold 

neurons were studied. The NP-hardness of bithreshold 

neurons learning was established. Two ways were 

proposed to overcome the hardness of learning procedure. 

The conditions were found providing that decision list 

realizes a bithreshold logic function. The approach was 

proposed concerning neural networks with smoothed 

bithreshold activation functions. The experimental results 

confirming effectiveness of this approach were given. It 

seems that bithreshold neurons can be useful in areas of 

traditional applications of neural-like devices. 
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