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ABSTRACT The paper is devoted to the study of the properties of the simplest multithreshold generalization of McCulloch-Pitts
neurons, namely bithreshold neurons. The main reason of application of multithreshold device is their more powerful capabilities in
comparison with classical threshold units. But multithreshold devices are quite unused because the effective learning algorithm is
unknown for such units.

It is possible to mark out three main goals of the present paper. The first one is the study of the existence of effective learning
technique for bithreshold neurons and networks. The second one is the analysis of the relation between Boolean function realizable
on bithreshold units and decision lists. The last goal is the study of capabilities of feedforward neural networks with smoothed
bithreshold activation function and closely related question of their learning by means of backpropagation.

It is shown that the learning of one bithreshold neural unit is NP-complete. Furthermore, the paper contains the proof of the

fact that the task of verification of the bithreshold separability of the finite sets A" and A~ is NP-complete even in the case
ATUA c{a,b}", where aeR, beR (a:t b) and the weight coefficients of the neuron may be restricted to be from the set

{—1,+1} . Two ways of overcoming the intractability of bithreshold neurons learning are proposed. Firstly, we can restrict ourselves

to consider only those bithreshold units, which are capable to be learned in polynomial time. In particular, it is shown that if we have
the decision list f =(f,,1),(f,,1),...(f,,.1).(f.1), where f, (i=12,..,r—1) is an arbitrary Boolean function of two variables

assigned the value 1 on two points, and the function f, is realizable on bithreshold unit, then the same is true for Boolean function f.

The second way is based on gradient learning algorithms for neural networks with smoothed bithreshold-like activation function.
The simulation results are given confirming the validity of this approach.
Keywords: neuron, bithreshold neuron, neural network, learning, complexity.

Introduction function determining their outputs. Historically, the first

proposed units had activation functions of threshold type

Neural-like units (neurons) are intensively used for  according to developed models of brain cells. Using this
solving numerous important practical problems [1]. Many  type of activation Rosenblatt [2] designed the incremental
different models of neuron has been proposed. The one of  consistent algorithm for the perceptron learning. The
more important features of these units is the activation  simple proof of its convergence is due to Novikoff [1].
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Then Minsky and Papert [3] proved that Rosenblatt's
algorithm is inefficient in general case. Peled and
Simeone were the first to produce a polynomial time
algorithm for the threshold recognition problem [4]. They
proposed linear programming approach based on
polynomial-time Karmarker's algorithm.

It is well known that the threshold unit is incapable
solving many rather easy recognition tasks (e. g. the
famous XOR-problem [1, 3]). The using of neurons with
more  complicated activation  functions allowed
surmounting this constrain. Historically, the one of the
first designed advanced device were multithreshold neural
units [4, 5]. But the efficient learning techniques for
multithreshold neuron based neural networks aren't
developed even in the case of the network with one node.

Goal

The present paper has three main goals. The first
one is study of the existence of effective learning
technique for bithreshold neurons and networks. The
second one is the analysis of the relation between Boolean
function realizable on bithreshold units and decision lists.
The last goal is the study of capabilities of feedforward
neural networks with smoothed bithreshold-like activation
function and related question of their learning by means
of backpropagation.

Basic definitions

The bithreshold neurons with n inputs is defined
by a triplet (w,t,t,), where weR" is the weight vector
and t,t,eR (t, <t,) are the thresholds. The neuron
output y is defined by

if t <(w,x)<t,,

a,
= _ 1)
b, otherwise.
The graph of corresponding activation function of bi-
threshold neuron is shown in Fig. 1 (in the case where

a=-1b=1).

Fig. 1. — The graph of bithreshold activation function

We consider neurons with binary ({a,b}=2,) or

({ab}-E,) z,- {04}
E,={-11}. If t,=—0, then we obtain the ordinary

threshold neuron. The triplet (w,t,,t,) is the structure
vector of the bithreshold neuron.

The bithreshold neuron with bipolar output per-
forms a classification of R" by mapping every vector in

R" to +1 or —1. Geometrically, the bithreshold neuron
has two separating parallel hyperplanes that define its
decision region, as opposed to just one separating surface
that defined the decision region of the traditional
threshold neuron.

Let A be the finite set in the space R". Then bi-
threshold neuron makes such dichotomy (A*,A”) of the
set A:

bipolar outputs, where

A ={xeAlt, <(w,X)<t,}, A =A\A".

This partition we call a "bithreshold” dichotomy
and we call "bithreshold separable” the sets A" and A™.
In the most important special case A=Z) or A=E;. We

call Boolean function f(x,...x,):Z; >Z, a "bi-
threshold function”, if exists bithreshold neuron with the
structure (w,t,t,) that f(x)=0<t <(w,x)<t,. Let
LBT, denote the set of all n-place bithreshold Boolean
functions.

Complexity of learning procedure

A polynomial time algorithm is one with running
time O(r*), where r is the size of input and s is some

fixed integer (s 21) . The size of an input to an algorithm

can be measured in various ways. For algorithms working
with neurons it is naturally to take as a size of input the
capacity of learning sample.

We shall show that if the P = NP conjecture is
true, then don't exist a polynomial time verification
algorithm checking the possibility of realization of the
arbitrary Boolean function on one bithreshold unit. The
learning of bithreshold Boolean function is NP-complete
all the more.

Let C be a class of Boolean function: C ={C, }

n>1"’
neN, C,c{f|f:Z}—Z,}. Inthe complexity theory

the following problem is well-known.

MEMBERSHIP(C)

Instance: A disjunctive normal form formula ¢ in
n variables.

Question: Does the function f represented by ¢
belong to C.

Anthony proved [6] that MEMBERSHIP(C) is
NP-complete for all classes satisfying following pro-
perties:



1) forevery f eC, and arbitrary ie{l,...n}, both
(X X L Xg e X)) and
f (%% 1,0, X4, %, ) belongto C_;

2) for every neN, the identically 1-function
belongsto C;

3) there exists k e N such that

functions

C ={fIf:Z, 52}

Proposition 1. The task of verification of the
membership to the class of bithreshold Boolean functions
is NP-complete.

Proof. We show that class LBT ={LBT,}
satisfies conditions 1-3. Condition 1 follows from
Shannon expansion  f (... %, )= f (X,...X,1,0)%, v
v (X, X, 1)%,. If Boolean function f(x,,...,x,)
can be realized on the bithreshold neuron with the
structure (w =(W,,...,W, ;,W, ),t,,t,), then the functions

n>1

f (%X, X,1,1) and f(x,...x,,0) can be realized on
bithreshold neurons  with  structures  ((w,,...,w, ,),

t—w,t,—w,) respectively, ((w,..,w,,).t.t,). Con-
dition 2 is evident. Condition 3 follows from the fact that
if n>2 Boolean function x @&x,®..®x, doesn't
belong to LBT, [7]. Therefore subject to [6] MEMBER-

SHIP(LBT) is NP-complete.

Proposition 2. The task of verification of the
bithreshold separability of the finite set A" and A" is

NP-complete even in the case A" UA c{a,b}", where
aeR, beR (a=b) and the weight coefficients may
be restricted to be from the set {-1,+1} .

Proof. We use the results of Blum and Rivest from
[8], where was shown that the following training problem
is NP-complete:

The 3-Node Network with AND output node
restricted so that any or all of the weights for one hidden
node are required to be opposite to the corresponding
weights of the other and any or all the weights are
required to belong to {-1,+1}, since the well-known NP-
complete problem Set-Splitting [9] can be reduced to this
task.

It is easy to verify that the arbitrary dichotomy

(A*, A’) is bithreshold if and only if it can be realized on
neural network of  mentioned type. Really,
xe A <(w,x)<t, and (-w,x)<-t and the trans-
formation from the basis {a,b} to the basis Z, can be

made using a standard linear transformation of variables
(the same is true for synaptic weights).

Representation of bithreshold Boolean functions by
decision lists

Decision lists were proposed by Rivest in [10]. For
many application [10, 11] decision lists are more useful
than classical disjunctive or conjunctive normal forms.

Let K={f,f,..f} be an arbitrary finite

i

sequence of Boolean functions of n variables. A function
f:Z) — Z, is said to be decision list based on sequence
K if it can be evaluated using a sequence of if then else
command as follows, for some fixed {c,c,,....C,},

(cez, i=1..,r):
if f,(x)=1thenset f(x)=c,
else if f,(x)=1 thenset f(x)=c,

else if f (x)=1thenset f(x)=c
else set f(x)=0.

More formally, a decision list based on K is
defined by a sequence

f=(f.c).(f.¢).(f.c),

where f eK,c €Z,,(i=12,..,r). The values of the
function f are defined by

r

‘ (X)Z{Cj, ifj= mln{l : (x)=1} exists,
0, otherwise.

Example. Let K ={xX;,X,,%} . The decision list
f =(x%,0),(x,,1),(X,1) thought
operating in the following way on Z3. First, those points
for which x X, is true are assigned the value O: these are
(10,0),(1,1,0). Next the remaining points for which x,
is satisfied are assigned the value 1: these are
(0,1,0),(0,1,1),(1,11). Finally, the remaining points for
which X is true are assigned the value 1: this accounts
for (0,0,0), (0,0,1), leaving only (1,0,1), which is

assigned value 0. At easy to verify that we obtain the
following function XX, v XX, Vv X,X;..

may be of as

The relationship between decision lists and
threshold Boolean functions was established in [10].
Antony showed (see [6]) that any 1-decision list (that is, a
decision list based over the set K of single literals) is a
threshold function.

We present the similar result concerning the
representation of bithreshold Boolean functions.

Proposition 3. If the members of the decision list

f=(f.c).(f,c,),...(f.c).(f.c)



satisfy following conditions:
1) f, is an arbitrary Boolean function of two
variables assigned the value 1 on two points
(i=12,..,r-1);
2) ¢=1i=12.,r
and the function f, is bithreshold, then f is the bithreshold
Boolean function.

Proof. We use the induction on r (the number of
members in the decision list). The base case, r=1, is
easily seen to be true because every Boolean function of
two variables is bithreshold (it is sufficient to verify the
realizability of the functions x®y and x <y, as other

14 functions can be realized on single threshold units).
Suppose, as an inductive hypothesis, that our proposition
is true for all decision lists of cardinality no more r. Let
we have the following decision lists

f=(f.c).(f,c,),..(f.C).(fr10.C,y) OF the length
r+1. By the inductive hypothesis the decision list

f'=(f,,¢,),n( 0 ). (Fru1nC,,y ) defines a bithreshold
Boolean function. Let the corresponding bithreshold
neuron  has  structure  (wt,t;), and let
d=>"" |w]|+[t]|+[t,|+1. From conditions 1)-2) follow
that the term (f,,c,) can has the following values:

1) (0.1);

2) (L1

3) (xi,l)'

4 (%1
5 (35, 3,1)
5 (%

X X vx,xj,l).
In the first case let w=w't =t/,t,=t;. In the
second case let w=0,t, =1t,=2. In the third case let
w=w'+de,, t =t,t, =t;, where ¢, =(O, ..,O,J_,O,...,O).

In the fourth case let w=w'—de,, t =t/ —-d,t, =t,—d.
In the fifth we can assume w=w'+de, +de;, t, =t/ +d,
t, =t +d. In the last case let w=w'+de, —de;, t, =t/,
t,=t].

Prove that in each case the decision list f is the
bithreshold Boolean function realizable on the bithreshold

unit with the structure (w,t,,t,). It is evident in two first
cases.

In the third case for every Xx=(X,...X,..X,)
(w,x) = (W' +de;,x) = (W', x)+dx;.

If x, =1, then the output value of the decision list
is equal to 1 and

(w,x)=(W'\x)+d > —Zn:|wg|+zn:|wg|+|t;|+l>t2' =t,.
=1 =1

Thus, in this case the output value for the
bithreshold neuron is equal to one for the decision list. If

x, =0 then (w,x)=(w',x). By the inductive hypothesis
the decision list f'=(f,,c,),.., (f..c,),(f.,..C.1) is

the bithreshold function realizable on the bithreshold
neuron with the structure (W',t/,t;). Since t =t t; =t,
that in the case x, =0 the output of the bithreshold

neuron is identical to the out of the decision list. Thus, the
function f is realizable on the bithreshold with the

structure (W,'[l,tz) . In case 4 the proof is similar.

Let us consider case 5. Let xe Z,. If x, =0 and
Xx; =0, then
(W, x) = (W, x)< D |wi| < D [we| +[to]+1<t/+d =t,.
k=1 k=1

If x,=1and x; =1, then

(w,x)=(wW',x)+2d > —Zn:|w,:|+ 2d > |t;|+
k=1

+Zn:|wli|+|t1’|+|t2'|+12t; +d =t,.
k=1

In both cases the output of the bithreshold neuron
is equal to 1. It corresponds to the output value of the
decision list. If x =1, x; =0 or x =0, x;=1, then
(w,x)=(W',x)+d .

Since t, =t/ +d,t, =t; +d, then in both cases the
output value of bithreshold neuron with the structure
(w,t,t,) is equal to one of the neuron with the structure
(w'.t/,t;), which by the inductive hypothesis is equal to
the output of the decision list. The proof in case 6 can be
given by similar reasons.

Corollary 1. If a Boolean function of n variable
can be represented as follows:

Xn)\/xi‘l"1 Ve VXY

(XX, ) =90

Ayn Ay Bov 5 Brn s ¥
VXXV XX Vv X X

where g(x,...X,) is an arbitrary bithreshold Boolean
function, x'=x, x’=X, ¢ e€Z, (i=1..,1), B;€Z,,
7i €Z, (j=1...m), then f is the bithreshold function.

The proof follows from the proposition 3 and the
evident fact [6] that if the decision list satisfies
¢ =Li=1..,r,then f="fv..vf

Corollary 2. The Boolean function f defined by the
following decision list

(F02) (X%, Gy )

f=(f,1),... (X G )



where « €Z,,c.,,€Z,, i=1..,m is a bithreshold

Boolean function if f,,..., f, satisfy the conditions of the
proposition 3.

The proof follows from the proposition 3 and from
[6] (according to the theorem 3.9 from [6] the decision list

of the following form (xﬁl,cm),...,(xffm,ch) is a
threshold and so a bithreshold Boolean function).

Feedforward neural nets with smoothed bithreshold
activation function

Let us consider the problem of learning the neural
net on the base of bithreshold neurons. As we have shown
earlier these task is hard even for one neuron. These
difficulties can be overcome in the same way as for
traditional threshold neurons. It is enough to consider the
neurons with  continuous differentiable activation
function. We call it the smoothed bithreshold function.
Corresponding neuron can be named smoothed
bithreshold neurons. It is possible to consider numerous
smoothed analogue of hard bithreshold activation function
(1). The ones of simplest are following:

y=1-2e* )
2 2
y= 1+ 00D - ~10(x+1) +1. ®)

l+e

Their graphs are shown on Fig. 2 (the graph of the
function (3) is "closer" to the graph of the hard bi-
threshold function (1)).

Fig. 2. — The graphs of the smoothed bithreshold
activation functions (2)-(3)

We describe here a fairly simple neural net based
on smoothed bithreshold neurons, namely the feedforward
net (i.e. the multilayer perceptron). We used back-
propagation to learn such nets. The network error and
weight corrections are traditional and corresponding
formulas are omitted.

Simulation

To compare the performance of feedforward neural
nets based on smoothed bithreshold neurons and sigmoid
nets we have implemented a simulation tests. We describe
results of two typical tests of nets learning in online
mode, in which we use the activation function (2) or (3),

modified logistic sigmoid yzli_x—l, y =tanhx and
+e

rational sigmoid y = :
1+] x|

In the first test we learned feedforward 100-10-3
nets (100 inputs, 10 hidden nodes and 3 outputs) for
different activation functions on 100 different learning
samples, each containing 500 training examples

uniformly distributed in hypercube [—1,1]103 Then

1000000 iterations of backpropagation procedure are
applied for every net. The learning rate parameter was
individually chosen for every type of activation function.

Table 1 — Learning in the case of uniform
distributed samples

Activation Average total sample | Maximum error
function error on example
modified lo- 31,27 0,38
gistic

tanh x 44,81 0,34
rational sig- 53,49 0,85
moid

smoothed bi- 30,04 0,35
threshold (2)

As seen in table 1, the empirical results prove that
average total sample error was the least for smoothed
bithreshold (2). The maximum error on example for this
function is also fine in respect of other functions.

In the second test we trained 100-40-1 feedforward
nets to map classical "hard" function XOR of 100
variables (strictly speaking we use the bipolar form of
XOR). In the table 2 are given the result of computer
simulation. The learning sample size was equal to 1000.
For every net 300000 iterations of backpropagation
procedure are applied.

Table 2 — Learning XOR function

Activation function Maximum  error
on example

modified logistic 1,99

tanh x 1,99

rational sigmoid 1,87

smoothed bithreshold (3) 0,24

As seen in table 2, learning finished successively
only in the case of network based on smoothed bi-
threshold (3).




Results and discussion

It was demonstrated that the basic forms of the
task of learning one bithreshold neural unit are hard. For
example, it was proved that the task of verification of the

bithreshold separability of the finite sets A" and A" is
NP-complete even in the case A" UA™ {a,b}", where

aeR, beR (a=b) and the weight coefficients of the

neuron may be restricted to be from the set {—1,+1}.

The relation between bithreshold realizability and
realizability by means of decision list was stated. The
main result in this domain asserts that if we have the
decision list f =(f,1),(f,,1),...(f_.1).(f.,1), where

f. is an arbitrary Boolean function of two variables

assigned the value 1 on two points (i=1,2,...,r —1), and
the function f, is realizable on bithreshold unit, then the

function f is also bithreshold.

The simulation results given in last section show
that multilayer feedforward neural network with
smoothed bithreshold-like activation functions can be
learnt on the training sample using backpropagation. The
data of table 2 confirms that they are capable to solve
hard problem of the learning of the XOR-function of
several variables.

Conclusions

Neural-like systems on the base of bithreshold
neurons were studied. The NP-hardness of bithreshold
neurons learning was established. Two ways were
proposed to overcome the hardness of learning procedure.
The conditions were found providing that decision list
realizes a bithreshold logic function. The approach was
proposed concerning neural networks with smoothed
bithreshold activation functions. The experimental results
confirming effectiveness of this approach were given. It
seems that bithreshold neurons can be useful in areas of
traditional applications of neural-like devices.
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