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Abstract

The optical properties of a system of two identical two-level atoms in
collective (symmetric Ψs and antisymmetric Ψa) Bell states are studied for
arbitrary interatomic distances. The closed-form analytical expressions for
shifts and widths of considered states are obtained taking into account the
retarded dipole-dipole interaction between atoms. It is shown that under cer-
tain conditions the retarded interaction of atoms of this quantum diatomic
system can lead to both additional widening of energy levels of atoms com-
pared to radiation width, and the opposite effect – narrowing of the natural
width of atomic levels. We can identify three types of quantum information
transfer processes associated with either a resonant (non-resonant) absorp-
tion of a photon by one of the atoms of the system or with variation of
interatomic distance.

1 Introduction

The unit of quantum information (quantum bit or qubit) is a superposition
of two base functions of a quantum system [1]. A method for writing quantum
information on an individual double-level atom of a system taking a region whose
linear dimensions are substantially smaller than the wavelength of photons has
been proposed, where intense quasi-resonance laser radiation is used and the in-
cidence angle of the external radiation on the system is varied [2]–[4]. Of great
importance in this method of writing and reading information is resonance transfer
of quantum information from one atom to another. On the other hand, transfer
of quantum information for arbitrary distances plays an important role in creat-
ing quantum communication systems. In this paper, we propose a unified way
of describing resonance transfer of quantum information for arbitrary distances,
including the effect of quantum teleportation. Quantum teleportation was dis-
covered experimentally [5] with the use of a three-photon scheme for transferring
quantum information from one observer to another taking into account two types
of polarization of photons. Other schemes of quantum teleportation have also been
proposed, for instance, those using a system of three electrons [6] or three atomic
beams of two-level atoms [7]. The schemes of quantum teleportation described
in [5]–[7] are, in fact, based on the superposition principle for nonlocal quantum
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systems. In this case, the effect of quantum teleportation does not come into
conflict with the principle of relativity since not energy, but information, which
acquires an additional sense in quantum processes as compared to the information
in classical systems, is transferred instantaneously. In this paper, it is shown that
the information about two possible states of atoms can be transferred from atom
to atom within a short time interval. For this case, the value of this interval de-
pending on the type of interatomic interaction is calculated. In a system of two
identical interacting atoms, absorption (emission) of actual photons is nonlocal in
character, namely, the event of disappearance (birth) of a photon may take place
at the site of location of one atom, while the quantum transition will occur between
the states of the other atom. The classical and quantum methods for information
transfer with corresponding characteristic times are also considered.

2 Energy of the resonant interaction of atoms
located at arbitrary distances

Let us write the operator of electric dipole-dipole interaction of two electrons
located at an arbitrarily large distance from each other, near various nuclei [8, 9]:

V̂
(±)
dip =exp

(
i

c
ω0R

){
�d1 �d2 − 3(�nR

�d1)(�nR
�d2)

R3
± e

2mc

[
�d1�̂p2 − 3(�nR

�d1)(�nR�̂p2)

R2

−
�d2�̂p1 − 3(�nR

�d2)(�nR�̂p1)

R2

]
− e2

m2c2
�̂p1�̂p2 − 3(�nR�̂p1)(�nR�̂p2)

R

}
, (1)

where �nR = �R/R, ω0 ≡ ωn0 = (En − E0)/� is the resonance frequency in the
spectrum of the atoms, �d1 = e�r1 and �d2 = e�r2 are the operators of the electric
dipole moments of single-electron atoms, �p1 and �p2 are the momentum operators
of the first and the second atomic electrons, respectively.

For the system of two interacting atoms having one electron, the Hamiltonian
Ĥ can be represented in the form of sum of Hamiltonians of isolated atoms, Ĥ0 =
Ĥ1(�r1) + Ĥ2(�r2), and operator of electric dipole-dipole interaction between them,
V̂

(±)
dip :

Ĥ = Ĥ0 + V̂
(±)
dip = Ĥ1(�r1) + Ĥ2(�r2) + V̂

(±)
dip (�r1, �r2;R). (2)

Let En1n2 = En1 + En2 and |n1n2〉 are the eigenvalue and eigenfunction of “un-
perturbed” operator of energy Ĥ0 = Ĥ1 + Ĥ2 without interatomic interaction,
respectively. The unperturbed wave function of the initial state of two atoms is of
the form

|00〉 = ϕ0(1)ϕ0(2) exp(−iE0t1/�) exp(−iE0t2/�) ≡ ϕ̃0(1)ϕ̃0(2). (3)

Here E0 is the energy of the initial states of the first and second atoms, the indices
1 and 2 correspond to the coordinates and times for the first and the second atom,
respectively. For atoms having no constant dipole moment in the first order of
perturbation theory, the energy correction is equal to zero, i.e., 〈00|V̂ (±)

dip |00〉 = 0.
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The interaction between the atoms distorts the wave functions of the atomic states,
and the disturbed wave function for a system of two atoms in the ground state is
of the form [10, 1]):

Ψ0(1)Ψ0(2) = ϕ̃0(1)ϕ̃0(2)+
∑
n1n2

< ϕ̃n1
(1)ϕ̃n2

(2)|V̂ (±)
dip |ϕ̃0(1)ϕ̃0(2) >

2E0 − En1 − En2

ϕ̃n1(1)ϕ̃n2(2),

(4)
where the indices n1 and n2 correspond to intermediate states of the atoms. We
consider the state Ψ0(1)Ψ0(2) as an initial state of atoms interacting with field of
real photons.

Let the final state |n0〉 of two resonant atoms corresponds to the excited state
|n〉 of atom A(1) with wave function ϕ̃n(1) = ϕn(1) exp(−iEnt1/�) and energy
En as well as the ground state |0〉 of atom A(2) with wave function ϕ̃0(2) =
ϕ0(2) exp(−iE0t2/�) and energy E0.

In the zeroth approximation, the stationary state of the system corresponds to
two wave functions:

Φs(1, 2) =
1√
2
[ϕ̃n(1)ϕ̃0(2) + ϕ̃0(1)ϕ̃n(2)] , (5)

Φa(1, 2) =
1√
2
[ϕ̃n(1)ϕ̃0(2)− ϕ̃0(1)ϕ̃n(2)] . (6)

In order to obtain corrections to the energy of symmetrical (6) and antisymmet-
rical (7) states of the system of two resonant atoms in the first order of perturbation
theory one has to calculate the mean value of the perturbation operator V̂

(±)
dip (2)

in these states, i.e.,

∆Es = 〈Φs|V̂ (±)
dip |Φs〉, ∆Ea = 〈Φa|V̂ (±)

dip |Φa〉. (7)

Substituting the expressions (2), (6) and (7) into the matrix elements (8) we obtain
that

∆Es(R) = −∆Ea(R) = ω3
0e

iω0R/c|〈n|�d|0〉|2

×
[(

1

ω3
0R

3
− i

cω2
0R

2

)
Φ(1, 2)− Φ′(1, 2)

c2ω0R

]
≡ ∆EAA(R). (8)

Here

Φ(1, 2) ≡ cos θx1 cos θ
x
2 + cos θy1 cos θ

y
2 − 2 cos θz1 cos θ

z
2 ,

Φ′(1, 2) ≡ cos θx1 cos θ
x
2 + cos θy1 cos θ

y
2

are the geometric factors, θxi , θyi , θzi (i = 1, 2) are the angles between one of
corresponding axes and the direction of dipole transition in i-th atom A(i).

Note that the quantity ∆Es (∆Ea) is complex shift of energy Es (Ea) of
symmetrical (antisymmetrical) state Φs (Φa) of atoms:

∆Es = δEs −
i

2
�γs, ∆Ea = δEa −

i

2
�γa. (9)
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The first-order corrections to the energy En+E0 of states (6) and (7) give only
real parts δEs and δEa of the complex shifts:

δEs,a(R) = ±Re∆EAA(R) = ±e2|〈n|�r|0〉|2F (1, 2;R). (10)

Here

F (1, 2;R) =

[
Φ(1, 2)

R3
− ω2

0Φ
′(1, 2)
c2R

]
cos

(
ω0R

c

)
+

ω0Φ(1, 2)

cR2
sin

(
ω0R

c

)
. (11)

The expressions for δEs and δEa can be simplified at ω0R/c → 0, i.e., when
size of two-atomic quantum system is much smaller than characteristic wave length
λ0 = 2πc/ω0 in spectrum of interacting atoms (R � λ0). In this case one can
neglect retardation of dipole-dipole interaction of atoms, that makes it possible to
substitute cos(ω0R/c) = 1, sin (ω0R/c) = ω0R/c in the expression (12) for F and
to omit terms containing velocity of light c. Then for δEs and δEa we obtain

δE′
s,a = ± e2

R3
|〈n|�r|0〉|2Φ(1, 2). (12)

As it is expected, this expression coincides with the known formula [10] for the
energy of resonant exchange of excitations between two neutral atoms located
closely one from other.

Therefore, we see that at account of dipole-dipole interatomic interaction (2)
the symmetrical and antisymmetrical states of atoms are characterized by the
energies

Es = En + E0 + δEs = En + E0 +
3e2�fn0
2mω0

F (1, 2;R), (13)

Ea = En + E0 + δEa = En + E0 −
3e2�fn0
2mω0

F (1, 2;R). (14)

and wave functions

Ψs = Φs exp(−iδEst1/�), Ψa = Φa exp(−iδEat1/�), (15)

where t1 is the local time for the atomic pair associated with the position of the
atom A(1).

3 Width of the symmetric and antisymmetrical
states of two identical atoms

It is apparent that states (15) are entangled states of a pair of interacting atoms
because in these states separate atom-qubit has not certain energy. Implement a
formal transition in the formulas (15) to the complex energy:

δEs → δEs −
i

2
Γ̃s = δEs −

i

2
�Γs = δEs −

i

2
�(γ0 + γs), (16)
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Figure 1: The dependencies of the energy shifts δEs(R, θz) (11) and δE′
s(R, θz)

(13) (transparent and opaque surfaces, respectively) on the interatomic distance
R and angle θz = θz1 = θz2 of orientation of the dipole moments of the transition
of the atoms that are parallel each to other (θx1 = θx2 , θy1 = θy2)

δEa → δEa −
i

2
Γ̃a = δEa −

i

2
�Γa = δEa −

i

2
�(γ0 + γa). (17)

In the first order of perturbation theory, the contribution of dipole interaction
in the total width Γs (Γa) is determined by imaginary part γs (γa) of doubled
complex shift ∆Es (∆Ea):

γs(R) = −γa(R) = −2

�
Im∆EAA(R) = −2ω3

0e
2|〈n|�r|0〉|2
�

F̃ (1, 2;R), (18)

where

F̃ (1, 2;R) =

[
Φ(1, 2)

ω3
0R

3
− Φ′(1, 2)

c2ω0R

]
sin

(
ω0R

c

)
− Φ(1, 2)

cω2
0R

2
cos

(
ω0R

c

)
, (19)

γ0 is the radiation rate of an excited state En of the isolated atom.
The total widths of symmetrical and antisymmetrical states are of the form:

Γs = γ0 + γs ≈ 2γ0, Γa = γ0 + γa ≈ O

(
ω2
0R

2

c2

)
. (20)

We can see that under the condition R � λ0 the retarded interaction of atoms
in the symmetrical state Ψs (15) leads to doubling of natural width of atomic
levels. For antisymmetrical state the widths γa and γ0 compensate each other
almost completely, and the total width Γa is small when comparing with γ0. It
means that when R � λ0 the retarded interaction of atoms completely suppresses
radiation decay of excited states of atoms. This property of mutual influence of
closely located atoms was interpreted in [12] as the near-field effect.
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Figure 2: The dependencies of the energy shifts δEs (11) and δE′
s (13) (solid and

dotted lines, respectively) on the interatomic distance R when the dipole moments
of the transition of the atoms are oriented along the axis Oz: θz = θz1 = θz2 = 0
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Figure 3: The dependencies of the energy shifts δEs (11) and δE′
s (13) (solid and

dotted lines, respectively) on the interatomic distance R when the dipole moments
of the transition of the atoms are perpendicular to axis Oz: θz = θz1 = θz2 = π/2

In paper [13] the near-field effect was proposed as a basis for writing the quan-
tum information on separate two-level atoms of two-qubit quantum computer by
means of intensive quasiresonant radiation at a modification of an angle of in-
cidence of external wave. Reading the quantum information (after calculations)
can be performed by means of weakly intensive probe radiation using solutions of
equations system for dipole oscillators obtained in [12].

In the case R � λ0

γs(R) = −γa(R) =
3γ0c

2ω0R
Φ′(1, 2) sin

(
ω0R

c

)
. (21)
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Figure 4: The dependencies of the widths Γs(R, θz) and Γa(R, θz) (transparent
and opaque surface, respectively), calculated by means of (16), (17) and (18), on
the interatomic distance R and angle θz = θz1 = θz2 of orientation of the dipole
moments of the transition of the atoms that are parallel each to other (θx1 = θx2 ,
θy1 = θy2)
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Figure 5: The dependencies of the widths Γs and Γa (solid lines), calculated by
means of (16), (17) and (18), on the interatomic distance R when the dipole
moments of the transition of the atoms are oriented along the axis Oz: θz =

θz1 = θz2 = 0. The dashed lines represent Γ
(‖)
s and Γ

(‖)
a calculated by means of the

asymptotic formulas (22) and (24)

In the case when R � λ0 (ω0R/c � 1) and the dipole moments is parallel to
the axis Oz, the expression (21) takes the form

γ(‖)
s (R) = −γ(‖)

a (R) = γ0

(
1− ω2

0R
2

10c2

)
, (22)
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Figure 6: The dependencies of the widths Γs and Γa (solid lines), calculated by
means of (16), (17) and (18), on the interatomic distance R when the dipole
moments of the transition of the atoms are perpendicular to axis Oz: θz = θz1 =

θz2 = π/2. The dashed lines represent Γ
(⊥)
s and Γ

(⊥)
a calculated by means of the

asymptotic formulas (23) and (29).

where γ
(‖)
s (0) = −γ

(‖)
a (0) = γ0.

Similarly, in the case of the perpendicular direction of the dipole moments

γ(⊥)
s (R) = −γ(⊥)

a (R) = γ0

(
1− ω2

0R
2

5c2

)
. (23)

Substituting the asymptotic expansions (22), (23) for γs(R), γa(R) into (16)
and (17) we obtain for the total widths Γ

(‖)
s(a) and Γ

(⊥)
s(a) the following estimates

Γ(‖)
s = γ0 + γ(‖)

s ≈ 2γ0, Γ(‖)
a = γ0 + γ(‖)

a ≈ γ0
10

ω2
0R

2

c2
, (24)

Γ(⊥)
s = γ0 + γ(⊥)

s ≈ 2γ0, Γ(⊥)
a = γ0 + γ(⊥)

a ≈ γ0
5

ω2
0R

2

c2
. (25)

4 Quantum teleportation and resonant
transmission of quantum information
between two atom-qubits

Let us assume that at the initial point in time t1 = 0 the system of two
considered atoms is in the state Ψ

(0)
m = Ψ0(1)Ψ0(2) (see (5)). Let us consider the

quantum transition Ψ
(0)
m → Ψ

(0)
n = Ψs(a), where the wave functions Ψs(a) are given

by formulas (15). We define the transition energy for this case as

E(0)
m − E(0)

n = E0 − En ∓ δEs = −�(ω +∆), (26)
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where the upper sign corresponds to the symmetric state Ψs of the atomic pair,
while the lower sign refers to its antisymmetric state Ψa, ω is the frequency of
a real photon, ∆ is the resonance off-tuning. Let us assume that the quantum
transition Ψ

(0)
m → Ψs(a) corresponds to the case of annihilation of a photon. Thus,

we shall consider the transitions Ψ
(0)
m → Ψa and Ψ

(0)
m → Ψs separately from one

another. For the symmetric channel Ψ
(0)
m → Ψs we have the following system

of equations defining the probability amplitudes am and an under the condition
Γst1 → 0:

i�
dam
dt1

= Fmn exp[i(ωmn + ω)t1]an = Fmn exp(i(ε+ + iγn)t1)an,

i�
dan
dt1

= Fnm exp(−i(ε+ + iγn)t1)am,





(27)

where ε+ = (δEs − �∆)/�; the matrix element of the transition is given by

Fmn = − i

c

√
nω

2
ω0

�A0
�deffn0 (R) exp(i�k �R), (28)

�A0 is the amplitude of the vector potential, �k is the wave vector of the real photon
which is absorbed at the location of the second atom with the radius vector �R.
The matrix element �d′n0 in (28) takes into account all terms of the function (5)
of the initial state. The system of equations (27) corresponds to the two-level
approximation for a system of atoms, such that the most significant contribution
is from those terms of the Schrödinger wave equation in which the dependence on
time is determined by a low frequency (ω0 − ω). A similar system of equations
will also take place for the antisymmetric channel if in (27) we replace ε+ with
ε−, defined as ε− = −(δEs + �∆)/�. Let us make the substitutions below in Eqs.
(27):

an exp(iε+t1) = bn (29)

and eliminate am from the resulting equations. We then obtain the following
equation:

b̈n − iε+ḃn + bn|Fmn|2/�2 = 0, (30)

with the coefficients being specified functions of the local time t1.
It is well known that the exchange by excitations between atoms through their

resonance interaction is determined by the characteristic exchange time �/δE′
s [10].

If, at a certain point in time, a system consisting of two identical dipole atoms
is in a state where one atom is excited, this excitation, as shown in [10], will be
transferred to the other atom in a time τ ′ = �/δE′

s through resonance interaction.
With that, the time τ ′ required to transfer the excitation is considerably shorter
than the lifetime Γ−1

s(a) of atoms in the symmetrical and (antisymmetrical) states,
therefore, the energy δE′

s (13) is independent of time. In this paper, we consider
a situation where the time t1 for which a system of two interacting atoms exists is
also short compared to Γ−1

s(a). However, in contrast to [10], we take into account,
besides the interaction of the atoms with one another, their interaction with the
field of real photons.
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Following [1], we obtain a wave function which corresponds to a symmetric
channel for the interaction of a pair of atoms with the field of real photons:

Ψ̃s(t1) =
1√
2
exp

(
−Γs

4
t1 + i

ε+
2
t1

)[
cos((Ω+ + iβ+)t1)

− i(ε+ + iΓs/2)

2(Ω+ + iβ+)
sin((Ω+ + iβ+)t1)

]
ϕ̃0(1)ϕ̃0(2)|nω〉

− iFnm

�(Ω+ + iβ+)
exp

(
−Γs

4
t1 − i

ε+
2
t1

)
sin((Ω+ + iβ+)t1)

× 1√
2
[ϕ̃n(1)ϕ̃0(2) + ϕ̃0(1)ϕ̃n(2)] exp(−iδEst1/�)|nω − 1〉. (31)

For an antisymmetric interaction channel we replace ε+ with ε− and Ω+ with
Ω−. Here we have

ε± = (±δEs − �∆)/�, Ω± + iβ± =

{ |Fnm|2
�2

+
(ε± + iΓs(a)/2)

2

4

}1/2

. (32)

The wave function of the final state of an atomic pair, Ψ̃(t1) =
[
Ψ̃a(t1) + Ψ̃s(t1)

]
/
√
2,

will then take the form

Ψ̃(t1) = A1ϕ̃0(1)ϕ̃0(2)|nω〉+A2ϕ̃n(1)ϕ̃0(2)|nω−1〉+A3ϕ̃0(1)ϕ̃n(2)|nω−1〉, (33)

where the probability amplitudes for possible states of the system are given by

A1 =
1

2

{
exp

(
−Γs

4
t1 + i

ε+
2
t1

)[
cos((Ω+ + iβ+)t1)−

i(ε+ + iΓs/2)

2(Ω+ + iβ+)

× sin((Ω+ + iβ+)t1)
]
+exp

(
−Γa

4
t1 + i

ε−
2
t1

)[
cos((Ω− + iβ−)t1)

− i(ε− + iΓa/2)

2(Ω− + iβ−)
sin((Ω− + iβ−)t1)

]}
, (34)

A2 = − iFnm

2�

[
sin((Ω+ + iβ+)t1)

Ω+ + iβ+
exp

(
−Γs

4
t1 − i

ε+
2
t1

)
exp(−iδEst1/�)

+
sin((Ω− + iβ−)t1)

Ω− + iβ−
exp

(
−Γa

4
t1 − i

ε−
2
t1

)
exp(iδEst1/�)

]
, (35)

A3 =
iFnm

2�

[
− sin((Ω+ + iβ+)t1)

Ω+ + iβ+
exp

(
−Γs

4
t1 − i

ε+
2
t1

)
exp (−iδEst1/�)

+
sin((Ω− + iβ−)t1)

Ω− + iβ−
exp

(
−Γa

4
t1 − i

ε−
2
t1

)
exp(iδEst1/�)

]
. (36)

The probability amplitudes (13) are normalized by the condition |A1|2 + |A2|2 +
|A3|2 = 1. As follows from (36), at t1 = 0 a system of two atoms is in a state
where both atoms have an energy E0, i.e., A1 = 1, A2 = A3 = 0. Let us consider
the behavior of the function Ψ̃(t1) at subsequent points in time.
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5.1 True resonance
Large interatomic distances. When ∆ = 0, Γs = Γa = γ0 and sufficiently large
R � λ0 value ε±, Ω± and β± are as follows: ε+ = −ε− = δEs/�,

Ω± = Ω =
1√
2

{√
ρ2 +

γ2
0(δEs)2

16�2
+ ρ

}1/2

, ρ =
|Fnm|2
�2

+
(δEs)

2 − �2γ2
0/4

4�2
,

β+ = −β− = β =
sign δEs√

2

{√
ρ2 +

γ2
0(δEs)2

16�2
− ρ

}1/2

.

The exact resonance (∆ = 0) when the condition R � λ0 amplitude (34)–(36)
acquire the following values(Ω̃± = Ω± iβ):

A1 =
1

2
exp

(
−γ0

4
t1

){
exp

(
iδEst1
2�

)[
cos(Ω̃+t1) +

γ0/2− iδEs/�
2Ω̃+

sin(Ω̃+t1)

]

+ exp

(
− iδEst1

2�

)[
cos(Ω̃−t1) +

γ0/2 + iδEs/�
2Ω̃−

sin(Ω̃−t1)

]}
, (37)

A2,3 = − iFnm

2�
exp

(
−γ0

4
t1

)[
sin(Ω̃+t1)

Ω̃+

exp

(
−3iδEst1

2�

)

± sin(Ω̃−t1)

Ω̃−
exp

(
3iδEst1

2�

)]
, (38)

where the upper (lower) sign corresponds to A2 (A3). As it follows from (38),
probability amplitude A2 (A3) reaches its maximum (minimum) value at time
t′1 = π/2Ω.

Small interatomic distances. For the case of true resonance (∆ = 0) for a
time which is short compared to Γ−1

s(a), we obtain the following formulas for the
probability amplitudes:

A1 = cos(Ω0t1) cos(δEst1/2�) +
δEs

2�
sin(Ω0t1)

Ω0
sin(δEst1/2�), (39)

A2 = − iFnm

�
sin(Ω0t1)

Ω0
cos(3δEst1/2�), (40)

A3 = −Fnm

�
sin(Ω0t1)

Ω0
sin(3δEst1/2�), (41)

where Ω0 =
√
[|Fnm|2 + (δEs)2]/�2. The amplitude A2 (A3) reaches a maximum

(minimum) at a time given by t′1 = 2π�/3|δEs|.

5.2 Nonresonance absorption of a photon
Large interatomic distances. The expressions for the probability amplitudes
(34)–(36) can be represented in the form:

A1 = exp

(
−γ0

4
t1 − i

∆

2
t1

)[
cos((Ω + iβ)t1) +

(i∆+ γ0/2)

2(Ω + iβ)
sin((Ω + iβ)t1)

]
,
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A2 = − iFnm

�(Ω + iβ)
exp

(
−γ0

4
t1 + i

∆

2
t1

)
sin((Ω + iβ)t1), A3 = 0, (42)

Ω =
1√
2

[√
ρ̃2 +

γ2
0∆

2

16
+ ρ̃

]1/2

, ρ̃ =
|Fnm|2
�2

+
∆2 − γ2

0/4

4
,

β = − sign∆√
2

[√
ρ̃2 +

γ2
0∆

2

16
− ρ̃

]1/2

.

The probability amplitude A2 reaches its maximum value at time t′′1 = π/2Ω.
Small interatomic distances. Let us consider the case where ∆ �= 0, i.e., the

frequency of the real photon does not coincide with the frequency of the transition
(E

(0)
m − E

(0)
n )/�. Moreover, we assume that the condition ∆ � δEs/� is fulfilled.

For this case, according to (32), we have Ω± = Ω0 =
√
(∆2/4) + |Fmn|2/�2 and

the amplitudes (36) become

A1 = exp

(
−i

∆

2
t1

)[
cos(Ω0t1) +

i∆

2Ω0
sin(Ω0t1)

]
,

A2 = − iFnm

�Ω0
exp

(
i
∆

2
t1

)
sin(Ω0t1), A3 = 0. (43)

Thus, during nonresonance absorption of a photon two of the three possible
states are realized. The state with the amplitude A2 is realized as a result of the
absorption of a photon at the position of the second atom (polarizer atom) and
the transition of the first atom (observer atom) into the excited state. This state
reaches a maximum at a time given by t′′1 = π/2Ω0.

1

2

1

np

m
r

2

1

np

m
r

Figure 7: The Feynman diagrams of radiation interaction of two hydrogen-like
atoms A(1) and A(2) with real photon absorption.

5.3 Resonance absorption of a photon.
Large interatomic distances

Given ∆ = 0 and δEs = 0, the amplitudes (36) become

A1 = exp
(
−γ0

4
t1

) [
cos(Ωt1) +

γ0
4Ω

sin(Ωt1)
]
,

A2 = − iFnm

�Ω
sin(Ωt1) exp

(
−γ0

4
t1

)
, A3 = 0. (44)
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At the initial point in time t1 = 0, as follows from (44), both atoms are in
the ground state. However, even at an infinitely close subsequent point in time,
the state Φ̃n(1)Φ̃0(2) from the superposition (33) starts being realized. At the
time t′′′1 = π�/2|Fmn| the probabilities become |A2|2 = 1 and |A1|2 = 0, i.e., one
quantum bit of information is transferred from one atom to another at an infinitely
large interatomic distance in the time t′′′1 . We refer to this effect as the quantum
teleportation in a system of two resonance atoms. This effect is of quantum in
nature, being related to the superposition principle of quantum mechanics, and
corresponds to the quantum means of information transfer whose characteristic
time is defined as t′′′1 = �/|Fnm|, in contrast to the classical means of information
transfer with the characteristic time tp being the time of flight of a photon through
a distance R. In accordance with the sense of the obtained solution to Eq. (30),
the condition Γs(a)t

′′′
1 → 0 should be fulfilled. This condition is fulfilled the more

precisely, the greater the amplitude of the vector potential in (28). Using the
notion of the Rabi frequency [14], we obtain t′′′1 = �/

√
2|�dn0|E0, where E0 is the

amplitude of the electric field of the light wave acting on the second atom.
Thus, say we have been able to create entangled states (6), (7) for two widely

spaced atoms. Bouweester et al. [5] could do this using one photon source which
distributes in a random manner photons randomly polarized in two different di-
rections. Krenn and Zeilinger [6] used for this purpose an electron source. In our
case, one possible way of creating entangled states may be the use of two beams
of double-level atoms irradiated in a random manner with a light field.

In accordance with the sense of the obtained solution for a system of two
resonance atoms in the field of actual photons, we represent the operation of the
information system as follows: Let us assume that the system operation begins at
a time t2 − R/c at the location of the second, polarizer atom when this atom is
irradiated with the field of a light wave with a frequency ω = ω0. At a local point
in time, t1 = 0, both atoms are in the ground state with an energy E0, and at a
point in time t′′′1 the observer atom 1 goes into an excited state with an energy
En = E0 + �ω. As this takes place, the atom 2 remains in the former state with
the energy E0, and the average energy of the system, calculated with the help of
the wave function (33), will be determined by the formula

〈E〉 = |A1|2(2E0 + �ωnω) + |A2|2(E0 + En + �ω(nω − 1)). (45)

Here angle brackets denote the operation of averaging. The characteristic time of
information transmission through quantum correlations is given by the expression

t′′′1 =

(
|�dn0|2E2

0

�2
− γ2

0

16

)−1/2

(46)

and do not depend on interatomic distances.
For an interatomic distance R = 30 km, the time it takes for a photon to cover

this distance with the classical means of information transfer will be tp = 10−4

s. The time of information transfer due to the effect of quantum teleportation is
given by t′′′1 = �/

√
2|d0n|E0. For dn0 = 4.8 × 10−21 units of the cgs electrostatic
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system and E0 = 10−2 units of the cgs electrostatic system, we obtain t′′′1 =
1.5 × 10−5 s. Thus, the velocity of the information transfer due to the effect of
quantum teleportation, vQT = R/t′′′1 , is substantially higher than the velocity
of light. Nevertheless, this does not imply any contradiction with the relativity
principle, since vQT = R/t′′′1 is a phase velocity.

In the course of quantum computing the qubits of the computer are exposed
to the relaxation processes, which hamper quantum computing seriously: started
computer process acquires the features of a random one during the time of deco-
herence. To increase this time one should use the antisymmetric state Ψs(a) of
pair of atoms, which is insensitive to the relaxation processes. Through only this
undecaying channel the process of transfer of quantum information from a sin-
gle two-level atom to another is realised. The existence of such a communication
channel between a pair of closely spaced atoms with a field of real photons allows
to realize approximately 1014 unitary transformations, if we arrange the atoms at
distance R = 1 nm and use short optical pulses of a few femtoseconds.
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