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Introduction

The problem of simulation of stochastic process has been a matter of active

research in recent decades. It has become an integral part of research, development

and practical application across many fields of study. That is why one of the actual

problems is to build a mathematical model of stochastic process and study its

properties. Because of the powerful possibilities of computer techniques, the

problems of numerical simulations have become especially important and allow us to

predict the behavior of a random process.

There are various simulation methods of stochastic processes and fields. Some

of them can be found in [OGO 96, ERM 82, CRE 93, KOZ 07a]. Note that in most

publications dealing with simulation of stochastic processes, the question of accuracy

and reliability is not studied.

In this book, the methods of simulation of stochastic processes and fields with

given accuracy and reliability are considered. Namely, models are found that

approximate stochastic processes and fields in different functional spaces. This

means that at first we construct the model and then use some adequacy tests to verify

it.

In most books and papers that are devoted to the simulation of stochastic

processes, the modeling methods of exactly Gaussian processes and fields are

studied. It is known that there is a need to simulate the processes that are equal to the

sum of various random factors, in which effects of each other are independent.

According to the central limit theorem, such processes are close to Gaussian ones.

Hence, the problem of simulation of Gaussian stochastic processes and fields is a hot

topic in simulation theory.

Let us mention that in this book only centered random processes and fields are

considered, since simulation of determinate function can be made without any

difficulties.
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Note that all results in this book are applicable for Gaussian process.

Chapter 1 deals with the space of sub-Gaussian random variables and subclasses

of this space containing strictly sub-Gaussian random variables. Different

characteristics of these random variables are considered: sub-Gaussian standard,

functional moments, etc. Special attention is devoted to inequalities estimating “tails”

of the distribution of a random variable, or a sum of a random variable in the some

functional spaces. These assertions are applied in investigation of accuracy and

reliability of the model of Gaussian stochastic process.

In Chapter 2, general approaches for model construction of stochastic processes

with given accuracy and reliability are studied. Special attention is paid to

Karhunen–Loève and Fourier expansions of stochastic processes and their

application to the simulation of stochastic processes.

Chapter 3 is devoted to the model construction of Gaussian processes, that is

considered as input processes on some system of filter, with respect to output

processes in a Banach space C(T ) with given accuracy and reliability. For this

purpose, square-Gaussian random processes are considered; the concept of the space

of square-Gaussian random variables is introduced and the estimates of distribution

of a square-Gaussian process supremum are found. We also consider the particular

case when the system output process is a derivative of the initial process.

Chapter 4 offers two approaches to construct the models of Gaussian stationary

stochastic processes. The methods of model construction are generalized on the case

of random fields. The proposed methods of modeling can be applied in different areas

of science and technology, particularly in radio, physics and meteorology. The models

can be interpreted as a set of signals with limited energy, harmonic signals and signals

with limited durations.

In Chapter 5, the theorems on approximation of a model to the Gaussian random

process in spaces L1([0, T ]) and Lp([0, T ]), p > 1 with given accuracy and

reliability are proved. The theorems are considered on estimates of the “tails” of

norm distributions of random processes under different conditions in the space

Lp(T ), where T is some parametric set, p ≥ 1. These statements are applied to

investigate the partition selection of the set [0,Λ] such that the model approximates a

Gaussian process with some accuracy and reliability in the space Lp([0, T ]) when

p ≥ 1. A theorem on model approximation of random process with Gaussian with

given accuracy and reliability in Orlicz space LU (Ω) that is generated by the function

U is also presented.

In Chapter 6, we introduce random Cox processes and describe two algorithms of

their simulation with some given accuracy and reliability. The cases where an

intensity of the random Cox processes are generated by log Gaussian or square



Introduction xi

Gaussian homogeneous and inhomogeneous processes or fields are considered. We

also describe two methods of simulation. The first one is more complicated to apply

in practice because of technical difficulties. The second one is somewhat simpler and

allows us to obtain the model of the Cox process as a model of Poisson random

variables with parameters that depend on the intensity of the Cox process. The

second model has less accuracy than the first model.

Chapter 7 deals with a model of a Gaussian stationary process with absolutely

continuous spectrum that simulates the process with a given reliability and accuracy

in L2(0, T ). Under certain restrictions on the covariance function of the process,

formulas for computing the parameters of the model are described.

Chapter 8 is devoted to simulation of Gaussian isotropic random fields on

spheres. The models of Gaussian isotropic random fields on n-measurable spheres

are constructed that approximate these fields with given accuracy and reliability in

the space Lp(Sn), p ≥ 2.



1

The Distribution of the Estimates
for the Norm of Sub-Gaussian

Stochastic Processes

This chapter is devoted to the study of the conditions and rate of convergence of

sub-Gaussian random series in some Banach spaces. The results of this chapter are

used in other chapters to construct the models of Gaussian random processes that

approximate them with specified reliability and accuracy in a certain functional

space. Generally, the Gaussian stochastic processes are considered, which can be

represented as a series of independent items. It should be noted that, as will be

shown, these models will not always be Gaussian random processes. In Chapter 7,

for example, the Gaussian models of stationary processes are sub-Gaussian

processes. The accuracy of simulation is studied in the spaces C(T ), Lp(T ), p > 0,

and Orlicz space LU (T ), where T is a compact (usually segment) and U is some C-

function. In addition, these models can be used to construct the models of

sub-Gaussian processes that approximate them with a given reliability and accuracy

in a case when the process can be performed as a sub-Gaussian series with

independent items. Section 1.1 provides the necessary information from the theory of

the sub-Gaussian random variables space. Sub-Gaussian random variables were

introduced for the first time by Kahane [KAH 60]. Buldygin and Kozachenko in their

publication [BUL 87] showed that the space of sub-Gaussian random variables is

Banach space. The properties of this space are studied in the work of Buldygin and

Kozachenko [BUL 00]. Section 1.2 deals with necessary properties of the theory for

strictly sub-Gaussian random variables. In [BUL 00], this theory is described in more

detail. Note that a Gaussian centered random variable is strictly sub-Gaussian.

Therefore, all results of this section, as well as other results of this book, obtained for

sub-Gaussian random variables and processes are also true for the centered Gaussian

random variables and processes. In section 1.3, the rate of convergence of

sub-Gaussian random series in the space L2(T ) is found. Similar results are
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contained in [KOZ 99b] and [KOZ 07a]. Section 1.4 looks at the distribution estimate

of the norm of sub-Gaussian random processes in space Lp (T). These estimates are

also considered in [KOZ 07a]. For more general spaces, namely the spaces Subϕ(Ω)
such estimates can also be found [KOZ 09]. These estimates are used to find the rate

of convergence of sub-Gaussian functional series in the norm of spaces Lp(Ω). Note

that in the case where p = 2, the results of section 1.3 are better than section 1.4. In

section 1.5, the estimates of distribution of the sub-Gaussian random processes norm

in some Orlicz spaces are found; in section 1.6, these estimates are used to obtain the

rate of convergence of sub-Gaussian random series in the norm of some Orlicz

spaces. Similar estimates are contained in [KOZ 99b, KOZ 07a, KOZ 88, ZEL 88,

RYA 90, RYA 91, TRI 91].

The results on the rate of convergence of sub-Gaussian random series in the

Orlicz space that were received in section 1.6, are detailed in section 1.7 for the series

with either uncorrelated or independent items. In sections 1.8 and 1.9, the rate of

convergence for sub-Gaussian and strictly sub-Gaussian random series in the space

C(T ) is obtained. Similar problems were discussed in [KOZ 99b] and [KOZ 07a].

Section 1.10 provides the distribution estimates for supremum of random

processes in the space Lp(Ω).

1.1. The space of sub-Gaussian random variables and sub-Gaussian
stochastic processes

This section deals with random variables that are subordinated, in some sense,

to Gaussian random variables. These random variables are called sub-Gaussian (the

rigorous definition is given below). Later, we will also study sub-Gaussian stochastic

processes.

Let {Ω,B, P} be a standard probability space.

DEFINITION 1.1.– A random variable ξ is called sub-Gaussian, if there exists such
number a ≥ 0 that the inequality

E exp{λξ} ≤ exp
{a2λ2

2

}
[1.1]

holds true for all λ ∈ R. The class of all sub-Gaussian random variables defined on a
common probability space {Ω,B, P} is denoted by Sub(Ω).

Consider the following numerical characteristic of sub-Gaussian random variable

ξ:

τ(ξ) = inf

{
a ≥ 0: E exp{λξ} ≤ exp

{a2λ2

2

}
, λ ∈ R

}
. [1.2]
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We will call τ(ξ) sub-Gaussian standard of random variable ξ. We put τ(ξ) = ∞
if the set of a ≥ 0 satisfying [1.1] is empty. By definition, ξ ∈ Sub(Ω) if and only if

τ(ξ) < ∞. The following lemma is clear.

LEMMA 1.1.– The relationships hold

τ(ξ) = sup
λ �=0, λ∈R

[
2 lnE exp{λξ}

λ2

] 1
2

. [1.3]

For all λ ∈ R

E exp{λξ} ≤ exp

{
λ2τ2(ξ)

2

}
. [1.4]

The sub-Gaussian assumption implies that the random variable has mean zero and

imposes other restrictions on moments of the random variable.

LEMMA 1.2.– Suppose that ξ ∈ Sub(Ω). Then

E|ξ|p < ∞
for any p > 0. Moreover, Eξ = 0 and

Eξ2 ≤ τ2(ξ).

PROOF.– Since as p > 0 and x > 0 the relationship xp ≤ exp{x}pp exp{−p} is

satisfied. Hence, if instead of x we substitute |ξ| and take the mathematical expectation

then obtain that

E|ξ|p ≤ pp exp{−p}E exp{|ξ|}.

Since

E exp{|ξ|} ≤ E exp{ξ}+E exp{−ξ} ≤ 2 exp
{τ2(ξ)

2

}
< ∞,

then E|ξ|p < ∞. Further, by the Taylor formula, we obtain

E exp{λξ} =1 + λEξ +
λ2

2
Eξ2 + o(λ2),

exp
{λ2τ2(ξ)

2

}
=1 +

λ2

2
τ2(ξ) + o(λ2)

as λ → 0. Then inequality [1.4] implies that Eξ = 0 and τ2(ξ) ≥ Eξ2. �
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The following lemma gives an estimate for the moments of sub-Gaussian random

variable.

LEMMA 1.3.– Let ξ ∈ Sub(Ω), then

E|ξ|p ≤ 2

(
p

e

)p/2

(τ(ξ))p

for any p > 0.

PROOF.– Since for p > 0, x > 0 the inequality

xp ≤ exp{x}pp exp{−p},

holds, then we can substitute λ|ξ|, λ > 0 for x and take the mathematical expectation

of such a value. Hence,

E|ξ|p ≤
(

p

λe

)p

E exp{λ|ξ|}. [1.5]

Since

E exp{λ|ξ|} ≤ E exp{λξ}+E exp{−λξ},

then it follows from [1.5] and [1.4] that for any λ > 0 the inequality

E|ξ|p ≤ 2

(
p

λe

)p

exp{λ
2τ2(ξ)

2
}

is satisfied. The lemma will be completely proved if in the inequality above we

substitute λ =
√
p

τ(ξ) under which the right-hand side of the equality is maximized. �

EXAMPLE 1.1.– Suppose that ξ is an N(0, σ2)-distributed random variable, that is ξ
has Gaussian distribution with mean zero and variance σ2. Then

E exp{λξ} = exp

{
σ2λ2

2

}
,

meaning that ξ is sub-Gaussian and τ(ξ) = σ.

Example 1.1 and lemma 1.1 show that a random variable is sub-Gaussian if and

only if its moment generating function is majorized by the moment generating

function of a zero-mean Gaussian random variable.This fact somewhat explains the

term “sub-Gaussian”. Note that a function E exp{λξ} is called moment generating

function of ξ.
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EXAMPLE 1.2.– Suppose that ξ is a random variable that takes values 0 ± 1 with

probabilities P{ξ = ±1} = p/2, P{ξ = 0} = 1− p, 0 ≤ p ≤ 1. Then for p �= 0

E exp{λξ} = (1− p) +
p

2

(
exp{λ}+ exp{−λ}

)

= (1− p) + p
∞∑
k=0

λ2k

(2k)!

= 1 + p
∞∑
k=1

λ2k

(2k)!
= 1 +

∞∑
k=1

λ2kpk

2kk!

2kk!

pk−1(2k)!

≤
∞∑
k=0

(
λ2p

2

)k(
1

3p

)k−1
1

k!
.

Therefore, E exp{λξ} ≤ exp
{

λ2p
2

}
as p ≥ 1

3 , E exp{λξ} ≤ exp
{

λ2

6

}
as

0<p< 1
3 , which means ξ is sub-Gaussian random variable. From lemma 1.2 it

follows that for p ≥ 1
3 τ2(ξ) = Eξ2 = p, for p < 1

3 τ2(ξ) ≤ 1
3 .

EXAMPLE 1.3.– Let ξ be uniformly distributed on [−a, a] random variable, a > 0,

then

E exp{λξ} =
1

2a

∫ a

−a

exp{λx} dx =
sinh(λa)

λa
=

∞∑
k=0

(λa)2k

(2k + 1)!

≤ 1 +
∞∑
k=1

(λa)2k

6kk!
= exp

{ (λa)2
6

}
= exp

{λ2

2

a2

3

}
.

That is, ξ is a sub-Gaussian random variable, τ2(ξ) = Eξ2 = a2

3 .

LEMMA 1.4.– Let ξ be a bounded zero-mean random variable; that is, Eξ = 0 and

there exists c > 0 such that |ξ| ≤ c almost surely. Then, ξ ∈ Sub(Ω) and τ(ξ) ≤ c.

PROOF.– Put ψ(λ) = lnE exp{λξ}. Then

ψ′(λ) =
Eξ exp{λξ}
E exp{λξ},

Since ψ(λ) = ψ(0) + ψ′(0)λ+ ψ′′(λ̃)
2 λ2, then from last inequality and ψ(0) = 0,

ψ′(0) = 0 follows that ψ(λ) ≤ c2λ2

2 . �

Exponential upper bounds for ”tails” of a distribution are of importance in various

applications of sub-Gaussian random variables. An N(0, σ2)-distributed random

variable ξ satisfies the following inequality for x > σ:

P{ξ > x} ≤ exp

{
− x2

2σ2

}
.
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A similar inequality also holds for a sub-Gaussian random variable. To avoid

ambiguity, we put exp{−u/0} = 0 for any u > 0.

LEMMA 1.5.– Suppose that ξ ∈ Sub(Ω), τ(ξ) > 0. Then, the following inequalities

hold for x > 0:

P{ξ > x} ≤ V

(
x

τ(ξ)

)
P{ξ < −x} ≤ V

(
x

τ(ξ)

)
P{|ξ| > x} ≤ 2V

(
x

τ(ξ)

)
, . [1.6]

where V (x) = exp
{
−x2

2

}
.

PROOF.– By the Chebyshev–Markov inequality, we have

P{ξ > x} ≤ E exp{λξ}
exp{λx} ≤ exp

{
λ2τ2(ξ)

2
− λx

}
for any λ > 0 and x > 0. Minimizing the right-hand side in λ > 0 gives the first

inequality in [1.6]. The proof of the second inequality is similar, and the third

inequality follows from the former two:

P{|ξ| > x} = P{ξ > x}+P{ξ < −x}.

�

THEOREM 1.1.– The space Sub(Ω) is a Banach space with respect to the norm τ(ξ).

PROOF.– Prove now that Sub(Ω) is a linear space and τ(ξ) is a norm. If ξ = 0 almost

surely, then τ(ξ) = 0 by the definition of sub-Gaussian standard. The converse is also

true, since τ(ξ) = 0 implies Eξ2 = 0 by lemma 1.2, almost surely giving ξ = 0.

By the definition of τ , we have

τ(cξ) = cτ(ξ).

Let us prove triangle inequality τ(ξ + η) ≤ τ(ξ) + τ(η). It is sufficient to prove

this inequality in the case when ξ ∈ Sub(Ω), η ∈ Sub(Ω) and τ(ξ) �= 0, τ(η) �= 0.
The Hölder inequality gives the following inequality for any p > 1, q > 1 such that
1
p + 1

q = 1 and any λ ∈ R:

E exp{λ(ξ + η)} ≤
[
E exp{pλξ}

] 1
p

·
[
E exp{qλη}

] 1
q

≤ exp

{
λ2

2
(pτ2(ξ) + qτ2(η))

}
.
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For a fixed λ ∈ R, the minimum in p > 1 on the right-hand side of the last

inequality attained at

p′ =
τ(ξ) + τ(η)

τ(ξ)
.

Substituting p′ into the input inequality, we get

E exp{λ(ξ + η)} ≤ exp

{
λ2

2
(τ(ξ) + τ(η))2

}
,

that is τ(ξ + η) ≤ τ(ξ) + τ(η). Show now that the space Sub(Ω) is complete with

respect to τ . Let {ξn, n ≥ 1} ∈ Sub(Ω) and

lim
n→∞ sup

m≥n
τ(ξn − ξm) = 0, [1.7]

it means that the sequence ξn is fundamental with respect to the norm τ . Since E(ξn−
ξm)2 ≤ τ2(ξn − ξm) → 0, as n,m → ∞, then the sequence ξn converges in mean

square, hence and in probability. We denote limits as ξ∞. For any λ ∈ R and ε > 0

sup
n≥1

E

[
exp{λξn}

]1+ε

= sup
n≥1

E exp{λ(1 + ε)ξn}

≤ sup
n≥1

exp

{
λ2(1 + ε)2τ2(ξn)

2

}
< ∞.

By the theorem on uniform integrability[LOE 60], we obtain

E exp{λξ∞} = lim
n→∞E exp{λξn} ≤ exp

{
λ2 supn≥1 τ

2(ξn)

2

}
.

It follows from [1.7] that supn≥1 τ
2(ξn) < ∞. This means that ξ∞ is a sub-

Gaussian random variable and that

τ(ξ∞) ≤ sup
n≥1

τ(ξn). [1.8]

The random variables ξ∞ − ξn, n ≥ 1, are also sub-Gaussian, since the space

Sub(Ω) is linear. In analogy with [1.8], we can show that

τ(ξ∞ − ξn) ≤ sup
m≥n

τ(ξm − ξn).

By [1.7], we finally obtain

lim
n→∞ τ(ξ∞ − ξn) = 0.

�
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From now the sub-Gaussian standard τ will also be called the sub-Gaussian norm.

1.1.1. Exponential moments of sub-Gaussian random variables

Let ξ be a Gaussian random variable with parameters 0 and σ2 > 0. Then, it is

easy to show that

E exp

{
sξ2

2σ2

}
= (1− s)−

1
2 . [1.9]

as s < 1. For sub-Gaussian random variables, this inequality is transformed to the

following inequality.

LEMMA 1.6.– Assume that ξ ∈ Sub(Ω) and τ(ξ) > 0. Then, for all 0 ≤ s < 1, we

have

E exp

{
sξ2

2τ2(ξ)

}
≤ (1− s)−

1
2 . [1.10]

PROOF.– The result is obvious for s = 0. Let F (x) be the cumulative distribution

function of ξ. Inequality [1.4] can be rewritten as∫ ∞

−∞
exp{λx} dF (x) ≤ exp

{
λ2τ2(ξ)

2

}
.

Let s ∈ (0, 1). The inequality above implies that∫ ∞

−∞
exp{λx} exp

{
−λ2τ2(ξ)

2s

}
dF (x)

≤ exp

{
λ2τ2(ξ)

2

(
s− 1

s

)}
for any λ ∈ R. Integrating by λ in both sides of the last inequality gives∫ ∞

−∞

∫ ∞

−∞
exp{λx} exp

{
−λ2τ2(ξ)

2s

}
dλdF (x)

≤
∫ ∞

−∞
exp

{
−λ2τ2(ξ)

2

(
1− s

s

)}
dλ. [1.11]

Now, we transform [1.11]. On the one hand, we have∫ ∞

−∞
exp

{
−λ2τ2(ξ)

2

(
1− s

s

)}
dλ
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=
τ(ξ)√
2π

(
1− s

s

) 1
2
∫ ∞

−∞
exp

{
−λ2τ2(ξ)

2

(
1− s

s

)}
dλ [1.12]

×
√
2π

τ(ξ)

(
s

1− s

) 1
2

=

√
2π

τ(ξ)

(
s

1− s

) 1
2

.

On the other hand, we obtain∫ ∞

−∞
exp{λx} exp

{
−λ2τ2(ξ)

2s

}
dλ

=
τ(ξ)√
2πs

∫ ∞

−∞
exp{λx} exp

{
−λ2τ2(ξ)

2s

}
dλ

√
2πs

τ(ξ)

=

√
2πs

τ(ξ)
exp

{
x2s

2τ2(ξ)

}
.

Hence,∫ ∞

−∞

(∫ ∞

−∞
exp{λx} exp

{
−λ2τ2(ξ)

2s

}
dλ

)
dF (x)

=

√
2πs

τ(ξ)

∫ ∞

−∞
exp

{
x2s

2τ2(ξ)

}
dF (x) [1.13]

=

√
2πs

τ(ξ)
E exp

{
sξ2

2τ2(ξ)

}
.

If in [1.11] we substitute [1.12] and [1.13], then we obtain inequality [1.10]. �

The above exponential moment can be finite for s ≥ 1. The random variable taking

values ±1 with probability 1
2 is a simple example.

1.1.2. The sum of independent sub-Gaussian random variables

By theorem 1.1, the sub-Gaussian standard is a norm in the space Sub(Ω). This

means that for any ξ1, . . . , ξn ∈ Sub(Ω), we have

τ

( n∑
k=1

ξk

)
≤

n∑
k=1

τ(ξk).

This inequality can be made sharper when sub-Gaussian terms are independent.

LEMMA 1.7.– Assume that ξ1, . . . , ξn are independent sub-Gaussian random

variables. Then

τ2
( n∑

k=1

ξk

)
≤

n∑
k=1

τ2(ξk). [1.14]
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PROOF.– For any n and λ ∈ R, we have

E exp

{
λ

n∑
k=1

ξk

}
=

n∏
k=1

E exp{λξk}

≤
n∏

k=1

exp

{
λ2τ2(ξk)

2

}

= exp

{
λ2

2

n∑
k=1

τ2(ξk)

}
,

giving [1.14] by definition of τ . �

1.1.3. Sub-Gaussian stochastic processes

DEFINITION 1.2.– A stochastic process X = {X(t), t ∈ T}, is called sub-Gaussian
if for any t ∈ T X(t) ∈ Sub(Ω) and supt∈T τ(X(t)) < ∞.

LEMMA 1.8.– Let ξi, i = 1, . . . , n be sub-Gaussian random variables, and z =
(ξ1, . . . , ξn) be a sub-Gaussian random vector with τ(ξi) = τi. Then, for all t > 0 the

following inequality

E exp{t‖z‖} = E exp

{
t

n∑
i=1

|ξi|
}

≤ 2 exp

⎧⎨⎩ t2

2

(
n∑

i=1

τi

)2
⎫⎬⎭ [1.15]

holds.

PROOF.– Let t ≥ 0, pi > 1, i = 1, . . . , n,
n∑

i=1

1
pi

= 1. Then, it follows from the

Hölder inequality that

E exp
{
t
( n∑
i=1

|ξi|
)}

≤
n∏

i=1

(
E exp {pit|ξi|}

) 1
pi

≤ 2

n∏
i=1

exp
{
piτ

2
i

t2

2

}
= 2 exp

{ t2
2

n∑
i=1

piτ
2
i

}
.

If in inequality above put pi = τ−1
i

n∑
j=1

τj , we get [1.15]. �
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LEMMA 1.9.– Assume that the conditions of lemma 1.8 are satisfied. Then, for all

1 < α ≤ 2 and s ∈ [0, 1) the inequality

E exp

⎧⎪⎪⎨⎪⎪⎩
s

α

n∑
i=1

|ξi|α

n∑
i=1

ταi

⎫⎪⎪⎬⎪⎪⎭ ≤ exp
{(

1− α

2

) s

α

}
(1− s)−

1
2 .

holds.

PROOF.– Since η is a sub-Gaussian random variable with the norm τ(η) = τ , then it

follows from lemma 1.6 that for s ∈ [0, 1)

E exp

{
sη2

2τ2

}
≤ (1− s)−

1
2 . [1.16]

In [LOE 60], the following inequality has been proved for x > 0 and y > 0

xy ≤ xp

p
+

yq

q
, where

1

p
+

1

q
= 1, p > 1.

Let α be a number such that 1 < α < 2, then substituting in inequality above

p = 2
α , q = 2

2−α we obtain

xy ≤ α

2
x

2
α +

2− α

2
y

2
2−α . [1.17]

From [1.16] and [1.17] follows that for all 0 ≤ s < 1

E exp

{
s

α

( |η|
τ

)α}
≤ E exp

{
sαη2

α2τ2
+

(2− α)

2

s

α

}
= E exp

{
sη2

2τ2

}
· exp

{
(2− α)s

2α

}
≤ (1− s)−

1
2 exp

{
(2− α)s

2α

}
. [1.18]

Let r > 0 and consider such values pi > 1, i = 1, . . . , n, that
n∑

i=1

1
pi

= 1.

Then

E exp

{
1

r

n∑
i=1

|ξi|α
}

≤
n∏

i=1

(
E exp

{
pi|ξi|α

r

}) 1
pi

= I.
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From [1.18], it follows that for
piτ

α
i α

r
< 1

I =

n∏
i=1

(
E exp

{
αταi pi
rα

·
( |ξi|

τi

)α}) 1
pi

≤
n∏

i=1

(
1− piατ

α
i

r

)− 1
2pi

exp

{
(2− α)ταi

2r

}
,

and

ln I ≤
n∑

i=1

(
− 1

2pi

)
· ln
(
1− piατ

α
i

r

)
+

n∑
i=1

2− α

2r
ταi

=
(
1− α

2

) 1

r

n∑
i=1

ταi +

n∑
i=1

1

2pi
·

∞∑
k=1

(piατ
α
i )

k

krk
.

If pi =
1
τα
i

n∑
j=1

ταj and r = α
s

n∑
i=1

ταi , 0 ≤ s < 1, then

ln I ≤ s

α

(
1− α

2

)
+

1

2

∞∑
k=1

sk

k
=
(
1− α

2

) s

α
− 1

2
ln(1− s).

This implies the statement lemma for 1 < α < 2.

Let us study a case when α = 2. Then, for r > 0, pi > 1, i = 1, . . . , n,
n∑

i=1

1
pi

= 1

we have:

E exp

{
1

r

n∑
i=1

|ξi|2
}

≤
n∏

i=1

(
E exp

{
pi|ξi|2

r

}) 1
pi

= I .

From [1.16], it follows that for
2piτ

2
i

r < 1

I =

n∏
i=1

(
E exp

{
2τ2i pi
r2

( |ξi|
τi

)2
}) 1

pi

≤
n∏

i=1

(
1− 2τ2i pi

r

)− 1
2pi

and

ln I ≤
n∑

i=1

(
− 1

2pi

)
ln

(
1− 2τ2i pi

r

)
=

n∑
i=1

1

2pi

∞∑
k=1

(2τ2i pi)
k

krk
.
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If pi =
1
τ2
i

n∑
j=1

τ2j and r = 2
s

n∑
i=1

τ2i , then

ln I ≤ 1

2

∞∑
k=1

sk

k
= −1

2
ln(1− s).

Hence,

E exp

⎧⎪⎪⎨⎪⎪⎩
s

2

n∑
i=1

|ξi|2

n∑
i=1

τ2i

⎫⎪⎪⎬⎪⎪⎭ ≤ (1− s)−
1
2 .

�

COROLLARY 1.1.– Let ξik, i = 1, . . . ,mk, mk → ∞ be sub-Gaussian random

variables with τik = τ(ξik). If there exist the limits η1 = lim
mk→∞

mk∑
i=1

|ξik| (almost

everywhere or with probability) and lim
mk→∞

mk∑
i=1

τik = τ1 > 0, then for all t ≥ 0

E exp {tη1} ≤ 2 exp

{
t2τ21
2

}
.

If there exists ηα = lim
mk→∞

mk∑
i=1

|ξik|α (almost everywhere or with probability) and

for 1 < α ≤ 2, lim
mk→∞

mk∑
i=1

ταik = τα, then for all s ∈ [0, 1)

E exp

{
sηα
ατα

}
≤ (1− s)−

1
2 exp

{
(2− α)s

2α

}
.

The assertion of this corollary follows from the Fatou lemma.

COROLLARY 1.2.– Assume that X = {X(t), t ∈ T} is a sub-Gaussian random

process, where (T,A, μ) is a measurable space. Denote τ(t) = τ(X(t)). If for some

1 ≤ α ≤ 2 (with probability one or in mean square), there exist the integrals∫
T

|X(t)|αdμ(t),

and ∫
T

(τ(t))
α
dμ(t),
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then for all t ≥ 0, (α = 1)

E exp

⎧⎨⎩t

∫
T

|X(t)|dμ(t)

⎫⎬⎭ ≤ 2 exp

⎧⎪⎨⎪⎩ t2

2

⎛⎝∫
T

τ(t)dμ(t)

⎞⎠2
⎫⎪⎬⎪⎭

or for all s ∈ [0, 1) (1 < α ≤ 2)

E exp

{
s

α

∫
T
|X(t)|αdμ(t)∫

T
(τ(t))αdμ(t)

}
≤ (1− s)−

1
2 exp

{
(2− α)s

2α

}
[1.19]

The assertion of this corollary follows from corollary 1.1.

REMARK 1.1.– If for random variable θ > 0 and all t > 0 the inequality holds

E exp{tθ} ≤ 2 exp

{
t2

2
b2
}
,

then (see e.g. [BUL 00]) for all x > 0

P{θ > x} ≤ 2 exp

{
− x2

2b2

}
. [1.20]

Suppose that for random variable η > 0 and for all s ∈ [0, 1)

E exp{sη
α
} ≤ (1− s)−

1
2 exp

{
(2− α)s

2α

}
,

then from the Tchebyshev-Markov inequality it follows that for any x > 0

P{η > x} ≤ E exp
{sη
α

}
· exp

{
−sx

α

}
≤ (1− s)−

1
2 exp

{
s

(
1

α
− 1

2
− x

α

)}
.

Set s = 1 −
(
2
(
x
α + 1

2 − 1
α

))−1
(the minimum point of right-hand side of last

inequality), then

P{η > x} ≤
√
x
2

α
+ 1− 2

α
exp

{
1

α

}
· exp

{
−x

α

}
. [1.21]
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1.2. The space of strictly sub-Gaussian random variables and strictly
sub-Gaussian stochastic processes

Lemma 1.2 shows that for any sub-Gaussian random variable ξ, we have

Eξ2 ≤ τ2(ξ), Eξ = 0,

where τ(ξ) is the sub-Gaussian standard. Now we consider a subclass of sub-Gaussian

random variables where the above inequality becomes equality.

DEFINITION 1.3.– A sub-Gaussian random variable ξ is called strictly sub-Gaussian
if τ2(ξ) = Eξ2, that is, if the inequality

E exp{λξ} ≤ exp

{
λ2σ2

2

}
, [1.22]

σ2 = Eξ2, holds for all λ ∈ R . The class of strictly sub-Gaussian random variables
will be denoted by SSub(Ω).

Each zero-mean Gaussian random variable is strictly sub-Gaussian (for

example 1.1). A random variable from example 1.2 will be strictly sub-Gaussian as

p ≥ 1
3 . It can be shown [BUL 80b] that for p < 1

3 , p �= 0 it is not strictly

sub-Gaussian. Uniformly distributed on interval [−a, a], a random variable is also

strictly sub-Gaussian (for example 1.3). Sufficient conditions for a random variable

to be strictly sub-Gaussian are given in [BUL 80b]. In [BUL 80b], it is also shown

that the sum of strictly sub-Gaussian random variables need not be strictly

sub-Gaussian. The next lemma points out an important situation where a sum of

strictly sub-Gaussian random variables is strictly sub-Gaussian.

LEMMA 1.10.– Suppose that ξ is a strictly sub-Gaussian random variable and c is an

arbitrary constant. Then, cξ is also a strictly sub-Gaussian random variable. Assume

that ξ and η are independent strictly sub-Gaussian random variables. Then, the sum

ξ + η is also strictly sub-Gaussian.

The first statement of the lemma is obvious. The second statement follows from

inequalities by lemma 1.7:

E(ξ + η)2 ≤ τ2(ξ + η) ≤ τ2(ξ) + τ2(η)

= Eξ2 +Eη2 = E(ξ + η)2.
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DEFINITION 1.4.– A family of random variables Δ from Sub(Ω) is called strictly
sub-Gaussian if for any at most countable set of random variables {ξi, i ∈ I} from Δ
and for any λi ∈ R the relationship

τ2

(∑
i∈I

λiξi

)
= E

(∑
i∈I

λiξi

)2

[1.23]

holds true.

LEMMA 1.11.– Assume that Δ is a family of strictly sub-Gaussian random variables.

Then, a linear closure of Δ in L2(Ω) is strictly sub-Gaussian family.

PROOF.– Let ξ1, ξ2, . . . , ξn be random variables from Δ, ηi =
∑n

j=1 aijξj , i =
1, . . . ,m are the elements of linear span of Δ. Then

τ2
( m∑

i=1

λiηi

)
= τ2

( m∑
i=1

λi

n∑
j=1

aijξj

)

= τ2
( n∑

j=1

( m∑
i=1

λiaij

)
ξj

)
[1.24]

= E

( n∑
j=1

( m∑
i=1

λiaij

)
ξj

)2

= E

( m∑
i=1

λiηi

)2

.

The assertion of the lemma for boundary elements of linear closure of Δ follows

from [1.24] by limit transition (see theorem 1.1). �

DEFINITION 1.5.– A strictly sub-Gaussian family of random variables, that is closed
in L2(Ω), is called a space of strictly sub-Gaussian random variables.

The space of strictly sub-Gaussian random variables is denoted by SG(Ω).

EXAMPLE 1.4.– Suppose that Ξ = {ξk, k = 1, 2, . . .} is a sequence of independent

strictly sub-Gaussian random variables. A linear closure of Ξ in L2(Ω) is a space of

strictly sub-Gaussian random variables.

DEFINITION 1.6.– A random vector
−→
ξ T = (ξ1, . . . , ξn) is called strictly

sub-Gaussian if ξk are random variables from strictly sub-Gaussian family.
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LEMMA 1.12.– Let
−→
ξ T = (ξ1, . . . , ξn) be a strictly sub-Gaussian vector with

uncorrelated components, Eξ2k = σ2
k > 0. Then, for any s such that 0 ≤ s < 1, and

N = 1, 2 . . . the inequality

E exp

{
s

2RN

n∑
k=1

ξ2k

}
≤ exp

{
1

2

∞∑
l=1

sl

lRl
N

n∑
k=1

σ2l
k

}
[1.25]

is satisfied, where RN =
(∑n

k=1 σ
2N
k

) 1
N .

PROOF.– It follows from the definition of a strictly sub-Gaussian vector and [1.24]

that for all λk ∈ R, k = 1, 2, . . . , n, we have

E exp

{ n∑
k=1

λkξk

}
≤ exp

{
1

2
E

( n∑
k=1

λkξk

)2}

= exp

{
1

2

n∑
k=1

λ2
kσ

2
k

}
. [1.26]

Suppose that sk are such arbitrary numbers that 0 < sk < 1. Multiplying right-

hand and left -hand sides of [1.26] by exp
{
−∑n

k=1
λ2
kσ

2
k

2sk

}
and integrating both parts

by λk, we obtain

E

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{ n∑
k=1

(
λkξk − λ2

kσ
2
k

2sk

)}
dλ1 . . . dλn

≤
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{ n∑
k=1

λ2
kσ

2
k

2

(
1− 1

sk

)}
dλ1 . . . dλn. [1.27]

The left-hand side of [1.27] will be defined as An. It is easy to see that

An = E
n∏

k=1

∫ ∞

−∞
exp

{
λkξk − λ2

kσ
2
k

2sk

}
dλk

=
n∏

k=1

(√
2πsk
σk

)
·E exp

{ n∑
k=1

ξ2ksk
2σ2

k

}
. [1.28]

The right-hand side of [1.27] is defined as Bn. Then, it is clear that

Bn =
n∏

k=1

∫ ∞

−∞
exp

{
−λ2

kσ
2
k(1− sk)

2sk

}
dλk [1.29]

=

n∏
k=1

(√
2πsk
σk

)
·

n∏
k=1

(
1− sk

)− 1
2 . [1.30]
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[1.27]–[1.29] yield that for all 0 < sk < 1 the inequality

E exp

{ n∑
k=1

ξ2ksk
2σ2

k

}
≤

n∏
k=1

(
1− sk

)− 1
2 [1.31]

holds.

Denote now sk =
sσ2

k

RN
, where s is a number such that 0 < s < 1. From [1.31], it

follows that

E exp

{
s

2RN

n∑
k=1

ξ2k

}
≤

n∏
k=1

(
1− σ2

ks

RN

)− 1
2

.

The inequality above yields the following relationship

lnE exp

{
s

2RN

n∑
k=1

ξ2k

}
≤ −1

2

n∑
k=1

ln

(
1− σ2

ks

RN

)

=
1

2

n∑
k=1

∞∑
l=1

σ2l
k sl

lRl
N

=
1

2

∞∑
l=1

sl

lRl
N

n∑
k=1

σ2l
k .

The lemma is proved for 0 < s < 1. In the case of s = 0, the inequality [1.25] is

trivial. �

REMARK 1.2.– If in( n∑
i=1

xi

)α

≤
n∑

i=1

xα
i , xi > 0, 0 < α < 1,

we put xi = σ2l
i , α = N

l , l ≥ N , then

( n∑
k=1

σ2l
k

)N
l

≤
n∑

k=1

σ2N
k . [1.32]

Hence, when l ≥ N Rl
N ≥∑n

k=1 σ
2l
k . Therefore,

∞∑
l=N

sl

lRl
N

n∑
k=1

σ2l
k ≤

∞∑
l=N

sl

l
,

which means that the series

∞∑
l=N

sl

lRl
N

n∑
k=1

σ2l
k
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converges for any N ≥ 1. Furthermore, [1.32] yields an inequality

RN ≥ RI as I > N. [1.33]

LEMMA 1.13.– Assume that a random vector
−→
ξ T = (ξ1, . . . , ξn) is strictly sub-

Gaussian, Cov
−→
ξ = E

−→
ξ
−→
ξ T = B, A is symmetric positive definite matrix. Then for

any 0 ≤ s < 1 and N = 1, 2, . . .

E exp

{
s

2ZN

−→
ξ TA

−→
ξ

}
≤ exp

{
1

2

∞∑
l=1

1

l

(
sZl

ZN

)l}
, [1.34]

where

Zl =

(
Sp
(
BA
)l) 1

l

, [1.35]

Sp is a trace of matrix.

PROOF.– Assume that S is such a matrix that S ·S = A, S = ST , O is an orthogonal

matrix that transforms SBS to diagonal matrix OSBSOT = D = diag
(
d2k
)n
k=1

. Let
−→
θ = OS

−→
ξ . By lemma 1.11,

−→
θ is also strictly sub-Gaussian vector.

Cov
−→
θ = OSCov

−→
ξ SOT = OSBSOT = D, [1.36]

−→
θ T−→θ =

n∑
k=1

θ2i =
−→
ξ TSOTOS

−→
ξ =

−→
ξ TA

−→
ξ .

Therefore, from lemma 1.12 follows that for 0 ≤ s < 1 the relationships

E exp

{
s

2R̂N

−→
ξ TA

−→
ξ

}
= E exp

{
s

2R̂N

−→
θ T−→θ

}

≤ exp

{
1

2

∞∑
l=1

slR̂l
l

lR̂l
N

}
, [1.37]

holds true, where R̂l =
(∑n

k=1 d
2l
k

) 1
l .

Since R̂l
l = SpDl, then [1.36] yields that

SpDl = Sp
(
OS(BA)l−1BSOT

)
= Sp

(
S(BA)l−1BS

)
= Sp

(
(BA)l

)
= Zl

l .

Hence, from equality above and [1.37] follows the statement of the lemma. �
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REMARK 1.3.– Since [1.33] holds for R̂l and Zl = R̂l, then

ZN ≥ Zl at l > N, [1.38]

and the series
∑∞

l=1
slZl

l

lZl
N

is convergent for arbitrary N. Moreover, Z1 = E
−→
ξ TA

−→
ξ .

COROLLARY 1.3.– Suppose that the conditions of lemma 1.13 are satisfied. Then for

all 0 ≤ s < 1 and N = 1, 2, . . . , the inequality

E exp

{
s

2ZN

−→
ξ TA

−→
ξ

}
≤ exp

{
1

2
νN (s) + ωN (s)

}
[1.39]

holds, where

ωN (s) =
1

2

∞∑
l=N

sl

l
, ν1(s) = 0, νN (s) =

N−1∑
l=1

(sZl)
l

lZl
N

, [1.40]

as N > 1.

COROLLARY 1.4.– Assume that the conditions of lemma 1.13 are satisfied. Then for

any 0 ≤ s ≤ 1, the inequality

E exp

{
s · ←−ξ TA

−→
ξ

2 ·E←−
ξ TA

−→
ξ

}
≤ 1√

1− s
[1.41]

holds.

PROOF.– The statement of corollary follows from lemma 1.13 (inequality [1.34]).

Taking N = 1, by remark 1.3, we obtain

∞∑
l=1

1

l

(
sZl

Z1

)l

≤
∞∑
l=1

sl

l
= − ln(1− s).

Moreover, we can readily show that Z1 = E
←−
ξ TA

−→
ξ . �

COROLLARY 1.5.– Let ηn =
−→
ξ T

nAn
−→
ξ n, where

−→
ξ n are strictly sub-Gaussian

random vectors, Bn = Cov
−→
ξ n, An are symmetric positive definite matrices,

Zl,n =

(
Sp
(
BnAn

)l) 1
l

. If η is a random variable such that ηn → η in probability

as n → ∞ and the condition

lim
n→∞Zl,n = Zl > 0 at l = 1, 2, . . . , N [1.42]



The Distribution of the Estimates for the Norm of Sub-Gaussian Stochastic Processes 21

is satisfied, then the inequality

E exp

{
sη

2ZN

}
≤ exp

{
1

2
νN (s) + ωN (s)

}
[1.43]

holds for any 0 < s < 1, where ωN (s), νN (s) are defined in [2.25],

ν1(s) = 0, νN (s) =
N−1∑
l=1

(sZl)
l

lZl
N

, when N > 1.

PROOF.– Inequality [1.39] and the Fatou lemma yield the statement of corollary. �

LEMMA 1.14.– Assume that either the conditions of lemma 1.13, η =
−→
ξ TA

−→
ξ are

satisfied, where Zl is defined in [1.35], or the conditions of corollary 1.5 are satisfied,

where η and Zl are defined in corollary 1.5. Then for any N = 1, 2, . . ., x > 0,

0 ≤ s < 1

P{η > x} ≤ WN (s, x), [1.44]

where

WN (s, x) = exp

{
− sx

2ZN

}
exp

{
1

2
νN (s) + ωN (s)

}
,

ωN (s) and νN (s) are defined in [2.25].

PROOF.– The Chebyshev inequality and either [1.39] or [1.43] imply that the

inequality

P{η > x} = P

{
ηs

2ZN
>

sx

2ZN

}
≤ E exp

{
sη

2ZN

}
exp

{
− sx

2ZN

}
≤ WN (s, x)

holds for x > 0, 0 ≤ s < 1. �

REMARK 1.4.– From [1.38] follows that the greater N , the more accurate inequality

[1.44] is for a large enough x. Furthermore, [1.44] implies

P{η > x} ≤ inf
0≤s<1

WN (s, x). [1.45]
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EXAMPLE 1.5.– By putting N = 1, ω1(s) = − 1
2 ln(1− s), the inequality [1.44] will

be expressed as

P{η > x} ≤ exp

{
− sx

2Z1

}
(1− s)−

1
2 . [1.46]

By minimizing right-hand side of [1.46] with respect to s, we obtain that the

inequality

P{η > x} ≤ e
1
2

(
x

Z1

) 1
2

exp

{
− x

2Z1

}
[1.47]

holds true for x > Z1.

EXAMPLE 1.6.– Taking N = 2, ω2(s) = − 1
2 ln(1 − s) − s

2 inequality [1.44] has

been expressed as

P{η > x} ≤ exp

{
−s(x− Z1)

2Z2

}
exp
{
−s

2

}(
1− s

)− 1
2 . [1.48]

By minimizing the right-hand side of [1.48] with respect to s,we obtain that the

inequality

P{η > x} ≤
(x− Z1

Z2
+ 1
) 1

2 exp

{
−x− Z1

2Z2

}
[1.49]

holds as x > Z1.

1.2.1. Strictly sub-Gaussian stochastic processes

DEFINITION 1.7.– A stochastic process X = {X(t), t ∈ T}, is called strictly sub-
Gaussian, if the family of random variables {X(t), t ∈ T} is strictly sub-Gaussian.

EXAMPLE 1.7.– Suppose that X(t) =
∑∞

k=1 ξkfk(t), where ξ = {ξk, k = 1, 2, . . .}
is a family of strictly sub-Gaussian random variables and the series

∞∑
l=1

∞∑
k=1

Eξkξlfk(t)fl(t),
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is convergent for any t ∈ T , then from lemma 1.11 it follows that X(t) is a strictly

sub-Gaussian stochastic process. Lemmas 1.10 and 1.11 imply that in the case of

independent strictly sub-Gaussian random variables ξk and

∞∑
k=1

Eξ2kf
2
k (t) < ∞

for all t ∈ T , X(t) is a strictly sub-Gaussian stochastic process.

DEFINITION 1.8.– Stochastic processes Xi = {Xi(t), t ∈ T, i = 1, 2, . . . ,M},
are called jointly strictly sub-Gaussian, if the family of random variables {Xi(t),
t ∈ T , i = 1, 2, . . . ,M} is strictly sub-Gaussian.

REMARK 1.5.– A zero-mean Gaussian stochastic process is sub-Gaussian.

LEMMA 1.15.– Let X = {X(t), t ∈ T} be a strictly sub-Gaussian stochastic

process and (T,L, μ) be a measurable space. Assume that Lebesgue integral∫
T
(EX2(t))dμ(t) is finite. Then, there exists almost sure the integral

∫
T
X2(t)dμ(t)

and the inequality

E exp

{
s

2

∫
T
X2(t)dμ(t)∫

T
(EX2(t))dμ(t)

}
≤ (1− s)−1/2

holds for all 0 ≤ s ≤ 1.

PROOF.– From the Fatou lemma follows the existence of integral
∫
T
X2(t)dμ(t) with

probability 1. Since
∫
T
X2(t)dμ(t) can be represented as the limit∫

T

X2(t)dμ(t) = lim
n→∞

n∑
k=1

c2kμ(Ak),

where Ak ∈ L, Ak ∩ Aj = ∅, k �= j and
n⋃

k=1

Ak = T , ck are the value of X(t) in

some points from Ak and∫
T

EX2(t)dμ(t) = lim
n→∞

n∑
k=1

Ec2kμ(Ak),

then the statement of lemma follows from corollaries 1.4 and 1.5 and the Fatou lemma.

�

COROLLARY 1.6.– Suppose that for X = {X(t), t ∈ T} the conditions of

lemma 1.15 are satisfied. Then, the inequality

P{
∫
T

X2(t)dμ(t) > ε} ≤ e
1
2

(
ε∫

T
(EX2(t)dμ(t))

) 1
2

exp

{ −ε

2
∫
T
(EX2(t)dμ(t))

}
[1.50]
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holds as

ε >

∫
T

(EX2(t))dμ(t).

PROOF.– The proof is similar to the proof of example 1.6. �

1.3. The estimates of convergence rates of strictly sub-Gaussian
random series in L2(T)

In this section, the results of previous section are used for finding norm distribution

estimates in L2(T ) for residuals of strictly sub-Gaussian stochastic series.

Assume that (T,A, μ) is some measurable space. Consider a stochastic series in

the form

S(t) =

∞∑
k=1

ξkfk(t), t ∈ T, [1.51]

where ξ = {ξk, k = 1, 2, . . .} is a family of strictly sub-Gaussian random variables

and f = {fk(t), k = 1, 2, . . .} is a family of function from L2(T ). Suppose that the

following condition holds: for all t ∈ T

∞∑
k=1

∞∑
l=1

Eξkξlfl(t)fk(t) < ∞, [1.52]

which means that the series in [3.1] is mean square convergent for all t ∈ T and S(t)
is strictly sub-Gaussian process.

Denote for 1 ≤ n ≤ m ≤ ∞

Sm
n (t) =

m∑
k=n

ξkfk(t).

DEFINITION 1.9.– The series [3.1] mean square converges in space L2(T ), if

E

∫
T

(
S(t)− Sn

1 (t)
)2

dμ(t) = E‖S(t)− Sn
1 (t)‖2L2(T ) → 0

as n → ∞.

We can readily show the next assertion.
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LEMMA 1.16.– The series [3.1] is mean square convergent in L2(T ) if and only if

either

E‖Sm
n (t)‖2L2(T ) =

m∑
l=n

m∑
k=n

Eξkξl

∫
T

fl(t)fk(t) dμ(t) → 0

as n,m → ∞, or

∞∑
k=1

∞∑
l=1

Eξkξl

∫
T

fl(t)fk(t) dμ(t) < ∞ [1.53]

The following theorem gives a convergence rate estimate of the series [3.1] in

L2(T ).

THEOREM 1.2.– Let An,m = ‖akl‖mk,l=n,

akl =

∫
T

fl(t)fk(t) dμ(t), Bn,m = ‖Eξkξl‖mk,l=n,

bkl = Eξkξl.

If the condition [1.53] is satisfied and for l = 1, 2, . . . , N there exists a limit

lim
m→∞

(
Sp
(
BnmAnm

)l) 1
l

= Jnl,

then the inequality

P

{∥∥S∞
n (t)

∥∥
L2(T )

> x

}
= P

{∫
T

∣∣S∞
n (t)

∣∣2 dμ(t) > x2

}
≤ VN (s, x2) [1.54]

holds true for any x > 0, 0 ≤ s < 1, N = 1, 2, . . ., n = 1, 2, . . ., where

S∞
n (t) =

∞∑
k=n

ξkfk(t),

VN (s, x) = exp
{
− sx

2JnN

}
exp

{
1

2
ν̃N (s) + ωN (s)

}
,

ωN (s) is defined in [2.25], ν̃1(s) = 0,

ν̃N (s) =

N−1∑
l=1

(sJnl)
l

lJ l
nN

, N > 1.
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PROOF.– The assertion of the theorem follows from lemma 1.14. A random variable∥∥S∞
n (t)

∥∥
L2(T )

is mean square limit as m → ∞, that is why in probability also, of

random variables∥∥Sm
n (t)

∥∥
L2(T )

=
m∑
l=n

m∑
k=n

ξlξkalk.

Really, from [1.53] it follows that

E
∣∣∥∥S∞

n (t)
∥∥
L2(T )

−
∥∥Sm

n (t)
∥∥
L2(T )

∣∣2
≤ E

∥∥S∞
n (t)− Sm

n (t)
∥∥2
L2(T )

→ 0

as m → ∞. �

COROLLARY 1.7.– Suppose that either random variables in [3.1] are uncorrelated,

Eξ2k = σ2
k, or the system of function fk(t) is orthogonal∫

T

fk(t)fl(t) dμ(t) = δlka
2
k,

where δlk is Kronecker symbol. If the series

∞∑
k=1

σ2
ka

2
k < ∞ [1.55]

converges, where

a2k =

∫
T

f2
k (t) dμ(t),

then the series [3.1] is mean square convergent in L2(T ) and for all x > A
1
2
n ,

n=1, 2, . . ., the inequality

P

{∥∥S∞
n (t)

∥∥
L2(T )

> x

}
≤ exp

{1
2

} x

A
1
2
n

exp
{
− x2

2An

}
[1.56]

holds, where An =
∑∞

k=n σ
2
ka

2
k.

PROOF.– Since under condition of the corollary

∞∑
l=1

∞∑
k=1

Eξlξk

∫
T

fk(t)fl(t) dμ(t) =
∞∑
k=1

σ2
ka

2
k < ∞
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then the series [3.1] converges in mean square. By theorem 1.2 as N = 1, the estimate

[1.54] is satisfied, where

Jn1 = lim
m→∞

m∑
k=n

σ2
ka

2
k =

∞∑
k=n

σ2
ka

2
k = An.

Minimizing the expression [1.54] in 0 ≤ s < 1 (see example 1.5), we obtain

inequality [1.56]. �

COROLLARY 1.8.– Assume that random variables in [3.1] are uncorrelated and the

system of function fk(t) is orthogonal, Eξ2k = σ2
k,
∫
T
|fk(t)|2 dμ(t) = a2k. If

∞∑
k=1

σ2
ka

2
k < ∞, [1.57]

then the series [3.1] is mean square convergent in L2(T ) and for all x > 0, 0 ≤ s < 1,

N = 1, 2, . . ., n = 1, 2, . . ., the inequality

P

{∥∥S∞
n (t)

∥∥
L2(T )

> x

}
≤ VN (s, x2) [1.58]

holds, where the function VN (s, x) is from [1.54], and

Jnl = Ĵnl =

( ∞∑
k=n

σ2l
k a2lk

) 1
l

. [1.59]

PROOF.– The assertion of corollary 1.8 follows from theorem 1.2. In this case, equity

[1.59] holds and condition [1.57] provides the convergence of the series [1.59] for all

l ≥ 1. �

EXAMPLE 1.8.– If in corollary 1.8 we put N = 2 and minimize the right-hand side

of [1.58] in 0 ≤ s < 1, then we obtain (see, example 1.6) that the inequality

P

{∥∥S∞
n (t)

∥∥
L2(T )

> x

}

≤
(
x2 − Ĵn1

Ĵn2
+ 1

) 1
2

exp

{
−x2 − Ĵn1

2Ĵn2

}
[1.60]

holds true for all x2 > Ĵn1.
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1.4. The distribution estimates of the norm of sub-Gaussian stochastic
processes in Lp(T)

In this section, the estimates for distribution of the norm in Lp(T ) of

sub-Gaussian random processes are found. Obtained results are applied to strictly

sub-Gaussian stochastic processes and series.

Let (T,A, μ), μ(T ) < ∞, be some measurable space. Lp(T ) is a space integrated

in the power of p measurable functions

f = {f(t), t ∈ T}, ‖f‖Lp =

(∫
T

|f(t)|p dμ(t)
) 1

p

.

Assume that X = {X(t), t ∈ T} is a sub-Gaussian stochastic process,

sup
t∈T

τ(X(t)) = τ < ∞.

Since

E

∫
T

|X(t)|p dμ(t) =
∫
T

E|X(t)|p dμ(t),

and from lemma 1.2 it follows that there exists such constant cp that

supt∈T E|X(t)|p < cp, then

E

∫
T

|X(t)|p dμ(t) ≤ cpμ(T ) < ∞.

Therefore,
∫
T
|X(t)|p dμ(t) < ∞ with probability 1, it means that X ∈ Lp(T )

almost surely.

THEOREM 1.3.– The inequality

P
{
‖X‖Lp > x

}
≤ 2 exp

{
− x2

2τ2[μ(T )]
2
p

}
[1.61]

holds true for any p ≥ 0 and

x ≥ p1/2[μ(T )]
1
p τ.
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PROOF.– By the Lyapunov moment inequality for s ≥ p > 0, we have

E‖X‖sp = E

(∫
T

|X(t)|p dμ(t)
)s/p

= E

[∫
T

|X(t)|p d
(

μ(t)

μ(T )

)]s/p
(μ(T ))s/p

≤ E

[∫
T

|X(t)|s d
(

μ(t)

μ(T )

)]
(μ(T ))s/p =

∫
T

E|X(t)|s dμ(t)(μ(T ))(s/p)−1.

Then, it follows from the Chebyshev inequality that

P{‖X‖Lp > x} ≤
E‖X‖sp

xs

and lemma 1.3 implies that

P{‖X‖Lp > x} ≤ 2ss/2as,

where a = τ ·(μ(T ))1/p

x
√
e

. Let s = a−2e−1 (it is a point that minimizes the right-hand

side of inequality above). Then, for s = 1
a2e ≥ p, that is for x ≥ p1/2(μ(T ))1/pτ , the

inequality

P
{
‖X‖Lp > x

}
≤ 2 exp

{
− 1

2a2e

}
is satisfied. So, the theorem is completely proved. �

Consider now the random series

S(t) =
∞∑
k=1

ξkfk(t), [1.62]

where ξ = {ξk, k = 1, 2, . . .} is a family of strictly sub-Gaussian random variables,

f = {fk(t), t ∈ T , k = 1, 2, . . .} is a family of measurable functions. The following

theorem gives convergence rate estimates of the series [1.62] in Lp(T ).

THEOREM 1.4.– Assume that the condition

sup
t∈T

∞∑
k=1

∞∑
l=1

Eξkξlfl(t)fk(t) < ∞ [1.63]

holds true. Then, for arbitrary p > 0 and

x ≥ p1/2[μ(T )]
1
pσn ≤ p ≤ 2
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where

σ2
n = sup

t∈T

∞∑
k=n

∞∑
l=n

Eξkξlfl(t)fk(t),

the following inequality

P{‖S∞
n (t)‖Lp > x} ≤ 2 exp

{
− x2

2σ2
n[μ(T )]

2
p

}
[1.64]

holds.

where S∞
n (t) =

∞∑
k=n

ξkfk(t).

PROOF.– Since stochastic process S∞
n = {S∞

n (t), t ∈ T} is sub-Gaussian with

τ2(S∞
n (t)) = σ2

n, then theorem 1.4 is a corollary of theorem 1.3. �

COROLLARY 1.9.– Suppose that random variables in ξk [1.62] are uncorrelated.

Then, the assertion of theorem 1.4 holds, where

σ2
n = sup

t∈T

∞∑
k=n

Eξ2kf
2
k (t).

COROLLARY 1.10.– Let the series in [1.62] be stationary. That is

S(t) =
∞∑
k=1

(ξk cosλkt+ ηk sinλkt),

where Eξkξl = Eηkηl = 0, when k �= l, for all k and l, Eξkηl = 0, Eξ2k = Eη2k = b2k.

Then, the assertion of theorem 1.4 holds, where σ2
n =

∞∑
k=n

b2k.

REMARK 1.6.– It is clear that the estimates in [1.64] are the best for stationary

random series. In other cases they can be improved, which will be done in the

following sections.

1.5. The distribution estimates of the norm of sub-Gaussian stochastic
processes in some Orlicz spaces

In this section, the estimates for norm distribution of sub-Gaussian stochastic

processes in Orlicz space are found such that generated functions increase not faster

than the function U(x) = exp{x2} − 1. The results are applied to strictly

sub-Gaussian processes and series.
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Let (T,U, μ), μ(T ) < ∞, be some measurable space, LU (T ) be Orlicz space with

generated C-function U = {U(x), x ∈ R}. Remember that a continuous even convex

function U(·) is called C- function if it is monotone increasing, U(0) = 0, U(x) > 0,

as x �= 0. For example, U(x) = exp{|x|α} − 1, α ≥ 1.

The Orlicz space, generated by the function U(x), is defined as the family of

functions {f(t), t ∈ T} where for each function f(t) there exists a constant r such

that ∫
T

U

(
f(t)

r

)
dμ(t) < ∞.

The space LU (T ) is Banach with respect to the norm

‖f‖LU
= inf

{
r > 0:

∫
T

U

(
f(t)

r

)
dμ(t) ≤ 1

}
. [1.65]

A norm ‖f‖LU
is called the Luxemburg norm.

Let X = {X(t), t ∈ T} be a sub-Gaussian stochastic process, supt∈T τ(X(t)) =
τ < ∞.

THEOREM 1.5.– Assume that the Orlicz C-function U = {U(x), x ∈ R} is such that

GU (t) = exp
{(

U (−1)(t− 1)

)2}
, t ≥ 1,

is convex as t ≥ 1, (U (−1)(t) is an inverse function to U(t)). Then, for all x such that

x ≥ μ̂(T )τ(2 + (U (−1)(1))−2)
1
2 , [1.66]

where μ̂(T ) = max(μ(T ), 1) the inequality

P
{
‖X(t)‖LU

> x
}

≤ exp

{
1

2

}
xU (−1)(1)

μ̂(T )τ
exp

{
−x2(U (−1)(1))2

2(μ̂(T ))2τ2

}
[1.67]

holds.

PROOF.– Note that from the definition of the function GU (t) follows that for all z ≥ 0
the equality

GU (U(z) + 1) = exp{z2} [1.68]
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holds true. Equality [1.68], the definition of the norm ‖ · ‖LU (see [1.65]), the

Chebyshev inequality and the Jensen one for any p ≥ 1, x ≥ 0, imply the

relationships:

P
{
‖X(t)‖LU > x

}
= P

{∫
T

U

(
X(t)

x

)
dμ(t) ≥ 1

}
= P

{∫
T

U

(
X(t)

x

)
μ(T )

dμ(t)

μ(T )
≥ 1

}
= P

{∫
T

(
U

(
X(t)

x

)
μ(T ) + 1

)
dμ(t)

μ(T )
≥ 2

}

≤
E

(
GU

(∫
T

(
U

(
X(t)
x

)
μ(T ) + 1

)
dμ(t)
μ(T )

))p

(GU (2))p

≤
E

(
GU

(∫
T
U

(
X(t)
x μ̂(T )

)
+ 1

)
dμ(t)
μ(T )

)p

(GU (2))p

≤

∫
T
E

(
GU

(
U

(
X(t)μ̂(T )

x

)
+ 1

))p
dμ(t)
μ(T )

(GU (2))p

=

∫
T
E exp

{p(X(t))2(μ̂(T ))2

x2

}dμ(t)
μ(T )

exp{p(U (−1)(1))2} . [1.69]

If now in [1.69] we set p = sx2(μ̂(T )τ
√
2)−2, where 0 ≤ s < 1, then for such x

(p ≥ 1) that

x2 >
(μ̂(T ))22τ2

s
, [1.70]

from lemma 1.6 we have

E exp

{
p(X(t))2(μ̂(T ))2

x2

}
= E exp

{
s(X(t))2

2τ2

}
≤ 1√

1− s
. [1.71]

Hence, [1.69] and [1.71] yield

P
{
‖X(t)‖LU > x

}
≤ 1√

1− s
exp

{
−sx2(U (−1)(1))2

2(μ̂(T ))2τ2

}
. [1.72]
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If we minimize the right-hand side of the inequality above with respect to s, 0 ≤
s < 1, it means that

s = 1− (μ̂(T ))2τ2

x2(U (−1)(1))2
, [1.73]

then for x from [1.70] and since s > 0

x2 >
(μ̂(T ))2τ2

(U (−1)(1))2
[1.74]

inequality [1.67] is obtained.

To complete the proof of the theorem, it is enough to remark that for s in equality

[1.73], inequality [1.70] holds true if and only if [1.66] is satisfied. It is clear that for

such x inequality [1.74] holds true. �

REMARK 1.7.– From [1.67] it follows also that the trajectories of the process X
almost surely belong to the Orlicz space LU (Ω).

REMARK 1.8.– It is easy to obtain from theorem 1.5 the estimates of distribution

‖X(t)‖Lp , because Lp(T ) is the Orlicz space generated by C-function U(x) = |x|p,

p ≥ 1. But in this case, we should consider a C-function, that is equivalent to U(x) =
|x|p and the assumptions of the function GU (x) hold true. However, the estimates of

section 1.4 are more precise.

EXAMPLE 1.9.– The conditions of theorem 1.5 are satisfied for C-function

Uα(x) = exp{|x|α} − 1, 1 ≤ α ≤ 2.

In this case

U (−1)
α (t) = (ln(t+ 1))

1
α , U (−1)

α (1) = (ln 2)
1
α ,

GUα(t) = exp
{
(ln t)

2
α

}
.

EXAMPLE 1.10.– The conditions of theorem 1.5 hold for C-function

Uα(x) =

{(
eα
2

) 2
αx2, |x| ≤

(
2
α

) 1
α ,

exp{|x|α}, |x| >
(
2
α

) 1
α ,

where 0 < α < 1. In such a case, U (−1)(1) =
(

2
eα

) 1
α .
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Consider a random series [1.62]

S(t) =
∞∑
k=1

ξkfk(t),

where ξ = {ξk, k = 1, 2, . . .} is a family of strictly sub-Gaussian random variables.

The following theorem gives convergence rate estimates of the series [1.62] in the

norm of space LU (Ω).

THEOREM 1.6.– Let a C-function U(x) satisfy all conditions of theorem 1.5. Assume

that the condition [1.63] also holds true. Then for

x ≥ μ̂(T )σn(2 + (U (−1)(1))−2)
1
2 , [1.75]

where

σ2
n = sup

t∈T

∞∑
k=n

∞∑
l=n

Eξkξlfk(t)fl(t),

the inequality

P
{
‖S∞

n (t)‖LU
> x
}

≤ exp
{1
2

}xU (−1)(1)

μ̂(T )σn
exp

{
−x2(U (−1)(1))2

2(μ̂(T ))2σ2
n

}
[1.76]

holds.

REMARK 1.9.– If ξk are uncorrelated, then

σ2
n = sup

t∈T

∞∑
k=n

Eξ2kf
2
k (t).

And if S(t) is a stationary process, then σ2
n =

∞∑
k=n

b2k. Here, remark 1.6 can be

applied.

1.6. Convergence rate estimates of strictly sub-Gaussian random series
in Orlicz spaces

In this section, the estimates for the norm distribution in Orlicz space of residuals

of strictly sub-Gaussian random series from classes DU (c) are found. Examples of

such series will be considered later. In contrast to previous sections, here the Orlicz

spaces are considered that are generated by C-functions, which grow faster than the
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function U2(x) = exp{x2} − 1. Note that in some cases, even when generated C-

functions grow not faster than U2(x), and also for Lp(T ) these estimates can be better

than estimates discussed in previous section.

Let (T,A, μ) be some measurable space, LU (T ), is the Orlicz space that

generated C-function U = {U(x), x ∈ R}.

DEFINITION 1.10.– Assume that f = {fk(t), t ∈ T , k = 1, 2, . . .} is the family
from the space LU (T ). This family belongs to the class DU (c), if there exists such
numerical sequence c = {ck, k = 1, 2, . . .}, 0 ≤ ck ≤ ck+1, that for any sequence
r = {rk, k = 1, 2, . . .} the inequality∥∥∥∥ n∑

k=1

rkfk(t)

∥∥∥∥
LU

≤ cn

∥∥∥∥ n∑
k=1

rkfk(t)

∥∥∥∥
L2

[1.77]

holds true.

REMARK 1.10.– In definition 1.10, the sequence c = {ck, k = 1, 2, . . .} is the same

for any sequence r. It means that c depends only on f and U.

Consider random series (process)

S(t) =

∞∑
k=1

ξkfk(t), [1.78]

where ξ = {ξk, k = 1, 2, . . .} is a family of strictly sub-Gaussian random variables.

Suppose that f = {fk(t), t ∈ T , k = 1, 2, . . .} is the family of functions from the

space LU (T ) that belong to the class DU (c). Assume that the condition [1.52] is also

satisfied. Hence, the series [1.78] converges in mean square. Denote for 1 ≤ m ≤ n ≤
∞

Sn
m(t) =

n∑
j=m

ξjfj(t).

Assume that a = {ak, k = 1, 2, . . .} is some sequence such that 0 ≤ ak ≤ ak+1,

ak → ∞ at k → ∞. For 1 ≤ n ≤ m, we denote

Sn
m(a, t) =

n∑
j=m

ajξjfj(t).
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It is easy to check that the equity∫
T

(
Sk
m(a, t)

)2

dμ(t) =
k∑

j=m

k∑
i=m

ajaiξiξj

∫
T

fi(t)fj(t) dμ(t)

= �ξ T
mkAmk(f)�ξmk [1.79]

holds true, where m ≤ k, �ξ T
mk = (ξm, ξm+1, . . . , ξk),

Amk(f) = ‖aij(f)‖ki,j=m, aij(f) = aiaj

∫
T

fi(t)fj(t) dμ(t).

Let

Bmk = Cov�ξmk =
∥∥Eξiξj

∥∥k
i,j=m

.

Define

Jl(m, k, a) =

(
Sp(BmkAmk(f))

l

) 1
l

.

LEMMA 1.17.– Suppose that the sequence a = {ak, k = 1, 2, . . .} is such that

ak ≤ ak+1 for any 0 ≤ s < 1, N = 1, 2, . . . and m ≤ n. Then, the inequality

E exp

{(s∥∥Sn
m(t)

∥∥
LU

)2

2(BN (m,n, a))2

}
≤ exp

{
AN (m,n, a, s)

2BN (m,n, a)
+ ωN (s)

}
[1.80]

is satisfied, where

AN (m,n, a, s) =

n∑
k=m

bkn(JN (m, k, a))
1
2

N−1∑
l=1

(sJl(m, k, a))l

lJ l
N (m, k, a)

,

as N > 1 and A1(m,n, a, s) = 0,

BN (m,n, a) =
n∑

k=m

bkn(JN (m, k, a))
1
2 ,

bkn = ckdkn, dkn = (a−1
k − a−1

k+1), k = m,m+ 1, . . . , n− 1, dnn = a−1
n , ωN (s) is

defined in [2.25].
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PROOF.– The equity (Abel transform) is carried out

Sn
m(t) =

n−1∑
k=m

(a−1
k − a−1

k+1)S
k
m(a, t) + a−1

n Sn
m(a, t)

=

n∑
k=m

dknS
k
m(a, t). [1.81]

From [1.81] and definition 1.10 follows inequality

‖Sn
m(t)‖LU

≤
n∑

k=m

dkn‖Sk
m(a, t)‖LU

≤
n∑

k=m

dknck‖Sk
m(a, t)‖L2 [1.82]

=

n∑
k=m

bkn‖Sk
m(a, t)‖L2 .

Let δk > 0, k = m,m + 1, . . . , n be such numbers that
n∑

k=m

δk = 1. Suppose

Wm,n is an arbitrary number. A convexity of the function y = x2 and the Hölder

inequality imply the relationships:

Inm = E exp

{(∑n
k=m bkn‖Sk

m(a, t)‖L2

Wm,n

)2}

= E exp

{( n∑
k=m

δkbkn‖Sk
m(a, t)‖L2

δkWm,n

)2}
[1.83]

≤ E exp

{ n∑
k=m

δk

(
bkn‖Sk

m(a, t)‖L2

δkWm,n

)2}

≤
n∏

k=m

(
E exp

{
b2kn‖Sk

m(a, t)‖2L2

δ2kW
2
m,n

})δk

.

Denote

δk =

√
2bkn((JN (m, k, a))

1
2

√
sWm,n

,

Wm,n =

√
2

s

n∑
k=m

bkn((JN (m, k, a))
1
2 .
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Then, [1.79] and corollary 1.3 as N > 1 yield inequality:

E exp

{
b2kn‖Sk

m(a, t)‖2L2

δ2kW
2
m,n

}
= E exp

{
s‖Sk

m(a, t)‖2L2

2JN (m, k, a)

}
[1.84]

≤ exp

{
1

2

N−1∑
l=1

(sJl(m, k, a))l

lJ l
N (m, k, a)

+ ωN (s)

}
.

It follows from [1.82]–[1.84] that

E exp

{
s‖Sn

m(t)‖2LU

2

(∑n
k=m bkn(JN (m, k, a))

1
2

)2

}

≤ Inm ≤ exp

{
1

2

n∑
k=m

N−1∑
l=1

(sJl(m, k, a))l

lJ l
N (m, k, a)

δk + ωN (s)

}
.

If now in above inequality we substitute the value δk, then inequality [1.80] is

obtained.The proof will be the same when N = 1. �

LEMMA 1.18.– Suppose that the assumptions of lemma 1.17 are satisfied, then for

any x > 0, 0 ≤ s < 1

P
{
‖Sn

m(t)‖LU
> x
}

[1.85]

≤ exp

{
− sx2

2(BN (m,n, a))2

}
exp

{
AN (m,n, a, s)

2BN (m,n, a)
+ ωN (s)

}
.

PROOF.– From the Chebyshev–Markov inequality follows

P
{
‖Sn

m(t)‖LU
> x
}

= P

{
s‖Sn

m(t)‖2LU

2(BN (m, k, a))2
>

sx2

2(BN (m, k, a))2

}
≤ exp

{
− sx2

2(BN (m, k, a))2

}
·E exp

{
s‖Sn

m(t)‖2LU

2(BN (m,n, a))2

}
.

The above inequality and [1.80] yield inequality [1.85]. �

THEOREM 1.7.– Suggest that the assumptions of lemma 1.17 are satisfied. Assume

that for some sequence a = {ak, k = 1, 2, . . .}, such that ak < ak+1, ak → ∞ as

k → ∞, for some integer N ≥ 1, all 0 ≤ s < 1 the conditions

BN (m,n, a) → 0 as m,n → ∞, [1.86]
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AN (m,n, a, s) → 0 as m,n → ∞ [1.87]

hold, where BN (m,n, a), AN (m,n, a, s) are defined in [1.80]. Then, a stochastic

process

S(t) = S∞
1 (t) =

∞∑
k=1

ξkfk(t)

almost surely belongs to the space LU (Ω). If in this case, there exists a limit

BN (m, a) = lim
n→∞BN (m,n, a) < ∞,

AN (m, a, s) = lim sup
n→∞

AN (m,n, a, s) < ∞,

then for any x > 0, 0 ≤ s < 1 and m = 1, 2, . . . the inequality

P
{
‖S∞

m (t)‖LU
> x
}

[1.88]

≤ exp

{
− sx2

2(BN (m, a))2

}
· exp

{
AN (m, a, s)

2BN (m, a)
+ ωN (s)

}
holds, where ωN (s) is defined in [2.25].

PROOF.– It follows from [1.85] that for all x > 0, 0 ≤ s < 1,

P
{
‖Sn

m(t)‖LU > x
}

≤ exp

{
−sx2 −AN (m,n, a, s)BN (m,n, a)

2(BN (m,n, a))2

}
· exp

{
ωN (s)

}
.

Hence, [1.86] and [1.87] imply that for any x > 0

P
{
‖Sn

m(t)‖LU > x
}
→ 0 as m,n → ∞,

it means that

‖Sn
m(t)‖LU

→ 0 as m,n → ∞ in probability.

Then, there exists a sequence mk < nk, k = 1, 2, . . ., such that

‖Snk
mk

(t)‖LU
→ 0 as mk → ∞ almost surely.

That is S(t) almost surely belongs to the space LU (Ω). Since S∞
m (t) = S(t) −

Sm−1
1 (t) almost surely also belongs to LU (Ω), then it is easy to show that

‖S∞
m (t)− Sn

m(t)‖LU
→ 0 as n → ∞ in probability. [1.89]



40 Simulation of Stochastic Processes with Given Accuracy and Reliability

Therefore, for arbitrary x > 0

P
{
‖Sn

m(t)‖LU
> x
}
→ P

{
‖S∞

m (t)‖LU
> x
}

as n → ∞.

From [1.89], inequality [1.85] and the conditions of the theorem follows inequality

[1.88]. �

REMARK 1.11.– As N = 1 A1(m,n, a, s) = 0, that is why to obtain theorem 1.7 it

is sufficient to satisfy the condition

B1(m,n, a) → 0 at m,n → ∞.

As N > 1 (see remark 1.3) from [1.87] follows [1.86].

REMARK 1.12.– It is easy to show (see remark 1.4) that under large enough x
inequality [1.88] the better the larger N. But to apply this inequality under large N is

too complicated, because of cumbrous calculation. It can be minimized with respect

to s right-hand side of [1.88] as either N = 1 or N = 2 and obtain quite precise

simple inequalities.

COROLLARY 1.11.– Suppose that the conditions of lemma 1.17 hold. If for some

sequence a = {ak, k = 1, 2, . . .}, such that ak < ak+1, ak → ∞ as k → ∞, for any

m = 1, 2, . . . there exists a limit

B1(m, a) = lim
n→∞

n∑
k=m

bkn(J1(m, k, a))
1
2 [1.90]

and the condition [1.86] as N = 1 is satisfied, then stochastic process S(t) almost

surely belongs to Orlicz space LU (Ω). In this case for arbitrary x ≥ B1(m, a), the

inequality

P
{
‖S∞

m (t)‖LU > x
}

≤ exp
{1
2

} x

B1(m, a)
exp

{
− x2

2(B1(m, a))2

}
[1.91]

holds.

PROOF.– The condition [1.87] of theorem 1.7 holds because of A1(m,n, a, s) = 0.
That is why the assertion of the corollary about S(t) almost surely belonging to the

space LU (Ω) is carried out. Inequality [1.88] in this case has a view (see example 1.5)

P
{
‖S∞

m (t)‖LU
> x
}
≤ 1√

1− s
exp

{
− sx2

2(B1(m, a))2

}
. [1.92]

Minimizing [1.92] with respect to 0 ≤ s < 1, i.e. setting s = 1 − (B1(m,a))2

x2 , we

obtain inequality [1.91] as x ≥ B1(m, a). �
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COROLLARY 1.12.– Let the assumptions of lemma 1.17 hold true. If for some

sequence a = {ak, k = 1, 2, . . .}, such that ak < ak+1, ak → ∞ as k → ∞, and for

any m = 1, 2, . . . there exist the limits

B2(m, a) = lim
n→∞

n∑
k=m

bkn(J2(m, k, a))
1
2 < ∞,

C2(m, a) = lim sup
n→∞

n∑
k=m

bkn
J1(m, k, a)

(J2(m, k, a))
1
2

< ∞ [1.93]

and

n∑
k=m

bkn
J1(m, k, a)

(J2(m, k, a))
1
2

→ 0 at m,n → ∞ [1.94]

holds, then stochastic process S(t) almost surely belongs to Orlicz space LU (Ω). And

for any x ≥ (B2(m, a) · C2(m, a))
1
2 , the inequality

P
{
‖S∞

m (t)‖LU
> x
}

≤ (x2 − C2(m, a)B2(m, a) + (B2(m, a))2)
1
2

B2(m, a)
[1.95]

× exp

{
− x2

2(B2(m, a))2
+

C2(m, a)

2B2(m, a)

}
holds true.

PROOF.– Corollary 1.12 follows from theorem 1.7 if we consider N = 2. Really, we

can easily show that

B2(m,n, a) =
n∑

k=m

bkn(J2(m, k, a))
1
2 ,

A2(m,n, a) = s
n∑

k=m

bkn
J1(m, k, a)

(J2(m, k, a))
1
2

.

That is why [1.94] yields [1.86] and [1.87] as N = 2 (see remark 1.3). Therefore,

S(t) almost surely belongs to LU (Ω). In this case, inequality [1.88] for arbitrary x >
0, 0 ≤ s < 1 and m = 1, 2, . . . has the following representation:

P
{
‖S∞

m (t)‖LU
> x
}

≤ 1√
1− s

exp
{
−s

2

}
exp

{
− sx2

2(B2(m, a))2

}
exp

{
sC2(m, a)

2B2(m, a)

}
.
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Minimizing right-hand side of last inequality with respect to 0 ≤ s < 1, i.e. setting

s = 1−
(
x2 − C2(m, a)B2(m, a) +B2

2(m, a)

B2
2(m, a)

)−1

,

as x2 ≥ C2(m, a)B2(m, a), inequality [1.95] is obtained. �

1.7. Strictly sub-Gaussian random series with uncorrelated or
orthogonal items

In this section, the results of the previous section are applied to the series with

uncorrelated or orthogonal items.

Consider stochastic series [1.78]

S(t) =

∞∑
k=1

ξkfk(t),

where f = {fk(t), t ∈ T , k = 1, 2, . . .} is a family of functions from the space

LU (T ) that belongs to DU (c), and ξ = {ξk, k = 1, 2, . . .} is a family of strictly

sub-Gaussian random variables.

This section deals with convergence rate of the series [1.78] if either random

variables ξk are uncorrelated or the functions fk(t) are orthogonal. In this case, the

estimates of previous section are essentially simplified.

THEOREM 1.8.– Consider random series (process) [1.78]. Suppose that the

assumptions of lemma 1.17 are satisfied, random variables

ξ = {ξk, k = 1, 2, . . .} are uncorrelated or the functions f = {fk(t), t ∈ T ,

k = 1, 2, . . .} are orthogonal(∫
T

fk(t)fl(t) dμ(t) = 0, k �= l

)
;

Eξ2k = σ2
k > 0,

∫
T

|fk(t)|2 dμ(t) = b2k > 0.

If there exists such sequence a = {ak, k = 1, 2, . . .} that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞, and

∞∑
k=1

ck(a
−1
k − a−1

k+1)

( k∑
j=1

σ2
j b

2
ja

2
j

) 1
2

< ∞, [1.96]
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then stochastic process S(t) almost surely belongs to the space LU (Ω) and for any

x > B̃1(m, a) the inequality

P
{
‖S∞

m (t)‖LU
> x
}

[1.97]

≤ exp
{1
2

} x

B̃1(m, a)
exp

{
− x2

2(B̃1(m, a))2

}
holds, where

B̃1(m, a) =
∞∑

k=m

ck(a
−1
k − a−1

k+1)

( k∑
j=m

σ2
j b

2
ja

2
j

) 1
2

.

PROOF.– The assertion of theorem follows from corollary 1.11. Really, it is easy to

check that under conditions of the theorem

J1(m, k, a) =
k∑

j=m

σ2
j b

2
ja

2
j .

That is why the equality

B1(m,n, a) [1.98]

=
n−1∑
k=m

ck(a
−1
k − a−1

k+1)

( k∑
j=m

σ2
j b

2
ja

2
j

) 1
2

+
cn
an

( n∑
j=m

σ2
j b

2
ja

2
j

) 1
2

holds. The condition [1.96] implies that

n−1∑
k=m

ck(a
−1
k − a−1

k+1)

( k∑
j=m

σ2
j b

2
ja

2
j

) 1
2

≤
n−1∑
k=m

ck(a
−1
k − a−1

k+1)

( k∑
j=1

σ2
j b

2
ja

2
j

) 1
2

→ 0 [1.99]

as m,n → ∞. Similarly, the next relationships follow:

cn
an

( n∑
j=m

σ2
j b

2
ja

2
j

) 1
2

≤ cn
an

( n∑
j=1

σ2
j b

2
ja

2
j

) 1
2

=
∞∑

k=n

(a−1
k − a−1

k+1)cn

( n∑
j=1

σ2
j b

2
ja

2
j

) 1
2

[1.100]

≤
∞∑

k=n

(a−1
k − a−1

k+1)ck

( n∑
j=1

σ2
j b

2
ja

2
j

) 1
2

→ 0
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as n → ∞. Hence, [1.98]–[1.100] yield that B1(m,n, a) → 0 as n,m → ∞, it

means that the condition [1.86] holds. It is clear that the condition [1.90] also holds

true, that is

B1(m, a) = lim
n→∞

n∑
k=m

bkn

( k∑
j=m

σ2
j b

2
ja

2
j

) 1
2

=
∞∑

k=m

ck(a
−1
k − a−1

k+1)

( k∑
j=m

σ2
j b

2
ja

2
j

) 1
2

= B̃1(m, a).

Inequality [1.97] follows from [1.91]. �

COROLLARY 1.13.– Consider random series [1.78] (process). Assume that either

random variables ξ = {ξk, k = 1, 2, . . .} are uncorrelated or the functions f =
{fk(t), t ∈ T , k = 1, 2, . . .} are orthogonal, Eξ2k = σ2

k > 0,
∫
T
|fk(t)|2 dμ(t) =

b2k > 0. Let the conditions

∞∑
k=1

σ2
kb

2
k < ∞, [1.101]

∞∑
k=1

ck
σ2
kb

2
k(∑∞

s=k σ
2
sb

2
s

) 1
2

< ∞ [1.102]

be satisfied. Then, stochastic process S(t) almost surely belongs to the space LU (Ω)
and for any x > B̌1(m) the inequality

P
{
‖S∞

m (t)‖LU > x
}

≤ exp
{1
2

} x

B̌1(m)
exp

{
− x2

2(B̌1(m))2

}
[1.103]

holds, where

B̌1(m) =

∞∑
k=m

ckσ
2
kb

2
k

[
2

( ∞∑
s=k

σ2
sb

2
s

)−1

−
( ∞∑

s=m

σ2
sb

2
s

)−1] 1
2

.

PROOF.– Show that the corollary follows from theorem 1.8. Choose in [1.96] the

sequence ak as:

ak =

( ∞∑
s=k

σ2
sb

2
s

)−1

.
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Estimate now B̃1(m, a) from [1.97] under chosen sequence a. It is easy to see that

the following relationships hold true:

k∑
j=m

σ2
j b

2
ja

2
j

=
k∑

j=m

σ2
j b

2
j(∑∞

s=j σ
2
sb

2
s

)2 =
k−1∑
j=m

σ2
j b

2
j(∑∞

s=j σ
2
sb

2
s

)2 +
σ2
kb

2
k(∑∞

s=k σ
2
sb

2
s

)2
≤

k−1∑
j=m

∑∞
s=j σ

2
sb

2
s −
∑∞

s=j+1 σ
2
sb

2
s(∑∞

s=j σ
2
sb

2
s

)(∑∞
s=j+1 σ

2
sb

2
s

) + ( ∞∑
s=k

σ2
sb

2
s

)−1

[1.104]

=
k−1∑
j=m

(( ∞∑
s=j+1

σ2
sb

2
s

)−1

−
( ∞∑

s=j

σ2
sb

2
s

)−1)
+

( ∞∑
s=k

σ2
sb

2
s

)−1

= 2

( ∞∑
s=k

σ2
sb

2
s

)−1

−
( ∞∑

s=m

σ2
sb

2
s

)−1

.

[1.104] and equality a−1
k − a−1

k+1 = σ2
kb

2
k imply that

B̃1(m, a) ≤ B̌1(m). [1.105]

From [1.105] and [1.102] it follows that B̃1(1, a) < ∞, it means that condition

[1.96] of theorem 1.8 holds. Inequalities [1.97] and [1.105] provide [1.103], since the

function c(x) = x exp
{
−x2

2

}
monotonically decreases as x > 1. �

From theorem 1.8 follows corollary 1.14.

COROLLARY 1.14.– Let the assumptions of corollary 1.13 be satisfied. Instead of

conditions [1.101] and [1.102] the following condition holds true: suppose that for

some sequence a = {ak, k = 1, 2, . . .}, such that 0 ≤ ak ≤ ak+1, ak → ∞ as

k → ∞,

∞∑
k=1

ck(a
−1
k − a−1

k+1) < ∞, [1.106]

∞∑
j=1

σ2
j b

2
ja

2
j < ∞.
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Then stochastic process S(t) almost surely belongs to space LU (Ω) and for any

x > B̌1(m, a) the inequality

P
{
‖S∞

m (t)‖LU > x
}

[1.107]

≤ exp
{1
2

} x

B̌1(m, a)
exp

{
− x2

2(B̌1(m, a))2

}
holds, where

B̌1(m, a) =

( ∞∑
j=m

σ2
j b

2
ja

2
j

) 1
2
( ∞∑

j=m

cj(a
−1
j − a−1

j+1)

)
.

Finding the sequence a = {ak, k = 1, 2, . . .}, which satisfies equation [1.106]

will be useful in the next lemma.

LEMMA 1.19.– Assume that there exists a function c = {c(u), u ≥ 1}, such that

c(k) = ck and c(u) monotonically increases. Suppose that a = {a(u), u ≥ 1} is a

function such that a(u) > 0, a(u) monotonically increases, a(u) → ∞ as u → ∞
and there exists a derivative a′(u). If the following integral converges∫ ∞

1

c(x)a′(x)
a2(x)

dx < ∞, [1.108]

then the condition [1.106] is satisfied for the sequence a = {ak, k = 1, 2, . . .}.

PROOF.– The assertion of the lemma follows from such inequalities:

∞∑
k=1

ck

(
1

ak
− 1

ak+1

)
=

∞∑
k=1

ck

∫ k+1

k

d

(
− 1

a(x)

)

≤
∞∑
k=1

∫ k+1

k

c(x) d

(
− 1

a(x)

)

=

∫ ∞

1

c(x)
a′(x)
a2(x)

dx < ∞.

�

THEOREM 1.9.– Consider random series (process) [1.78]. Let the assumptions of

lemma 1.17 hold. Assume that random variables ξ = {ξk, k = 1, 2, . . .} are

uncorrelated and the functions f = {fk(t), t ∈ T , k = 1, 2, . . .} are orthogonal;

Eξ2k = σ2
k > 0,

∫
T

|fk(t)|2 dμ(t) = b2k > 0.
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If there exists a sequence a = {ak, k = 1, 2, . . .} such that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞, and

∞∑
k=1

ck

(
1

ak
− 1

ak+1

)( k∑
j=1

|σjbjaj |
4
3

) 3
4

< ∞, [1.109]

then stochastic process S(t) almost surely belongs to the space LU (Ω) and for any

x ≥ (B̃2(m, a)C̃2(m, a))
1
2 , the following inequality holds true

P
{
‖S∞

m (t)‖LU > x
}

≤ (x2 − C̃2(m, a)B̃2(m, a) + (B̃2(m, a))2)
1
2

B̃2(m, a)
[1.110]

× exp

{
− x2

2(B̃2(m, a))2
+

C̃2(m, a)

2B̃2(m, a)

}
,

B̃2(m, a) =
∞∑

k=m

ck

(
1

ak
− 1

ak+1

)( k∑
j=m

|σjbjaj |4
) 1

4

,

C̃2(m, a) =
∞∑

k=m

ck

(
1

ak
− 1

ak+1

)( k∑
j=m

|σjbjaj |
4
3

) 3
4

.

PROOF.– The proof of theorem follows from corollary 1.12. Really, it is easy to see

that under conditions of theorem

J1(m, k, a) =

k∑
j=m

σ2
j b

2
ja

2
j , J2(m, k, a) =

( k∑
j=m

σ4
j b

4
ja

4
j

) 1
2

.

The Hölder inequality yields that

n∑
k=m

bkn
J1(m, k, a)

(J2(m, k, a))
1
2

≤
n∑

k=m

bkn

(∑k
j=m |σjbjaj |4

) 1
4
(∑k

j=m |σjbjaj |
4
3

) 3
4

(J2(m, k, a))
1
2

=

n−1∑
k=m

ck

(
1

ak
− 1

ak+1

)( k∑
j=m

|σjbjaj |
4
3

) 3
4

+
cn
an

( k∑
j=m

|σjbjaj |
4
3

) 3
4

.
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From the inequality above and condition [1.109] as in the previous theorem it

follows that [1.94] is satisfied. Inequality [1.95] implies [1.110], because of

B2(m, a) = B̃2(m, a), and from the Hölder inequality it can be obtained that

C2(m, a) ≤ C̃2(m, a). �

COROLLARY 1.15.– Suggest that the assumptions of theorem 1.9 are satisfied. Let

the following conditions instead of [1.109] hold true: for some sequence a = {ak, k =
1, 2, . . .} such that 0 ≤ ak ≤ ak+1, ak → ∞ as k → ∞, [1.101] is satisfied, the next

series converges

∞∑
j=1

|σjbjaj |
4
3 < ∞. [1.111]

Then, stochastic process S(t) almost surely belongs to the space LU (Ω) and for

any x ≥ (B̌2(m, a)Č2(m, a))
1
2 the inequality

P
{
‖S∞

m (t)‖LU
> x
}

≤ (x2 − Č2(m, a)B̌2(m, a) + (B̌2(m, a))2)
1
2

B̌2(m, a)
[1.112]

× exp

{
− x2

2(B̌2(m, a))2
+

Č2(m, a)

2B̌2(m, a)

}
holds, where

B̌2(m, a) =

( ∞∑
j=m

|σjbjaj |4
) 1

4
∞∑

k=m

ck

(
1

ak
− 1

ak+1

)
,

Č2(m, a) =

( ∞∑
j=m

|σjbjaj |
4
3

) 3
4

∞∑
k=m

ck

(
1

ak
− 1

ak+1

)
.

1.8. Uniform convergence estimates of sub-Gaussian random series

In this section, the conditions and the rate of convergence of sub-Gaussian random

series are given.

Let (T, ρ) be separable metric space. U is a σ-algebra of Borelean set on (T, ρ)
and μ(·) is σ-finite measure on (T,U); C(T ) is a space of continuous and bounded

functions on (T, ρ) with norm ‖f(t)‖C = supt∈T |f(t)|.

DEFINITION 1.11.– We will say that the sequence of functions {fk(t), k = 1, 2, . . .}
from C(T ) belongs to the class B, if the following conditions hold true:
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a) there exists a continuous function c(t), such that |c(t)| < 1 and∫
T

|c(t)| dμ(t) < ∞,

furthermore, for any ε > 0 there exists a compact Kε ⊂ T that outside of this compact
inequality |c(t)| < ε holds.

b) there exist continuous functions qn(δ) ≥ 0, δ ∈ R, n = 1, 2, . . ., such that for
each n and δ1 < δ2 we have qn(δ1) ≤ qn(δ2), qn(δ) → 0, as δ → 0, qn(δ) → ∞,
n → ∞, as δ > 0, qn1(δ) < qn2(δ) as n1 < n2, δ > 0.

c) For any sequence of numbers {bn, n = 1, 2, . . .} for all t, s ∈ T and all n, the
inequality∣∣∣∣c(t) n∑

k=1

bkfk(t)− c(s)
n∑

k=1

bkfk(s)

∣∣∣∣
≤
∥∥∥∥c(t) n∑

k=1

bkfk(t)

∥∥∥∥
C

qn(ρ(t, s))

is satisfied.

REMARK 1.13.– In definition 1.11, sequence qn(δ) and function c(t) are the same

for any sequence {bk, k = 1, 2, . . .}.

LEMMA 1.20.– Assume that f = {fk(t), k = 1, 2, . . .} is a sequence from class B,

and Rn(t) =
n∑

k=1

bkfk(t). Then, for arbitrary 0 < θ < 1 there exists a set A(θ, {bk})
such that μ(A(θ, {bk})) ≥ δn(θ), where

δn(θ) = inf
t∈T

μ
(
s : ρ(t, s) < q(−1)

n (θ)
)
,

(q
(−1)
n (θ) is inverse function of qn(θ)) and for x ∈ A(θ, {bk}) inequality

|c(t)Rn(t)| ≥ (1− θ)‖c(t)Rn(t)‖C [1.113]

holds.

PROOF.– It follows from the properties of c(t) and fk(t) that there exists a point

t0 such that |c(t0)Rn(t0)| = ‖c(t)Rn(t)‖C . To clarify uncertainty, we suggest that

c(t0)Rn(t0) > 0. Then

c(t0)Rn(t0)− c(t)Rn(t) ≤ c(t0)Rn(t0)qn(ρ(t, t0)).
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Let A(θ, {bk}) be a set of points t such that ρ(t, t0) < q
(−1)
n (θ). Then, for t ∈

A(θ, {bk}) the inequality

c(t0)Rn(t0)− c(t)Rn(t) ≤ c(t0)Rn(t0)θ

holds. It means that for t ∈ A(θ, {bk}) [1.113] carries out and μ(A(θ, {bk})) ≥ δn(θ).
�

DEFINITION 1.12.– The measure μ(·) in definition 1.11 is called admissible if the
function δn(θ) has a property δn(θ) → 0 as n → ∞, θ > 0, and for any n δn(θ) → 0
as θ → 0.

REMARK 1.14.– It is clear that the function δn(θ) has such properties: for any n
δn(θ1) < δn(θ2) as θ1 < θ2 and for any θ δn1(θ) < δn2(θ) as n1 > n2.

Consider some examples of sequences from the class B with admissible measure

μ.

EXAMPLE 1.11.– Let T = [−b, b], b > 0, ρ(t, s) = |t − s|, and μ(·) is Lebesgue

measure,

fn(x) =

n∑
k=−n

(
ak cos

πkx

b
+ ck sin

πkx

b

)
is a trigonometric polynom. The sequence of function fn(x) belongs to class B.

Furthermore, c(t) ≡ 1, qn(δ) = πn
b δ, δn(θ) = b

πnθ. Really, since

Rn(x) =
n∑

k=1

bkfk(x) is trigonometric polynomial, then from the Taylor formulas

and the Bernstein inequality (see [BUL 00]) follows the inequality

|Rn(x)−Rn(y)| = |R′
n(x)(x− y)| ≤ nπ

b
‖Rn(x)‖C |x− y|.

Hence, qn(δ) =
nπ
b δ, q

(−1)
n (δ) = b

nπ δ and δn(θ) =
b
nπ θ.

DEFINITION 1.13.– A function of complex value z f(z) is called an integer function
of exponential type if for any complex z the following inequality holds true

|f(z)| ≤ A exp{B|z|}, [1.114]

where the numbers A > 0 and B > 0 do not depend on z. The type of the function is
defined by the formula

u = lim
|z|→∞

ln |f(z)|
|z| . [1.115]
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EXAMPLE 1.12.– Let T = R, ρ(t, s) = |t − s|, μ(·) is the Lebesgue measure,

fun(z) is a function of exponential type un, bounded on real axis un < un+1, n =
1, 2, · · · (Definition 1.13). A sequence of functions fun(x), n = 1, 2, · · · , belongs to

the class B, moreover c(t) ≡ 1, qn(δ) = unδ, δn(θ) =
1
un

θ. Really, since a function

Rn(x) =
n∑

k=1

bkfuk
(x) is a function of exponential type un, then from the Taylor

formula and the Bernstein inequality (see [BUL 00]), it follows

|Rn(x)−Rn(y)| = |R′
n(x)(x− y)| ≤ un‖Rn(x)‖C |x− y|.

Hence, qn(δ) = unδ, q
(−1)
n (δ) = δ

un
and δn(θ) =

2
un

θ.

EXAMPLE 1.13.– Let T = [0, b], b > 0, ρ(t, s) = |t− s|, μ(·) is Lebesgue measure,

B(t, s), t, s ∈ [0, b], is continuous symmetric non-negative definite function, xk(t),
k = 1, 2, · · · , are an orthonormal eigenfunctions and λk are corresponding

eigenvalues of integral equation

z(t) = λ

∫ b

0

B(t, s)z(s) ds.

Then, it can be shown that (see, [KOZ 07a]) the sequence of functions xn(t), n =
1, 2, · · · , belongs to the class B with qn(δ) = λn

√
bωB(δ), c(t) ≡ 1, where

ωB(δ) = sup
|u−v|≤δ

(∫ b

0

(
B(u, x)−B(v, x)

)2
dx

) 1
2

.

Therefore, q
(−1)
n (δ) = ω

(−1)
B

(
δ

λn

√
b

)
and δn(θ) = ω

(−1)
B

(
θ

λn

√
b

)
.

Consider now the series

S(t) =

∞∑
k=1

ξkfk(t),

where ξ = {ξk, k = 1, 2, · · · } is a family of sub-Gaussian random variables,

f = {fk, k = 1, 2, · · · } is a sequence of functions from the class B with admissible

measure μ. For 1 ≤ m ≤ n < ∞, denote

Sn
m(t) =

n∑
k=m

fk(t)ξk, Rn
m(t) =

n∑
k=m

bkfk(t)ξk,

Zn
m =

∥∥τ2(Rn
m(t))‖

1
2

C ,

where {bk, k = 1, 2, · · · } is some numerical sequence, τ(Rn
m(t)) is sub-Gaussian

standard of Rn
m(t).
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LEMMA 1.21.– For n = 1, 2, . . ., and θ ∈ (0, 1), such that

(δn(θ))
−1

∫
T

|c(t)| dμ(t) ≥ 1,

for any y > 0, the inequality

E exp{y‖c(t)Rn
m(t)‖C} [1.116]

≤ 2

δn(θ)

∫
T

|c(t)| dμ(t) exp
{

y2

2(1− θ)2
(Zn

m)2
}

holds true.

PROOF.– It follows from lemma 1.20 that with probability 1

δn(θ)
(
exp{y‖c(t)Rn

m(t)‖C} − 1
)

≤
∫
A(θ,{bk})

(
exp{y‖c(t)Rn

m(t)‖C} − 1
)
dμ(t)

≤
∫
A(θ,{bk})

(
exp

{
y

1− θ
|c(t)Rn

m(t)|
}
− 1

)
dμ(t)

≤
∫
T

(
exp

{
y

1− θ
|c(t)Rn

m(t)|
}
− 1

)
dμ(t)

≤
∫
T

|c(t)|
(
exp

{
y

1− θ
|Rn

m(t)|
}
− 1

)
dμ(t).

If we take mathematical expectation from both parts and take into account sub-

Gaussian random variables

E exp{λ|ξ|} ≤ 2 exp

{
λ2τ2(ξ)

2

}
,

we obtain

E exp{y‖c(t)Rn
m(t)‖C}

≤ 1

δn(θ)
E

∫
T

|c(t)|
(
exp

{
y

1− θ
|Rn

m(t)|
}
− 1

)
dμ(t) + 1

≤ 2

δn(θ)

∫
T

|c(t)| dμ(t) exp
{

y2

2(1− θ)2
(Zn

m)2
}

− 1

δn(θ)

∫
T

|c(t)| dμ(t) + 1

≤ 2

δn(θ)

∫
T

|c(t)| dμ(t) exp
{

y2

2(1− θ)2
(Zn

m)2
}
.

�
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LEMMA 1.22.– For arbitrary y > 0, θ ∈ (0, 1) such that

(δm(θ))−1

∫
T

|c(t)| dμ(t) ≥ 1,

and for non-decreasing sequence {bk, k = 1, 2, · · · }, bk > 0, the inequality

E exp{y‖c(t)Sn
m(t)‖C} [1.117]

≤ 2

∫
T

|c(t)| dμ(t) exp
{

y2

2(1− θ)2
(An

m)2 +
y

(1− θ)
Dn

m(θ)

}
,

holds, where

An
m =

n−1∑
k=m

(b−1
k − b−1

k+1)Z
k
m + b−1

n Zn
m,

Dn
m(θ) = 2

1
2

(n−1∑
k=m

(b−1
k − b−1

k+1)Z
k
m| ln δk(θ)|

1
2 +

Zn
m| ln δn(θ)|

1
2

bn

)
.

PROOF.– Consider Abelian transform

Sn
m(t) =

n−1∑
k=m

(b−1
k − b−1

k+1)R
k
m(t) + b−1

n Rn
m(t).

Then

E exp{y‖c(t)Sn
m(t)‖C} ≤ E exp

{ n∑
k=m

ydk‖c(t)Rk
m(t)‖C

}
,

where

dk =

{
b−1
k − b−1

k+1, k = m,n− 1;
b−1
n , k = n.

From [1.116] and the Hölder inequality, for {αk} such that
∑n

k=m α−1
k = 1,

αk > 1, it follows that

E exp{y‖c(t)Sn
m(t)‖C}

≤
n∏

k=m

(
E exp

{
yαkdk‖c(t)Rk

m(t)‖C
}) 1

αk

≤
n∏

k=m

(
2

δk(θ)

∫
T

|c(t)| dμ(t) exp
{
y2α2

kd
2
k(Z

k
m)2

2(1− θ)2

}) 1
αk
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≤ 2

∫
T

|c(t)| dμ(t) exp
{ n∑

k=m

y2αkd
2
k(Z

k
m)2

2(1− θ)2
+

1

αk
| ln δk(θ)|

}
.

Note

H2
k =

y2d2k(Z
k
m)2

2(1− θ)2
,

αk =
(| ln δk(θ)|+ ν)

1
2

Hk
,

where ν > 0 such that
n∑

k=m

α−1
k = 1. Remark that under these conditions

1 =
n∑

k=m

α−1
k =

n∑
k=m

Hk

(| ln δk(θ)|+ ν)
1
2

≤
n∑

k=m

Hk

ν
1
2

,

which means that ν ≤
(∑n

k=m Hk

)2
. Hence,

E exp{y‖c(t)Sn
m(t)‖C}

≤ 2

∫
T

|c(t)| dμ(t)

× exp

{ n∑
k=m

(
(| ln δk(θ)|+ ν)

1
2

Hk
H2

k +
Hk| ln δk(θ)|

(ν + | ln δk(θ)|)
1
2

)}

= 2

∫
T

|c(t)| dμ(t)

× exp

{ n∑
k=m

νHk

(ν + | ln δk(θ)|)
1
2

+ 2
n∑

k=m

Hk| ln δk(θ)|
(ν + | ln δk(θ)|)

1
2

}

≤ 2

∫
T

|c(t)| dμ(t) exp
{( n∑

k=m

Hk

)2

+ 2
n∑

k=m

Hk| ln δk(θ)|
1
2

}
.

�

THEOREM 1.10.– If there exists a sequence {bk, k = 1, 2, · · · }, bk > 0, bk ≤ bk+1,

bk → ∞ as k → ∞, that satisfies conditions: for any m ≥ 1, s ≤ m, 0 < θ < 1

∞∑
k=m

(b−1
k − b−1

k+1)Z
k
s | ln δk(θ)|

1
2 < ∞,

Zn
s | ln δn(θ)|

1
2

bn
→ 0 as n → ∞,
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then ‖c(t)(S(t)− Sn
1 (t))‖C → 0 as n → ∞ in probability and for x ≥ Dm(θ)

1−θ and θ,

such that

(δn(θ))
−1

∫
T

|c(t)| dμ(t) ≥ 1,

we have

P{‖c(t)S∞
m (t)‖C > x} [1.118]

≤ 2

∫
T

|c(t)| dμ(t) exp
{
− 1

2A2
m

(
x− Dm(θ)

1− θ

)2

(1− θ)2
}
,

where

Am =

∞∑
k=m

(b−1
k − b−1

k+1)Z
k
m,

Dm(θ) = 2
1
2

∞∑
k=m

(b−1
k − b−1

k+1)Z
k
m| ln δk(θ)|

1
2 .

PROOF.– By the Chebyshev inequality and lemma 1.117 for all y > 0, the following

relationship is obtained

P{‖c(t)Sn
m(t)‖C > x} ≤ E exp{y‖c(t)Sn

m(t)‖C}
exp{yx}

≤ 2

∫
T

|c(t)| dμ(t) exp
{

y2

2(1− θ)2
(An

m)2 + y
Dn

m(θ)

1− θ
− yx

}
,

where An
m, Dn

m(θ) is defined in [1.117]. For x ≥ Dn
m(θ)
1−θ , we can choose

y =
1

(An
m)2

(
x− Dn

m(θ)

1− θ

)
(1− θ)2.

Then, we have

P{‖c(t)Sn
m(t)‖C > x}

≤ 2

∫
T

|c(t)| dμ(t) exp
{
− 1

2(An
m)2

(
x− Dn

m(θ)

1− θ

)2

(1− θ)2
}

→ 0,

as m → ∞, n → ∞. Since An
m → 0 and Dn

m(θ) → 0 as m,n → ∞, then

‖c(t)Sn
m(t)‖C → 0 as m,n → ∞ in probability, therefore

‖c(t)(S(t)− Sn
1 (t)‖C → 0 in probability as n → ∞. The estimation of convergence

rate is obtained from the above inequality, if the limit is taken as n → ∞. �
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Let r(u) > 0, u > 1, be a monotonically non-decreasing function such that

r(exp{u}) as u > 1 convex, for example, r(u) = uα, α > 0; r(u) = (lnu)α, α > 1.

LEMMA 1.23.– For any y > 0, non-decreasing sequence {bk, k = 1, 2, · · · }, such

that bk > 0, bk → ∞ as k → ∞ and such θ ∈ (0, 1), that δk(θ) < 1 and

1

δm(θ)

∫
T

|c(t)| dμ(t) > 1

the inequality

E exp{y‖c(t)Sn
m(t)‖C}

≤ 2

∫
T

|c(t)| dμ(t)

× exp

{
y2

2(1− θ)2

((n−1∑
k=m

( 1
bk

− 1

bk+1

))
Zk
m +

1

bn
Zn
m

)2}
[1.119]

× r(−1)

(∑n−1
k=m

(
1
bk

− 1
bk+1

)
Zk
mr(δ−1

k (θ)) + b−1
n Zn

mr(δ−1
n (θ))∑n−1

k=m(b−1
k − b−1

k+1)Z
k
m + 1

bn
Zn
m

)
,

holds, where r(−1)(u) in an inverse function of r(u).

PROOF.– Similarly to the proof of lemma 1.22 for any αk > 0, k = m,m+1, . . . , n,

such that
n∑

k=m

α−1
k = 1, and y > 0 we obtain

E exp{y‖c(t)Sn
m(t)‖C} [1.120]

≤ 2

∫
T

|c(t)| dμ(t) exp
{ n∑

k=m

(
y2αkd

2
k(Z

k
m)2

2(1− θ)2
+

1

αk
| ln δk(θ)|

)}
.

Since exp

{ n∑
k=m

α−1
k | ln δk(θ)|

}

= r(−1)

[
r

(
exp

{ n∑
k=m

α−1
k | ln δk(θ)|

})]

≤ r(−1)

( n∑
k=m

α−1
k r{δ−1

k (θ)}
)
,



The Distribution of the Estimates for the Norm of Sub-Gaussian Stochastic Processes 57

then from [1.120] inequality

E exp{y‖c(t)Sn
m(t)‖C}

≤ 2

∫
T

|c(t)| dμ(t) exp
{ n∑

k=m

αkH
2
k

}
r(−1)

( n∑
k=m

α−1
k r(δ−1

k (θ))

)
is obtained,

H2
k =

y2d2k(Z
k
m)2

2(1− θ)2
.

If we put αk = H−1
k

( n∑
k=m

Hk

)
, then the assertion of lemma is proved. �

THEOREM 1.11.– If there exists the sequence {bk, k = 1, 2, · · · }, bk > 0, bk ≤ bk+1,

bk → ∞ as k → ∞, and the next conditions are satisfied: for arbitrary m ≥ 1, s ≤ m,

θ ∈ (0, 1)

∞∑
k=m

(b−1
k − b−1

k+1)Z
k
s r(δ

−1
k (θ)) < ∞,

Zn
s r(δ

−1
n (θ))

bn
→ 0 as n → ∞,

then ‖c(t)(S(t)− Sn
1 (t))‖C → 0 as n → ∞ in probability. As x > 0 and θ such that

δm(θ) < 1 and

1

δm(θ)

∫
T

|c(t)| dμ(t) > 1,

the following inequality is fulfilled

P{‖c(t)S∞
m (t)‖C > x}

≤ 2

∫
T

|c(t)| dμ(t) exp
{
−x2(1− θ)2

2A2
m

}
[1.121]

× r(−1)

(
1

Am

∞∑
k=m

(b−1
k − b−1

k+1)Z
k
mr(δ−1

k (θ))

)
,

Am =

n−1∑
k=m

(b−1
k − b−1

k+1)Z
k
m.

PROOF.– If the conditions of theorem 1.11 are satisfied, then the conditions of

theorem 1.10 also hold true, that is the assertion about the convergence carries out.
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Similarly to the proving of [1.118], the inequality [1.121] follows from [1.119] and

the Chebyshev inequality if we put

y =
x(1− θ)2(∑n
k=m dkZk

m

)2
and take a limit as n → ∞. �

1.9. Convergence estimate of strictly sub-Gaussian random series in
C(T)

In this section, the results of the previous section are improved for strictly sub-

Gaussian stochastic series. Consider now T as Rn or a rectangle on Rn, μ(t) is a

Lebesgue measure.

Let C(T ) be a space of continuous and bounded functions with a norm

‖f(t)‖C = sup
t∈T

|f(t)|.

Consider a series

S(t) =
∞∑
k=1

fk(t)ξk,

where ξ = {ξk, k = 1, 2, . . .} is a family of strictly sub-Gaussian non-correlated

random variables, f = {fk, k = 1, 2, . . .} is a sequence of the functions from class

B and μ(·) is a Lebesgue measure. For function f , there exists constant Q > 0 such

that for all k = 1, 2, . . .

sup
t∈T

|f2
k (t)| ≤ Q2.

Denote for 1 ≤ m ≤ n < ∞

Sn
m(t) =

n∑
k=m

fk(t)ξk, Rn
m(t) =

n∑
k=m

bkfk(t)ξk,

Zn
m =

∥∥τ(Rn
m(t))

∥∥
C
,

where {bk, k = 1, 2, . . .}, bk > 0, is some numeric sequence.
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REMARK 1.15.– For such series, the following estimates hold true

E(Sn
m(t))2 = E

( n∑
k=m

fk(t)ξk

)2

≤ Q2
n∑

k=m

σ2
k,

(Zn
m)2 ≤ Q2

n∑
k=m

b2kσ
2
k, [1.122]

where σ2
k = Eξ2k.

REMARK 1.16.– For simplicity, consider the case when Q = 1. And

1

δk(θ)

∫
T

|c(t)| dt > 1, k = 1, 2, . . . ,

The obtained estimates can be easily rewritten in the case of Q �= 1 that will be

carried out in examples.

THEOREM 1.12.– Let there exist the non-decreasing sequence {bk, k = 1, 2, . . .},

bk > 0, bk → ∞ as k → ∞, and the following condition is fulfilled

∞∑
k=1

(
b−1
k − b−1

k+1

)∣∣ln(δk(θ))∣∣ 12( k∑
s=m

b2sσ
2
s

) 1
2

< ∞. [1.123]

Then, ‖c(t)(S(t) − Sm
1 (t))‖C → 0 in probability as m → ∞ and for any y > 0,

θ ∈ (0, 1), such that

(δm(θ))−1

∫
T

|c(t)| dt ≥ 1,

the inequality

E exp
{
y‖c(t)S∞

m (t)‖C
}

[1.124]

≤ 2

∫
T

|c(t)| dt exp
{

y2

2(1− θ)2
A2

m +
y
√
2

(1− θ)
Dm

}
is obtained, where

Am =
∞∑

k=m

(
b−1
k − b−1

k+1

)( k∑
s=m

b2sσ
2
s

) 1
2

,

Dm =
∞∑

k=m

(
b−1
k − b−1

k+1

)∣∣ln(δk(θ))∣∣ 12( k∑
s=m

b2sσ
2
s

) 1
2

.



60 Simulation of Stochastic Processes with Given Accuracy and Reliability

PROOF.– It is easy to show that the second condition of theorem 1.10 follows from

[1.123]

b−1
n Zn

m

∣∣ln(δk(θ))∣∣ 12
≤ b−1

n

( n∑
s=m

b2sσ
2
s

) 1
2 ∣∣ln(δn(θ))∣∣ 12

≤
( n∑

s=m

b2sσ
2
s

) 1
2

∞∑
k=n

(
b−1
k − b−1

k+1

)∣∣ln(δn(θ))∣∣ 12
≤

∞∑
k=n

( k∑
s=m

b2sσ
2
s

) 1
2 ∣∣ln(δk(θ))∣∣ 12 (b−1

k − b−1
k+1

)
→ 0

as n → ∞. Hence, uniform convergence in probability of the series c(t)S(t) follows

from theorem 1.10. From [1.117] and [1.122] it follows that

E exp
{
y‖c(t)Sn

m(t)‖C
}

≤ 2

∫
T

|c(t)| dt exp
{

y2

2(1− θ)2
(An

m)2 +
y
√
2

(1− θ)
Dn

m

}
,

An
m =

n−1∑
k=m

(
b−1
k − b−1

k+1

)( k∑
s=m

b2sσ
2
s

) 1
2

+ b−1
n

( n∑
s=m

b2sσ
2
s

) 1
2

,

Dn
m =

n−1∑
k=m

(
b−1
k − b−1

k+1

)∣∣ln(δn(θ))∣∣ 12( k∑
s=m

b2sσ
2
s

) 1
2

+ b−1
n

( n∑
s=m

b2sσ
2
s

) 1
2 ∣∣ln(δn(θ))∣∣ 12

Taking a limit as n → ∞, we have [1.124]. �

LEMMA 1.24.– If ξ = {ξk, k = 1, 2, . . .} is a family of strictly sub-Gaussian non-

correlated random variables and for β ∈ (0, 1/2), the condition

∞∑
k=1

∣∣ln(δk(θ))∣∣ 12σ2
k

( ∞∑
s=k

σ2
k

)β−1

< ∞ [1.125]

is satisfied, then the assumption of theorem 1.12 holds and for y ≥ 1, θ ∈ (0, 1) such

that

(δm(θ))−1

∫
T

|c(t)| dt ≥ 1,
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the estimate

E exp

{
y‖c(t)S∞

m (t)‖C
( ∞∑

s=m

σ2
s

)− 1
2
}

≤ 2

∫
T

|c(t)| dt [1.126]

× exp

{
y2

2(1− θ)2
+ y

4β+1
2β+1

(
π√

2(1− θ)2
+

√
2Fβ

1− θ

)
+ y

4β
2β+1

(
π2

4(1− θ)2
+

2Fβ

1− θ

)}
,

where

Fβ =
∞∑

k=m

∣∣ln(δk(θ))∣∣ 12σ2
k

( ∞∑
s=k

σ2
s

)β−1

holds true.

PROOF.– For simplicity in proving we suppose that
∞∑

s=m
σ2
s = 1. As

{bk, k = 1, 2, . . .}, bk > 0, choose the sequence

bk = 1 + y−p

(( ∞∑
s=k

σ2
s

)−1

− 1

)
,

where p > 0 is some number. If for the sequence condition [1.123] is satisfied, then

theorem 1.12 holds true. Let us estimate the right-hand side of [1.124]. From the

Minkowski inequality, we have:( n∑
k=m

b2kσ
2
k

) 1
2

=

( n∑
k=m

(
1 +

1

yp

(( ∞∑
s=k

σ2
s

)−1

− 1

))2

σ2
k

) 1
2

≤
( n∑

k=m

σ2
k

) 1
2

+
1

yp

( n∑
k=m

(( ∞∑
s=k

σ2
s

)−1

− 1

)2

σ2
k

) 1
2

≤ 1 +
1

yp

∣∣∣∣n−1∑
k=m

σ2
k

(( ∞∑
s=k

σ2
s

)−1

− 1

)2

+ σ2
n

(( ∞∑
s=n

σ2
s

)−1

− 1

)2∣∣∣∣ 12

≤ 1 +
1

yp

∣∣∣∣n−1∑
k=m

∫ ∑∞
s=k σ2

s

∑∞
s=k+1 σ2

s

(( ∞∑
s=k

σ2
s

)−1

− 1

)2

dx

+
σ2
n∑∞

s=n σ
2
s

(( ∞∑
s=n

σ2
s

)−1

− 1

)∣∣∣∣ 12
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≤ 1 +
1

yp

∣∣∣∣n−1∑
k=m

∫ ∑∞
s=k σ2

s

∑∞
s=k+1 σ2

s

dx

x2
+

( ∞∑
s=n

σ2
s

)−1

− 1

)∣∣∣∣ 12

≤ 1 +
1

yp

∣∣∣∣n−1∑
k=m

(( ∞∑
s=k+1

σ2
s

)−1

−
( ∞∑

s=k

σ2
s

)−1)
+

(( ∞∑
s=n

σ2
s

)−1

− 1

)∣∣∣∣ 12

≤ 1 +
1

yp

∣∣∣∣( ∞∑
s=n

σ2
s

)−1

−
( ∞∑

s=m

σ2
s

)−1

+

(( ∞∑
s=n

σ2
s

)−1

− 1

)∣∣∣∣ 12

≤ 1 +

√
2

yp

(( ∞∑
s=n

σ2
s

)−1

− 1

) 1
2

.

Then

Am ≤
∞∑

k=m

(
b−1
k − b−1

k+1

)(
1 +

√
2

yp

(( ∞∑
s=k

σ2
s

)−1

− 1

) 1
2
)

=
∞∑

k=m

(
b−1
k − b−1

k+1

)
+

√
2

yp

∞∑
k=m

(( ∞∑
s=k

σ2
s

)−1

− 1

) 1
2

×
[(

1 +
1

yp

(( ∞∑
s=k

σ2
s

)−1

− 1

))−1

−
(
1 +

1

yp

(( ∞∑
s=k+1

σ2
s

)−1

− 1

))−1]
.

Denote

Ek =
1

yp

(( ∞∑
s=k

σ2
s

)−1

− 1

)
,

then from above inequality follows that

Am ≤ 1 +

√
2

y
p
2

∞∑
k=m

(Ek+1 − Ek)E
1
2

k

(1 + Ek)(1 + Ek+1)

≤ 1 +

√
2

y
p
2

∞∑
k=m

∫ Ek+1

Ek

E
1
2

k dx

(1 + Ek)(1 + Ek+1)
.

Since as 0 < a < b∫ b

a

dx

(1 + a)(1 + b)
=

∫ b

a

dx

(1 + x)2
,
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then

Am ≤ 1 +

√
2

y
p
2

∞∑
k=m

∫ Ek+1

Ek

√
x dx

(1 + x)2

≤ 1 +

(
2

yp

) 1
2
∫ ∞

0

√
x dx

(1 + x)2
= 1 +

(
2

yp

) 1
2 π

2
. [1.127]

For Dm, the following inequality holds true

Dm ≤
√
2

yp

∞∑
k=m

(
(1 + Ek)

−1 − (1 + Ek+1)
−1
)

×
(( ∞∑

s=k

σ2
s

)−1

− 1

) 1
2 ∣∣ln(δk(θ))∣∣ 12

+

∞∑
k=m

(
(1 + Ek)

−1 − (1 + Ek+1)
−1
)∣∣ln(δk(θ))∣∣ 12

≤ L1 + L2,

where

L1 =
∞∑

k=m

(
(1 + Ek)

−1 − (1 + Ek+1)
−1
)∣∣ln(δk(θ))∣∣ 12

L2 =

√
2

yp

∞∑
k=m

(
(1 + Ek)

−1 − (1 + Ek+1)
−1
)

×
(( ∞∑

s=k

σ2
s

)−1

− 1

) 1
2 ∣∣ln(δk(θ))∣∣ 12

≤ L1 + L2.

Since β ∈ (0, 1
2 ], then

L1 ≤
∞∑

k=m

∣∣ln(δk(θ))∣∣ 12 Ek+1 − Ek

(1 + Ek)β(1 + Ek+1)

≤
∞∑

k=m

∣∣ln(δk(θ))∣∣ 12
× ypβσ2

k

(∑∞
s=k σ

2
s

)β−1(
yp

∞∑
s=k

σ2
s + 1−

∞∑
s=k

σ2
s

)β(
yp

∞∑
s=k+1

σ2
s + 1−

∞∑
s=k+1

σ2
s

) ,
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Since y ≥ 1, then yp
∑∞

s=k σ
2
s + 1−∑∞

s=k σ
2
s ≥ 1, therefore,

L1 ≤ ypβ
∞∑

k=m

∣∣ln(δk(θ))∣∣ 12σ2
k

( ∞∑
s=k

σ2
s

)β−1

.

Similarly,

L2 ≤
√
2

yp

∞∑
k=m

∣∣ln(δk(θ))∣∣ 12 (Ek+1 − Ek)
(∑∞

s=k σ
2
s

)− 1
2

(1 + Ek)β+1/2(1 + Ek+1)

≤
√
2

yp

∞∑
k=m

∣∣ln(δk(θ))∣∣ 12 yp(1/2+β)σ2
k(∑∞

s=k σ
2
s

)1−β
.

Put p = 2(1 + 2β)−1 and define

Fβ =
∞∑

k=m

∣∣ln(δn(θ))∣∣ 12 σ2
k(∑∞

s=k σ
2
s

)1−β
.

Then

Dm ≤
(
ypβ +

√
2yp(β−1/2)

)
Fβ =

(
y

2β
2β+1 +

√
2y

2β−1
2β+1

)
Fβ . [1.128]

Substituting [1.127] and [1.128] into [1.124], [1.126] is obtained. �

THEOREM 1.13.– Let β ∈ (0, 1/2], θ ∈ (0, 1) and m is large such that

(δm(θ))−1

∫
T

|c(t)| dt ≥ 1,

and condition [1.125] is satisfied, then ‖c(t)(S(t) − Sm
1 (t))‖C → 0 as m → ∞ in

probability and for x ≥ 2 the estimate

P

{
‖c(t)S∞

m (t)‖C > x

( ∞∑
s=m

σ2
s

) 1
2
}

≤ 2

∫
T

|c(t)| dt exp
{
−x2

2
+ 1 +

√
2x

4β+1
2β+1

(
F̄β +

π

2

)
[1.129]

+ 2x
4β

2β+1

(
F̄βqβ(x) + x

1−2β
1+2β

π2

8

)}
hold true, where

F̄β =
∞∑

k=m

∣∣∣∣ln δk(1− (1− 2

x2

) 1
2
)∣∣∣∣ 12σ2

k

( ∞∑
s=k

σ2
s

)β−1

,
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qβ(x) =

{
1, β ∈

[
1
6 ,

1
2

]
,

x
1−6β

2(2β+1) , β ∈
(
0, 1

6

)
.

PROOF.– The convergence follows from lemma 1.24. If for θ ∈ (0, 1) we put

y=x(1 − θ)2, then when x(1 − θ)2 ≥ 1 by the Chebyshev–Markov inequality and

[1.126] we obtain

P

{
‖c(t)S∞

m (t)‖C > x

( ∞∑
s=m

σ2
s

) 1
2
}

≤ 2

∫
T

|c(t)| dt exp
{
−x2(1− θ)2

2

+
√
2x

4β+1
2β+1 (1− θ)

2(4β+1)
2β+1

(
Fβ

1− θ
+

π

2(1− θ)2

)
+ 2x

4β
2β+1 (1− θ)2

4β
2β+1

(
Fβ

1− θ
+

π2

8(1− θ)2

)}
[1.130]

≤ 2

∫
T

|c(t)| dt exp
{
−x2(1− θ)2

2
+
√
2x

4β+1
2β+1

(
Fβ +

π

2

)
+ 2x

4β
2β+1

(
Fβ(1− θ)

6β−1
2β+1 +

π2

8
(1− θ)

2(2β−1)
2β+1

)}
.

For x ≥ 2 set (1−θ)2 = 1−2/x2, therefore x(1−θ)2 = x−2/x ≥ 1. Obviously,

in a case such that (1− θ)2 ≥ 1/x, then

(1− θ)
−2(1−2β)

2β+1 ≤ x
1−2β
2β+1 , [1.131]

(1− θ)
−2(1−6β)
2(1+2β) ≤

{
1, 1− 6β ≤ 0,

x
1−6β

2(1+2β) , 1− 6β > 0.
[1.132]

Substituting θ, [1.131] and [1.132] into [1.130], we obtain [1.129]. �

Let r(u) > 0, u > 1, be such monotonically non-decreasing that as u ≥ 0 the

function r(exp{u}) is convex.

THEOREM 1.14.– Let there exist non-decreasing sequence {bk, k = 1, 2, . . .}, bk >
0, bk → ∞ as k → ∞. Suppose that for all θ ∈ (0, 1) the condition

∞∑
k=1

(b−1
k − b−1

k+1)Z̃
k
1 r(δ

−1
k (θ)) < ∞ [1.133]



66 Simulation of Stochastic Processes with Given Accuracy and Reliability

is satisfied, where

(Z̃k
1 )

2 =
k∑

s=1

b2sσ
2
s .

Then, ‖c(t)(S(t) − Sm
1 (t))‖C → 0 as m → ∞ in probability and for such θ that

δm(θ) < 1 and

(δm(θ))−1

∫
T

|c(t)| dt ≥ 1,

the following estimate

E exp
{
y‖c(t)S∞

m (t)‖C
}

[1.134]

≤ 2

∫
T

|c(t)| dt exp
{

y2

2(1− θ)2
A2

m

}
r−1

(
Dm(r)

Am

)
holds true, where

Am =
∞∑

k=m

(b−1
k − b−1

k+1)

( k∑
s=m

b2sσ
2
s

) 1
2

,

Dm(r) =
∞∑

k=m

(b−1
k − b−1

k+1)r(δ
−1
k (θ))

( k∑
s=m

b2sσ
2
s

) 1
2

.

PROOF.– Remark that

b−1
n r(δ−1

n (θ))

( n∑
s=m

b2sσ
2
s

) 1
2

=
∞∑

k=n

(b−1
k − b−1

k+1)r(δ
−1
n (θ))

( k∑
s=m

b2sσ
2
s

) 1
2

≤
∞∑

k=n

(b−1
k − b−1

k+1)r(δ
−1
k (θ))

( k∑
s=m

b2sσ
2
s

) 1
2

→ 0

as n → ∞, it means that under [1.133] the condition of theorem 1.11 holds true. From

theorem 1.11 follows that ‖c(t)(S(t) − Sm
1 (t))‖C → 0 as m → ∞ in probability. In

the case where n → ∞, relationship [1.119] yields [1.134]. �

LEMMA 1.25.– Let for any θ ∈ (0, 1), β ∈ (0, 1/2] and

∞∑
k=1

r(δ−1
k (θ))σ2

k

( ∞∑
s=k

σ2
s

)β−1

< ∞. [1.135]
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Then, the conditions of theorem 1.14 are satisfied and for y ≥ 1, θ ∈ (0, 1), such

that δm(θ) < 1 and

(δm(θ))−1

∫
T

|c(t)| dt ≥ 1,

the following inequality holds true

E exp

{
y‖c(t)S∞

m (t)‖C
( ∞∑

s=m

σ2
s

)− 1
2
}

≤ 2

∫
T

|c(t)| dt [1.136]

× exp

{
y2

2(1− θ)2

(
1 +

π√
2y2

)2}
r(−1)

(
Gβ(y

4β +
√
2)
)
,

Gβ =

∞∑
k=m

r(δ−1
k (θ))σ2

k

( ∞∑
s=k

σ2
s

)β−1

.

PROOF.– Without loss of generality suppose that
∞∑

k=m

σ2
k = 1. As a sequence

{bk, k = 1, 2, . . .} consider

bk = 1 +
1

y4

(( ∞∑
s=k

σ2
s

)−1

− 1

)
.

As in the proving of lemma 1.24, we obtain

∞∑
k=m

(b−1
k − b−1

k+1)

( k∑
s=m

b2sσ
2
s

) 1
2

≤ 1 +
π√
2y2

,

∞∑
k=m

(b−1
k − b−1

k+1)r(δ
−1
k (θ))

( k∑
s=m

b2sσ
2
s

) 1
2

[1.137]

≤
(
y4β +

√
2y4(β−

1
2 )
)
Gβ < ∞.

Hence, the condition [1.133] is fulfilled, which means that theorem 1.14 holds true.

The estimate [1.136] follows from [1.134], taking into account [1.137] and y4(β−
1
2 ) ≤

1 as y ≥ 1, and inequality

∞∑
k=m

(b−1
k − b−1

k+1)

( k∑
s=m

b2sσ
2
s

) 1
2

≥
k∑

s=m

σ2
s = 1.

�
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THEOREM 1.15.– Let for any θ ∈ (0, 1), such m that δm(θ) < 1 and

(δm(θ))−1

∫
T

|c(t)| dt ≥ 1,

β ∈ (0, 1/2], the condition [1.135] is satisfied. Then

‖c(t)(S(t)− Sn
1 (t))‖C → 0

as n → ∞ in probability and for x ≥ 2, the estimate

P

{
‖c(t)S∞

m (t)‖C > x

( k∑
s=m

σ2
s

) 1
2
}

≤ 2

∫
T

|c(t)| dt [1.138]

× exp

{
−x2

2
+

(
1 +

π√
2

)2}
r(−1)

(
Ḡβ(x

4β +
√
2)
)

holds true, where

Ḡβ =
∞∑

k=m

∣∣∣∣r(δ−1
k

(
1−
(
1− 2

x2

) 1
2
)∣∣∣∣σ2

k

( ∞∑
s=k

σ2
s

)β−1

.

PROOF.– The convergence follows from lemma 1.25. From the Chebyshev–Markov

inequality

P
{
‖c(t)S∞

m (t)‖C > x
}
≤ E exp

{
y‖c(t)S∞

m (t)‖C
}

exp{yx}
and [1.136] follows the estimate [1.138], if for x such that x(1 − θ)2 ≥ 1, put y =
x(1−θ)2, and for x ≥ 2 put (1−θ)2 = 1−2/x2. In this case, x(1−θ)2 = x−2/x ≥ 1.

�

REMARK 1.17.– The obtained results can be carried over the case of the random

series on finite interval. Really, let there exist

inf
|t|≤T

|c(t)| = |c(γ)| > 0.

Then

P
{
sup
|t|≤T

|S∞
m (t)| > x

}
≤ P

{
‖c(t)S∞

m (t)‖C > x|c(γ)|
}
.

EXAMPLE 1.14.– Consider the series, T = R, t ∈ T ,

ζ(t) =
∞∑
k=1

(ξk cos(λkt) + ηk sin(λkt)),
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where {ξk, ηk, k = 1, 2, . . .} are independent strictly sub-Gaussian random variables,

Eξk = Eηk = 0, Eξ2k = Eη2k = σ2
k, k = 1, 2, . . ., 0 < λk ≤ λk+1, λk → ∞,

k → ∞. It follow from example 1.12, the sequence of functions

{c(t) cos(λkt), c(t) sin(λkt)}
belongs to the class B, if

c(t) =

(
sin(εt)

εt

)2

, ε ∈ (0, 1/2).

Therefore, δn(θ) =
2θ

λn+2ε and
∞∫

−∞

(
sin(εt)

εt

)2

dt = π
ε , that is

1

δn(θ)

∫ ∞

−∞
|c(t)| dt = π(λn + 2ε)

2θε
≥ 1.

1.10. The estimate of the norm distribution of Lp-processes

Let X = {X(t), t ∈ T} be a Lp(Ω) -process, p ≥ 1. Denote ρx(t, s) = ‖X(t)−
X(s)‖Lp . Suppose that the following conditions are fulfilled:

A1) The process X is restricted in Lp, i.e.

sup
t∈T

‖X(t)‖Lp < ∞,

A2) A space (T, ρx) is separable and the process X is separable on (T, ρx). Let

ε0 = sup
t∈T

‖X(t)‖Lp .

By N(ε) = Nρx(T, ε) and H(ε) = lnN(ε) denote a metric massiveness and

metric entropy of parametric set T with respect to the pseudometric ρx, respectively.

THEOREM 1.16.– [BUL 00] Let an Lp(Ω)-process X satisfy conditions A1) and

A2). Suppose that
ε0∫
0

N
1
p (ε)dε < ∞, then

(
E

(
sup
t∈T

|X(t)|
)p) 1

p

≤ Bp and for all

x > 0

P

{
sup
t∈T

|X(t)| ≥ x

}
≤

Bp
p

xp
,

where

Bp = inf
t∈T

(E|X(t)|p)
1
p + inf

0<θ<1

1

θ(1− θ)

θγ0∫
0

N
1
p (ε)dε,
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where γ0 = sup
t,s∈T

ρx(t, s) = sup
t,s∈T

‖X(t) −X(s)‖Lp . Since γ0 ≤ 2ε0, then we have

the following.

COROLLARY 1.16.– Assume that Lp(Ω)-process X satisfies conditions A1) and

A2). Suppose that
2ε0∫
0

N
1
p (ε)dε < ∞, then

(
E

(
sup
t∈T

|X(t)|
)p) 1

p

≤ B̃p

and for all x > 0

P

{
sup
t∈T

|X(t)| ≥ x

}
≤

B̃p
p

xp
,

where

B̃p = inf
t∈T

(E|X(t)|p)
1
p + inf

0<θ<1

1

θ(1− θ)

2θε0∫
0

N
1
p (ε)d(ε).



2

Simulation of Stochastic Processes
Presented in the Form of Series

In this chapter, the results of the first chapter are applied to construct the models

of random processes that allow for the representations of either Gaussian or strictly

sub-Gaussian series. In section 2.1, the general principles of modeling techniques are

considered. Section 2.2 is devoted to the models construction of stochastic processes

using their Karhunen–Loéve expansion. The models obtained approximate the

processes with a certain reliability and accuracy in the spaces Lp(T ) and C(T ) and

some Orlicz spaces LU (T ), where T is an interval. All the models considered in

other sections of this chapter also approximate the processes in the same functional

spaces. Section 2.3 deals with the models of stochastic processes applying their

representation in the form of a Fourier series. The disadvantage of these models is

that the items of these models in contrast to all other models are dependent. In

section 2.4, models of stationary processes with a discrete spectrum are discussed. In

section 2.5, the models of stationary random processes that allow for representation

as a series of independent items are investigated. The models of this chapter are

considered in the books of [KOZ 99b] and [KOZ 07a] and papers of

[KOZ 88, ZEL 88, RYA 90, RYA 91] and [TRI 91].

2.1. General approaches for model construction of stochastic processes

Let a stochastic process X = {X(t), t ∈ T} be represented in the form of the

series

X(t) =
∞∑
k=1

ξkfk(t),
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that converges in mean square. We say that XM = {XM (t), t ∈ T} is a model of the

process X if

XM (t) =
M∑
k=1

ξkfk(t). [2.1]

Assume that stochastic process X and all XM , M = 1, 2, . . . belong to some

functional Banach space A(T ) with a norm ‖·‖. Fix two numbers α and δ (0 < α < 1,

δ > 0). Model XM approximates X with reliability 1−α and accuracy δ with respect

to the norm of the space A(T ), if the following inequality holds true

P{‖X(t)−XM (t)‖ > δ} ≤ α. [2.2]

Therefore, for model construction it is necessary to find the number M that given

δ and α inequality [2.2] is satisfied.

Suppose that the next inequality

P{‖X(t)−XM (t)‖ > δ} ≤ WM (δ)

is established, where WM (δ), δ > 0 is a known function that monotonically decreases

with respect to M and δ. If M is such number that WM (δ) ≤ α, then for the model

XM ′ , M ′ ≥ M , inequality [2.2] is fulfilled. Hence, to construct the model XM that

approximates X with given reliability 1−α and accuracy δ with respect to the norm of

the space A(T ), it is enough to find such M (the least is desirable) that the inequality

WM (δ) ≤ α holds true.

If in representation [2.1] ξk, k = 1, . . . ,M are independent strictly sub-Gaussian

random variables with Eξk = 0 and Eξ2k = σ2
k, k = 1, 2, . . . ,M , then the simulation

of ξk, k = 1, . . . ,M provides the construction of M independent strictly

sub-Gaussian random variables with Eηk = 0, Eη2k = 1, k = 1, 2, . . . ,M. Then,

ξk = σkηk, k = 1, 2, . . . ,M , is a required sequence.

If in the expansion of the process X(t) in series random variables ξk are Gaussian

(it means that X(t) is centered Gaussian process), then the simulation approach that

is given above allows to approximate the process X(t) with given accuracy and

reliability. If X(t) is a strictly sub-Gaussian random process and in its representation

in the form of series random variables ξk are independent with known distribution,

then XM (t) approximates X(t) with given accuracy and reliability. If the process

X(t) is strictly sub-Gaussian, but either ξk are dependent or their distribution is

exactly unknown, then there are many processes that can be constructed. The

approach above allows us to construct one of the model of such processes.
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To simulate of such strictly sub-Gaussian random variables as ξk, the following

independent copies of random variables can be used

η =

(
12

n

) 1
2

n∑
i=1

(
αi −

1

2

)
, [2.3]

where αi, i = 1, . . . , n, is a family of uniformly distributed on (0,1) independent

random variables that is obtained by one of the generators of random variables

[ROS 06, OGO 96]. As n → ∞ an item η weakly converges to Gaussian one, as

n < ∞ – it is strictly sub-Gaussian random variable, Eη2 = 1.

2.2. Karhunen–Loéve expansion technique for simulation of stochastic
processes

In this section, the simulation method of stochastic processes is considered that

is based on series expansion of the process by the eigenfunctions of some integral

equations.

Let T = [0, b], b > 0, be an interval in R, X = {X(t), t ∈ T} be continuous in

mean square stochastic process, EX(t) = 0, t ∈ T , B(t, s) = EX(t)X(s),
t, s ∈ T is its correlation function. Clearly, that B(t, s) is nonnegative-definite

function. Since the process X(t) is mean square continuous, then the function

B(t, s) is continuous on T × T.

Consider an integral equation

z(t) = λ

∫
T

B(t, s)z(s) ds. [2.4]

It is a well-known fact (e.g. [TRI 60]) that integral equation [2.4] has the greatest

countable family of eigenvalues. These numbers are non-negative. Let λ2
n be the

eigenvalues and zn(t) be corresponding eigenfunctions of equation [2.4]. Numerate

λ2
n in the increase order 0 < λ1 ≤ . . . ≤ λn ≤ λn+1 ≤ . . . . It is known that

zn(t) are orthogonal functions. That means that for the functions zn(t) the

relationship∫
T

zn(t)zm(t) dt = δnm

holds, where δnm is a Kronecker symbol. Note that the functions zn(t) are continuous

as t ∈ T.
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THEOREM 2.1.– A stochastic process X = {X(t), t ∈ T} can be represented in the

form of series

X(t) =

∞∑
n=1

ξnzn(t). [2.5]

Moreover, the series [2.5] converges in mean square, ξn are uncorrelated random

variables: Eξn = 0, Eξnξm = δnmλ−2
n .

PROOF.– According to Mercer’s theorem [TRI 60], the following representation

holds true

B(t, s) =
∞∑

n=1

zn(t)zn(s)

λ2
n

, [2.6]

where the series in right-hand side of [2.6] converges uniformly in regard to (t, s) on

the set T × T. The statement of theorem follows now from Karhunen theorem (see

[GIK 04]). �

REMARK 2.1.– It follows from the Karhunen–Loéve theorem that if X(t) is Gaussian

stochastic processes, then all ξn in series expansion [2.5] are independent Gaussian

random variables.

2.2.1. Karhunen–Loéve model of strictly sub-Gaussian stochastic
processes

Let in expansion [2.5] ξn be independent strictly sub-Gaussian random variables

such that Eξ2n = λ−2
n . Then, by example 1.7 random process [2.5] is strictly sub-

Gaussian with correlation function B(t, s).

DEFINITION 2.1.– A stochastic process XM = {XM (t), t ∈ T}, where

XM (t) =
M∑
n=1

ξnzn(t)

is called the Karhunen–Loéve model (KL-model) of the process X = {X(t), t ∈ T}.
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2.2.2. Accuracy and reliability of the KL model in L2(T )

THEOREM 2.2.– A stochastic process XM is KL model that approximates the process

X with reliability 1− α, 0 < α < 1 and accuracy δ > 0 in L2(T ), that is

P

{(∫ b

0

(X(t)−XM (t))2 dt

) 1
2

> δ

}
≤ α, [2.7]

if for M the following inequalities are satisfied:

δ2 > Ĵ(M+1)1,

(
δ2 − Ĵ(M+1)1

Ĵ(M+1)2

+ 1

) 1
2

exp

{
−δ2 − Ĵ(M+1)1

2Ĵ(M+1)2

}
≤ α, [2.8]

where

Ĵ(M+1)1 =
∞∑

k=M+1

λ−2
k , Ĵ(M+1)2 =

( ∞∑
k=M+1

λ−4
k

) 1
2

.

PROOF.– Since random variables ξn are independent and the functions zn are

orthogonal, then the statement of the theorem follows from inequality [1.60] of

example 1.8. �

REMARK 2.2.– To obtain more precise estimation, the assertion of corollary 1.8 can

be used.

2.2.3. Accuracy and reliability of the KL model in Lp(T ), p > 0

THEOREM 2.3.– A stochastic process XM is KL model that approximates the process

X with reliability 1− α, 0 < α < 1 and accuracy δ > 0 in Lp(T ), that is

P

{(∫ b

0

|X(t)−XM (t)|p dt
) 1

p

> δ

}
≤ α, [2.9]

if M satisfies inequality

2 exp

{
− δ2

2σ2
M+1b

2
p

}
≤ α, [2.10]

where

σ2
M+1 = sup

t∈[0,b]

∞∑
k=M+1

λ−2
k z2k(t)
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and

p
1
2σM+1b

1
p < δ.

The statement of theorem follows from theorem 1.4 and corollary 1.9.

REMARK 2.3.– If for all t ∈ T the inequalities |zk(t)| ≤ dk hold, then in the

inequalities that define M we can put

σ2
M+1 =

∞∑
k=M+1

λ−2
k d2k.

REMARK 2.4.– In many cases, the value M can be reduced if the results of section 1.7

will be applied. Taking into account that the norms in L2(T ) of the functions zk(t)
can be significantly less than sup0≤t≤b |zk(t)|.

THEOREM 2.4.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞, p > 2. Denote

cnp = 2 inf
N≥1

(
1 + Δ̃

(
2b

N

)
λn

(
b

2

) 1
2
)(

N

2b

) 1
2− 1

p

, [2.11]

where

Δ̃(h) = sup
|z1−z2|≤h

(∫ b

−b

(
B̃(z1, s)− B̃(z2, s)

)2
ds

) 1
2

,

B̃(t, s) is even and 2b-periodic by t, s function, it is convergent to B(t, s) over 0 ≤
t, s ≤ b. If the series

∞∑
k=1

ckp

(
1

ak
− 1

ak+1

)( k∑
j=1

(λ−1
j aj)

4
3

) 3
4

converges, then stochastic process XM is KL model that approximates the process X
with given reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in Lp(T ), if M satisfies

the inequalities

δ > (B̌2(M + 1, a)Č2(M + 1, a))
1
2 , [2.12]

(
δ2 − B̌2(M + 1, a)Č2(M + 1, a) + (B̌2(M + 1, a))2

) 1
2

B̌2(M + 1, a)

× exp

{
− δ2

2(B̌2(M + 1, a))2
+

Č2(M + 1, a)

2B̌2(M + 1, a)

}
≤ α, [2.13]
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where

B̌2(M + 1, a) =

∞∑
k=M+1

ckp

(
1

ak
− 1

ak+1

)( k∑
j=M+1

(λ−1
j aj)

4

) 1
4

,

Č2(M + 1, a) =
∞∑

k=M+1

ckp

(
1

ak
− 1

ak+1

)( k∑
j=M+1

(λ−1
j aj)

4
3

) 3
4

.

The statement of the theorem follows from theorem 1.9 and from the fact that the

family of the functions z = {zk(t), t ∈ T = [0, b], k = 1, 2, . . .} belongs to the class

DU (c) (Definition 1.10), where U(x) = |x|p, cn = cnp is defined in [2.11].

COROLLARY 2.1.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤
ak+1, ak → ∞ as k → ∞, and the series

∞∑
k=1

ckp

(
1

ak
− 1

ak+1

)
< ∞ [2.14]

converges, then stochastic process XM is the process KL model that approximates

X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in Lp(T ), if M satisfies

inequalities [2.12] and [2.13], where B̌2(M + 1, a) and Č2(M + 1, a) are defined as

B̌2(M + 1, a) =

∞∑
k=M+1

ckp

(
1

ak
− 1

ak+1

)( ∞∑
j=M+1

|λ−1
j aj |4

) 1
4

,

Č2(M + 1, a) =
∞∑

k=M+1

ckp

(
1

ak
− 1

ak+1

)( ∞∑
j=M+1

|λ−1
j aj |

4
3

) 3
4

. [2.15]

2.2.4. Accuracy and reliability of the KL model in LU (T )

THEOREM 2.5.– Let U = {U(x), x ∈ R} be a C-function such that the conditions of

theorem 1.5 are satisfied. Then, stochastic process XM is KL model that approximates

the process X with reliability 1−α, 0 < α < 1, and accuracy δ > 0 in LU (T ), that is

P

{
‖X(t)−XM (t)‖LU > δ

}
≤ α, [2.16]

if for M the following inequalities are fulfilled

δ ≥ b̂σM+1(2 + U (−1)(1))−2)
1
2 , [2.17]
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exp

{
1

2

}
δU (−1)(1)

b̂σM+1

exp

{
−δ2

(
U (−1)(1)

)2
2σ2

M+1b̂
2

}
≤ α, [2.18]

where

b̂ = max(b, 1), σ2
M+1 = sup

t∈T

∞∑
k=M+1

λ−2
k f2

k (t)

or if

sup
t∈T

|fk(t)| ≤ dk, òı̂ σ2
M+1 =

∞∑
k=M+1

λ−2
k d2k.

The statement of theorem follows from theorem 1.6 and remark 1.9.

The conditions of the theorem for C-functions from examples 1.9 and 1.10 are

satisfied. But for C-function Uα(x) = exp{|x|α}− 1, where α > 2, the conditions of

theorem 2.5 are not fulfilled.

The following theorem gives a possibility to consider an essentially wider class of

Orlicz spaces. As for the spaces Lp(T ), for spaces LU (Ω), for which the conditions

of theorem 2.5 are satisfied, in some cases the estimates of the following theorem can

be better than the estimates in theorem 2.5.

THEOREM 2.6.– Let a = {ak, k = 1, 2, . . .} be a sequence such that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞. C-function U(x) satisfies the condition: the functions (U(x))
1
2

and U(
√

|x|) are convex. Let

cn(U) = 2 inf
N≥1

(
1 + Δ̃

(
2b

N

)
λn

(
b

2

) 1
2
)

[2.19]

×
(
N

2b

) 1
2
(
U (−1)

(N
2b

))−1

,

where Δ̃(h) is defined in [2.11]. If the series

∞∑
k=1

ck(U)

(
1

ak
− 1

ak+1

)( k∑
j=1

(λ−1
j aj)

4
3

) 3
4

converges, then stochastic process XM is KL model that approximates the process

X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in LU (T ), if M satisfies

inequalities [2.12] and [2.13], where

B̌2(M + 1, a) =
∞∑

k=M+1

ck(U)

(
1

ak
− 1

ak+1

)( k∑
j=M+1

(λ−1
j aj)

4

) 1
4

,
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Č2(M + 1, a) =

∞∑
k=M+1

ck(U)

(
1

ak
− 1

ak+1

)( k∑
j=M+1

(
1

λj
aj

) 4
3
) 3

4

.

The assertion of theorem follows from theorem 1.9 and the fact that the family of

functions z = {zk(t), t ∈ T = [0, b], k = 1, 2, . . .} belongs to the class DU (c), where

cn = cn(U) are given in [2.19].

COROLLARY 2.2.– Let a = {ak, k = 1, 2, . . .} be a sequence such that 0 ≤ ak ≤
ak+1, ak → ∞ as k → ∞, and the series

∞∑
k=1

ck(U)

(
1

ak
− 1

ak+1

)
< ∞ [2.20]

converges, then stochastic process XM is KL model that approximates the process X
with reliability 1− α, 0 < α < 1, and accuracy δ > 0 ó LU (T ), if for M inequalities

[2.12] and [2.13] hold true, where B̌2(M + 1, a) and Č2(M + 1, a) are defined as

B̌2(M + 1, a)

=

∞∑
k=M+1

ck(U)

(
1

ak
− 1

ak+1

)( ∞∑
j=M+1

|λ−1
j aj |4

) 1
4

, [2.21]

Č2(M + 1, a)

=

∞∑
k=M+1

ck(U)

(
1

ak
− 1

ak+1

)( ∞∑
j=M+1

|λ−1
j aj |

4
3

) 3
4

.

2.2.5. Accuracy and reliability of the KL model in C(T)

Following from example 1.13, the sequence zn(t) belongs to the class B with

c(t) ≡ 1, δn(θ) = ω
(−1)
B

(
θ

λn

√
b

)
, T = [0, b],

where

ωB(δ) = sup
|u−v|≤δ

(∫ b

0

(
B(u, x)−B(v, x)

)2
dx

) 1
2

.

Let Q = supk=1,∞ |zk(t)|. Then, from theorem 1.13 follows theorem 2.7.
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THEOREM 2.7.– Stochastic process XM is KL model that approximates the process

X with reliability 1 − α, 0 < α < 1, and accuracy δ > 0 in C(T ), if for some

β ∈
(
0, 1

2

]
the number M satisfies conditions:

δ

QGM+1
> 2, [2.22]

where

GM =

( ∞∑
s=M

σ2
s

) 1
2

.

For θ = 1 −
√

1− 2/x2, where x = δ
QGM+1

, the condition of remark 1.16 is

fulfilled and inequality

2b exp

{
−1

2

(
δ

QGM+1

)2

+ 1 +
√
2

(
δ

QGM+1

) 4β+1
2β+1

(
F̄β +

π

2

)

+ 2

(
δ

QGM+1

) 4β
2β+1

(
F̄βqβ

(
δ

QGM+1

)
[2.23]

+
π2

8

(
δ

QGM+1

) 1−2β
1+2β

)}
≤ α

holds, where

F̄β =

∞∑
k=M+1

∣∣∣∣ln(ω(−1)
B

(
1−
(
1− 2Q2G2

M+1δ
−2
) 1

2

λk

√
b

))∣∣∣∣ 12 σ2
k

G
2(1−β)
k

,

qβ(x) is defined in [1.129].

From theorem 1.15 follows:

THEOREM 2.8.– A stochastic process XM is KL model that approximates the process

X with reliability 1− α, 0 < α < 1 and accuracy δ > 0 in C(T ), that is

P

{
sup
t∈T

|X(t)−XM (t)| > δ

}
≤ α,

if for M the conditions of theorem 2.7 are satisfied, but instead of [2.23] inequality

2b exp

{
−1

2

(
δ

QGM+1

)2

+

(
1 +

π√
2

)2}

× r(−1)

(
Ḡβ

((
δ

QGM+1

)4β

+
√
2

))
≤ α [2.24]
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holds true, where r(u) > 0, u > 1, is any monotonically non-decreasing such

function that for u ≥ 0 the function r(exp{u}) is convex,

Ḡβ =
∞∑

k=M+1

∣∣∣∣r((ω(−1)
B

(
1−
(
1− 2Q2G2

M+1δ
−2
) 1

2

λk

√
b

))−1)∣∣∣∣
× σ2

k

G
2(1−β)
k

,

Gk =

( ∞∑
s=k

σ2
s

) 1
2

.

REMARK 2.5.– In theorem 2.8, a more precise estimation is used than in theorem 2.7.

That is why the value M can be lower if theorem 2.8 is used. But the conditions, under

which theorem 2.8 can be applied, are harder.

EXAMPLE 2.1.– Consider a KL model of Wiener process that approximates it with

accuracy δ in the space C(T ), T = [0, 1]. Let us remind that Wiener process

W (t), t > 0 is a zero-mean Gaussian one with the correlation function

EW (t)W (s) = min{t, s} = B(t, s).

Moreover, the sample path of this process is continuous with probability 1.

Consider now an integral equation

Z(t) = λ

∫ 1

0

B(t, s)Z(s)ds

or substituting the correlation function B(s, t), we have

Z(t) = λ

∫ t

0

sZ(s)ds+ λt

∫ 1

t

Z(s)ds.

It is easy to show (see [GIK 88]) that the eigenvalues of equality above are

λ2
n = π2(n+

1

2
)2

and corresponding eigenfunctions are

ϕn(t) =
√
2 sin(πt(n+

1

2
)).
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Hence, the Kahrunen–Loève expansion of Wiener process has such representation:

W (t) =
√
2

∞∑
n=0

ξn
sin((n+ 1

2 )πt)

(n+ 1
2 )π

,

where ξn, n ≥ 0 are independent Gaussian random variables with mean Eξn = 0 and

variance Eξ2n = 1. The KL model of Wiener process then will be

WN (t) =
√
2

N∑
n=0

ξn
sin((n+ 1

2 )πt)

(n+ 1
2 )π

.

Now we find such N that the KL model WN (t) will approximate Wiener process

W (t) with reliability 1 − α and accuracy δ in the space C([0, 1]). Let us use

theorem 2.8. In our case

b = 1, Q =
√
2, σ2

k = ((k +
1

2
)π)−2

and

G2
k =

∞∑
s=k

σ2
s =

∞∑
s=k

1

((s+ 1
2 )π)

2
≥

∞∑
s=k

1

π2

(
1

s+ 1
2

· 1

s+ 3
2

)

=
∞∑
s=k

1

π2

(
1

s+ 1
2

− 1

s+ 3
2

)
=

1

π2

1

k + 1
2

.

If u > v, then

∫ 1

0

(B(u, x)−B(v, x))
2
dx =

∫ 1

0

(min(u, x)−min(v, x))
2
dx

=

∫ v

0

(x− x)2dx+

∫ u

v

(x− v)2dx+

∫ 1

u

(u− v)2dx

≤
∫ u

0

(u− v)2dx+

∫ 1

u

(u− v)2dx

= (u− v)2u+ (u− v)2(1− u) = (u− v)2.
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It follows from the above relationship that the function ωB(γ) ≤ γ and

ω
(−1)
B (γ) ≥ γ. Set the function r(u) = uw, where w > 0, w > 1 − β and the value

β ∈ (0, 1
2 ] is defined in theorem 2.7. Then

Ḡβ
∼=

∞∑
k=M+1

(
δ2√

2G2
M+1π(k + 1

2 )

)w

× 1

G
2(1−β)
k π2(k + 1

2 )

≤ δ2w

(
√
2)wG2w

M+1π
2+w

∞∑
k=M+1

1

(k + 1
2 )

w+1G
2(1−β)
k

≤ δ2wπ2w(M + 3
2 )

w

(
√
2)wπ2+w

∞∑
k=M+1

(π2(k + 1
2 ))

1−β

(k + 1
2 )

w+1

=
δ2wπw−2β(M + 3

2 )
w

2
w
2

∞∑
k=M+1

1

(k + 1
2 )

w+β
.

Since w > 1− β, then it is easy to show that

∞∑
k=M+1

1

(k + 1
2 )

w+β
≤ 1

w + β − 1

1

(M + 1
2 )

w+β−1
.

Denote

Ḡ∗
β =

δ2wπw−2β(M + 3
2 )

w

2
w
2 (w + β − 1)(M + 1

2 )
w+β−1

. [2.25]

Moreover, inequality [2.24] can be rewritten as

2 exp

{
−1

2

δ2

2
(M +

1

2
)π2 + (1 +

π√
2
)2
}

×
(
Ḡ∗

β

((
δ√
2
π2(M +

3

2
)

)4β

+
√
2

)) 1
w

≤ α,

where G∗
β is defined in [2.25]. Furthermore, if follows from [2.22] that the condition

for 0 < β ≤ 1
2

δπ

√
M +

3

2
> 2

√
2

should be satisfied.

In the case β = 1
2 and w = 1, the values M dependent on accuracy δ and reliability

1− α are found in environment for statistical computing R and are shown in the next

table.
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α = 0.1 α = 0.05 α = 0.01

δ = 0.1 1, 045 1, 076 1, 148

δ = 0.06 2, 965 3, 051 3, 250

δ = 0.01 114, 741 117, 818 124, 935

Table 2.1. The result of simulation of Wiener process

0.0 0.2 0.4 0.6 0.8 1.0

−
0.
4

0.
0

0.
4

t

x

Figure 2.1. The sample path of the model of Wiener process with
accuracy 0.1 and reliability 0.90 in space C([0, 1])

2.3. Fourier expansion technique for simulation of stochastic processes

In this section, the simulation method of sub-Gaussian processes is considered that

is based on Fourier transform of the processes.

Let T = [0, b] be an interval such that R, X = {X(t), t ∈ T} is mean square

continuous stochastic processes, EX(t) = 0, t ∈ T , B(t, s) = EX(t)X(s),
t, s ∈ T is a correlation function of the process. The function B(t, s) is continuous,

therefore, it can be represented in the form of Fourier series, that converges in

L2

(
[0, b]× [0, b]

)
B(t, s) =

∞∑
n=0

∞∑
m=0

amn cos
πmt

b
cos

πns

b
, [2.26]

amn =
4

b2
rmn

∫ b

0

∫ b

0

B(t, s) cos
πmt

b
cos

πns

b
dtds, [2.27]

rmn =

⎧⎨⎩
1
4 , m = n = 0,
1
2 , m > 0, n = 0 or m = 0, n > 0,
1, m > 0, n > 0.
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Since the function B(t, s) is non-negative definite, then amm ≥ 0 for all m, so

(see, for example, [LOE 60]) X can be written in the form of series, that converges in

mean square

X(t) =
∞∑

n=0

ξn cos
πnt

b
, [2.28]

where ξn are random variables such that Eξn = 0, Eξmξn = amn. Note that it is

easy enough to check the equity EX(t)X(s) = B(t, s).

2.3.1. Fourier model of strictly sub-Gaussian stochastic process

In expansion [2.28] let ξ = {ξi, i = 0, 1, 2, . . .} be a strictly independent sub-

Gaussian family of random variables. Then, by example 1.7, X(t) is a strictly sub-

Gaussian stochastic process with correlation function B(t, s).

DEFINITION 2.2.– Stochastic process XM = {XM (t), t ∈ T}, where

XM (t) =

M∑
n=0

ξn cos
πnt

b

is called the Fourier model (F-model) of the process X = {X(t), t ∈ T}.

2.3.2. Accuracy and reliability of the F-model in L2(T )

THEOREM 2.9.– Stochastic process XM is a F-model that approximates the process

X with reliability 1 − α, 0 < α < 1, and accuracy δ > 0 ó L2(T ), if M satisfies

inequalities:

δ > A
1
2

M+1

and

exp

{
1

2

}
δ

A
1
2

M+1

exp

{
− δ2

2AM+1

}
≤ α, [2.29]

where AM+1 =
b

2

∞∑
k=M+1

akk.

PROOF.– Since the functions cos πnt
b , n = 1, 2, . . . are orthogonal, then the statement

of theorem 2.9 follows from corollary 1.7. �

REMARK 2.6.– To obtain more precise estimation, theorem 1.2 can be used.
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2.3.3. Accuracy and reliability of the F-model in Lp(T ), p > 0

THEOREM 2.10.– Stochastic process XM is F-model that approximates the process

X with reliability 1 − α, 0 < α < 1, and accuracy δ > 0 ó Lp(T ), if M satisfies

inequality [2.10], where

σ2
M+1 = sup

t∈T

∞∑
k=M+1

∞∑
l=M+1

akl cos
πkt

b
cos

πlt

b

and inequality

p
1
2σM+1b

1
p < δ.

theorem follows from theorem 1.4.

The following theorem gives the estimates that in some cases can be more precise

than the estimates in theorem 2.10.

THEOREM 2.11.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞, p > 2. Let the series

∞∑
k=1

k
1
2− 1

p

(
1

ak
− 1

ak+1

)( k∑
j=1

ajja
2
j

) 1
2

< ∞ [2.30]

converge. Then stochastic process XM is F-model that approximates the process X
with reliability 1 − α, 0 < α < 1, and accuracy δ > 0 in Lp(T ), if M satisfies

inequalities

δ > B̃1(M + 1, a) [2.31]

exp

{
1

2

}
δ

B̃1(M + 1, a)
exp

{
− δ2

2(B̃1(M + 1, a))2

}
≤ α, [2.32]

where

B̃1(M + 1, a)

=

(
1 +

π

2

)(
b

2

) 1
p

∞∑
k=M+1

k
1
2− 1

p

(
1

ak
− 1

ak+1

)( k∑
j=M+1

ajja
2
j

) 1
2

The statement of theorem follows from theorem 1.8, since the functions cos πnt
b ,

n = 0, 1, 2, . . . are orthogonal,
∫ b

0
cos2 πnt

b dt = b
2 , and the family of this functions

belongs to the class DU (c), where U(x) = |x|p, cn =
(
1 + π

2

)(
2n
b

) 1
2− 1

p .
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COROLLARY 2.3.– If the series

∞∑
k=1

k
1
2− 1

p akk

( ∞∑
s=k

a2ss

)− 1
2

< ∞ [2.33]

converges, then stochastic process XM is F-model that approximates the process X
with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in Lp(T ), if M satisfies

inequalities [2.31] and [2.32], where

B̃1(M + 1, a) = B̃1(M + 1)

=

(
1 +

π

2

)(
b

2

) 1
p

[2.34]

×
∞∑

k=M+1

k
1
2− 1

p akk

[
2

( ∞∑
s=M+1

a2ss

)−1

−
( ∞∑

s=M+1

a2ss

)−1] 1
2

.

The assertion of corollary follows from corollary 1.13 and theorem 2.11.

COROLLARY 2.4.– Let for some sequence a = {ak, k = 1, 2, . . .}, such that 0 ≤
ak ≤ ak+1, ak → ∞ as k → ∞, and

∞∑
k=1

k
1
2− 1

p

(
1

ak
− 1

ak+1

)
< ∞, [2.35]

∞∑
j=1

ajja
2
j < ∞. [2.36]

Then, the statement of theorem 2.11 holds true, if M satisfies inequalities [2.31]

and [2.32], where

B̌1(M + 1, a) =

(
1 +

π

2

)(
b

2

) 1
p

[2.37]

×
∞∑

k=M+1

k
1
2− 1

p

(
1

ak
− 1

ak+1

)( ∞∑
j=M+1

ajja
2
j

) 1
2

.

Corollary 2.4 follows from corollary 1.14 and theorem 2.11.
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REMARK 2.7.– Lemma 1.19 yields that condition [2.35] is satisfied by, for instance,

such sequence: ak = kβ , where β is any number that β > 1
2 − 1

p . In this case,

∞∑
k=M+1

k
1
2− 1

p

(
1

ak
− 1

ak+1

)
≤
∫ ∞

M+1

x
1
2− 1

p d

(
− 1

xβ

)

= β

(
β − 1

2
+

1

p

)−1

(M + 1)
1
2− 1

p−β .

Therefore, to occur the statement of corollary 2.4, we can in inequalities [2.31] and

[2.32] put

B̌1(M + 1, a)

= β

(
1 +

π

2

)(
b

2

) 1
p
(
β − 1

2
+

1

p

)−1

[2.38]

× (M + 1)
1
2− 1

p−β

( ∞∑
j=M+1

ajjk
2β

) 1
2

,

if for some β > 1
2 − 1

p the series
∑∞

j=M+1 ajjk
2β converges.

2.3.4. Accuracy and reliability of the F-model in LU (T )

THEOREM 2.12.– Let U = {U(x), x ∈ R} be the C-function for which the

condition of theorem 1.5 holds true. Then, stochastic process XM is the F-model that

approximates the process X with reliability 1− α, 0 < α < 1, and accuracy δ > 0 ó

LU (T ), if M satisfies inequalities [2.17] and [2.18], where b̌ = max(b, 1),

σ2
M+1 = sup

t∈T

∞∑
k=M+1

∞∑
l=M+1

akl cos
πkt

b
cos

πlt

b
,

or σ2
M+1 =

∞∑
k=M+1

∞∑
l=M+1

|akl|.

The theorem follows from theorem 1.6.

The next theorem gives a possibility to consider an essentially wider class of Orlicz

spaces than theorem 2.12. Moreover, in some cases the estimates of the theorem are

better than ones from theorem 2.12.
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THEOREM 2.13.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞. C-function U(x) satisfies a condition: the function (U(x))
1
2 is

convex. If the series

∞∑
k=1

k
1
2

U (−1)
(

k
2b

)( 1

ak
− 1

ak+1

)( k∑
j=1

ajja
2
j

) 1
2

< ∞ [2.39]

converges, then stochastic process XM is F-model that approximates the process X
with reliability 1 − α, 0 < α < 1, and accuracy δ > 0 in LU (T ), if for M the

inequalities [2.31] and [2.32] hold true, where

B̃1(M + 1, a) [2.40]

=
1 + 2π

2

∞∑
k=M+1

k
1
2

U (−1)
(

k
2b

)( 1

ak
− 1

ak+1

)( k∑
j=M+1

ajja
2
j

) 1
2

,

The statement of the theorem follows from theorem 1.8, since the functions

cos πnt
b , n = 0, 1, 2, . . . are orthogonal and the family of this functions belongs to the

class DU (c). In this case

cn = cn(U) =
(1 + 2π)√

2b

n
1
2

U (−1)
(

n
2b

) .
COROLLARY 2.5.– Let C-function U(x) satisfy condition: the function (U(x))

1
2 is

convex. If the series

∞∑
k=1

k
1
2

U (−1)
(

k
2b

)akk( ∞∑
s=k

a2ss

)− 1
2

< ∞ [2.41]

converges, then the assertion of theorem 2.13 is fulfilled, if for M inequalities [2.31]

and [2.32] hold true, where

B̃1(M + 1, a) = B̃1(M + 1)

=
1 + 2π

2

∞∑
k=M+1

k
1
2

U (−1)
(

k
2b

)akk[2( ∞∑
s=M+1

ass

)−1

[2.42]

−
( ∞∑

s=M+1

ass

)−1] 1
2

.

Corollary follows from corollary 1.13 and theorem 2.13.
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COROLLARY 2.6.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤
ak+1, ak → ∞ as k → ∞, and

∞∑
k=1

k
1
2

U (−1)
(

k
2b

)( 1

ak
− 1

ak+1

)
< ∞. [2.43]

If the series

∞∑
j=1

ajja
2
j < ∞ [2.44]

converges and U(x) is such C-function that the function (U((x))
1
2 is convex, then

the statement of theorem 2.13 holds true, if M satisfies inequalities [2.31] and [2.32],

where

B̌1(M + 1, a)

=
1 + 2π

2

( ∞∑
j=M+1

ajja
2
j

) 1
2

∞∑
k=M+1

k
1
2

U (−1)
(

k
2b

)( 1

ak
− 1

ak+1

)

Corollary follows from corollary 1.14 and theorem 2.13.

2.3.5. Accuracy and reliability of the F-model in C(T )

Denote

Rn
m(t) =

n∑
k=m

bkξk cos
πkt

b
,

where b̄ = {bk, k = 1, 2, . . .} is a certain sequence,

Zn
m = Zn

m(b̄) =
∥∥(E(Rn

m(t))2
) 1

2
∥∥
C

= sup
0≤t≤b

( n∑
k=m

n∑
l=m

aklbkbl cos
πkt

b
cos

πlt

b

) 1
2

.

THEOREM 2.14.– Let b̄ = {bk, k = 1, 2, . . .}, bk > 0, bk ≤ bk+1, bk → ∞ as

k → ∞, be such sequence that the series

∞∑
k=1

(ln k)
1
2

(
1

bk
− 1

bk+1

)
< ∞ [2.45]
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converges. Assume that for any M ≥ 1

sup
n≥M

sup
0≤t≤b

E(Rn
M (t))2 = Z2

M (b̄) < ∞. [2.46]

Then, for all 0 < θ < 1 and x > D̃M+1(θ)
(1−θ) , where

D̃M (θ) =
√
2ZM (b̄)

∞∑
k=M

∣∣∣∣ln πk

bθ

∣∣∣∣ 12( 1

bk
− 1

bk+1

)
, [2.47]

the following inequality

P
{
‖X(t)−XM (t)‖C > x

}
[2.48]

≤ 2b exp

{
− b2M+1

Z2
M+1(b̄)

(x(1− θ)− D̃M+1(θ))
2

}
holds true.

PROOF.– From example 1.11 follows that sequence of functions
{
cos πkt

b

}
, k =

1, 2, . . ., as t ∈ T = [0, b], where μ(·) is a Lebesque measure, belongs to the class B
with c(y) ≡ 1, δn(θ) = bθ

πn . Hence, theorem 1.10 implies the theorem, since in this

case

∞∑
k=m

Zk
s

∣∣ln δk(θ)∣∣ 12( 1

bk
− 1

bk+1

)

≤ Zs(b̄)
∞∑

k=m

∣∣∣∣ln πk

bθ

∣∣∣∣ 12( 1

bk
− 1

bk+1

)
< ∞,

Zn
s

bn

∣∣ln δn(θ)∣∣ 12 ≤ Zs(b̄)

bn

∣∣∣∣ln πn

bθ

∣∣∣∣ 12
≤ Zs(b̄)

∞∑
k=1

∣∣∣∣ln πk

bθ

∣∣∣∣ 12( 1

bk
− 1

bk+1

)
→ 0

as n → ∞. Therefore, in notation of theorem 1.10∫
T

|c(t)| dt = b, Am ≤ Zm(b̄)b−1
m , Dm(θ) ≤ D̃m(θ).

�
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COROLLARY 2.7.– If in inequality [2.48], we set x = yb−1
M+1ZM+1(b̄), then as

y >
D̃m(θ)bM+1

ZM+1(b̄)(1− θ)

inequality

P

{
‖X(t)−XM (t)‖C > y

ZM+1(b̄)

bM+1

}
[2.49]

≤ 2b exp

{
−
(
y(1− θ)− bM+1D̃M+1(θ)

ZM+1(b̄)

)2}
is obtained.

If for y > 1 we put θ = 1/y, then from corollary 2.7 the following corollary is

obtained.

COROLLARY 2.8.– Let the conditions of theorem 2.14 be satisfied, then for y > 1
such that y −

√
2| ln y| 12 ≥ SM+1, where

SM+1 = 1

+
√
2bM+1

∞∑
k=M+1

(
1

bk
− 1

bk+1

)∣∣∣∣ln πk

b

∣∣∣∣ 12 [2.50]

inequality

P

{
‖X(t)−XM (t)‖C > y

ZM+1(b̄)

bM+1

}

≤ 2b exp

{
−
(
y − 1− bM+1D̃M+1(1/y)

ZM+1(b̄)

)2}
[2.51]

holds true.

Corollary 2.8 follows from previous one if prove that for y > 1 inequality

y ≥ bM+1D̃M+1(1/y)

ZM+1(b̄)(1− 1/y)

holds true in the case of y −
√
2| ln y| 12 ≥ SM+1.

From corollary 2.8 follows the next theorem.
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THEOREM 2.15.– Stochastic process XM is F-model that approximates the process

X with reliability 1− α, 0 < α < 1, and accuracy δ > 0 ó C(T ), if M satisfies such

conditions

δbM+1

ZM+1(b̄)
−
√
2

∣∣∣∣ln( δbM+1

ZM+1(b̄)

)∣∣∣∣ 12 > SM+1,

where SM+1 is defined in [2.50] and

2b exp

{
−
(

δbM+1

ZM+1(b̄)
− 1− bM+1

ZM+1(b̄)
D̃M+1

(
ZM+1(b̄)

δbM+1

))2}
≤ α. [2.52]

REMARK 2.8.– To simplify the calculation in inequality [2.52], we substitute

ZM+1(b̄) for

Z̃M+1(b̄) =

( ∞∑
k=M+1

∞∑
l=M+1

|akl|bkbl
) 1

2

,

as bk the sequence bk = (ln k)ε can be chosen, where ε is any number such that

ε > 1/2. Note, under rigider conditions the better estimations can be obtained from

theorem 1.11.

2.4. Simulation of stationary stochastic process with discrete spectrum

This section is devoted to simulation method of strictly sub-Gaussian stationary

process with discrete spectrum.

Let X = {X(t), t ∈ R} be stationary stochastic process, EX(t) = 0, t ∈ R,

EX(t+ τ)X(t) = B(τ), t, τ ∈ R.

DEFINITION 2.3.– Stationary process X has discrete spectrum, if its correlation
function B(τ) is equal to

B(τ) =
∞∑
k=0

b2k cosλkτ, [2.53]

where b2k > 0,
∞∑
k=0

b2k < ∞, and λk are such that 0 ≤ λk ≤ λk+1, and λk → ∞ as

k → ∞.
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THEOREM 2.16.– A stationary stochastic process with discrete spectrum

X = {X(t), t ∈ R} can be written in the form of series

X(t) =
∞∑
k=0

(ξk cosλkt+ ηk sinλkt). [2.54]

The series [2.54] converges in mean square, Eξk = Eηk = 0, k = 0, 1, . . ., Eξkηl =
0, k, l = 0, 1, . . ., Eξkξl = δlkb

2
k, Eηkηl = δlkb

2
k, where δlk is a Kronecker symbol.

PROOF.– Since

EX(t)X(s) = B(t− s) =

∞∑
k=0

b2k cos(λk(t− s))

=

∞∑
k=0

b2k cos(λkt) cos(λks) +
∞∑
k=0

b2k sin(λkt) sin(λks),

then the statement of theorem follows from the Karhunen theorem (see [GIK 04]). �

REMARK 2.9.– If X(t) is Gaussian stochastic process, then all ξk, ηk in series

expansion [2.54] are independent Gaussian random variables. In the case of

non-Gaussian stochastic process X(t), the condition of independency ξk, ηk should

be provided.

2.4.1. The model of strictly sub-Gaussian stationary process with
discrete spectrum

In expansion [2.54] let ξn, ηn, n = 0, 1, 2, . . . be independent strictly sub-Gaussian

random variables, then by example 1.7 a random process X is strictly sub-Gaussian

with correlation function B(τ).

DEFINITION 2.4.– Stochastic process XM = {XM (t), t ∈ T}, where T is an interval
[0, b],

XM (t) =
M∑
k=0

(ξk cos(λkt) + ηk sin(λkt))

is called the model of strictly sub-Gaussian stationary process X = {X(t), t ∈ T}
with discrete spectrum on interval T = [0, b], (D(T )-model).
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2.4.2. Accuracy and reliability of the D(T )-model in L2(T )

THEOREM 2.17.– Stochastic process XM is D(T )-model that approximates the

process X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 â L2(T ), if M

satisfies inequalities [2.29] and δ > A
1
2

M+1, where

AM+1 = b
∞∑

k=M+1

b2k. [2.55]

PROOF.– The theorem follows from corollary 1.7, since random variables ξk and ηk,

k = 0, 1, . . . are non-correlated, and

b2k

∫ b

0

cos2(λkt) dt+ b2k

∫ b

0

sin2(λkt) dt = b2kb.

�

2.4.3. Accuracy and reliability of the D(T )-model in Lp(T ), p > 0

THEOREM 2.18.– A stochastic process XM is D(T )-model that approximates the

process X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in Lp(T ), if M
satisfies inequalities [2.10], where

σ2
M+1 =

∞∑
k=M+1

b2k,

and

p
1
2σM+1b

1
p < δ.

The statement of theorem follows from theorem 1.4.

REMARK 2.10.– It is clear that in this case inequality [2.10] cannot be improved due

to the results of section 1.5.

EXAMPLE 2.2.– Let X = {X(t), t ∈ R} be a stationary Gaussian stochastic process

with discrete spectrum with EX(t) = 0 and correlation function

B(τ) = EX(t+ τ)X(t)
∞∑
k=0

b2k cos(λkτ).

Then, by definition 2.4, the model of stochastic process X(t) has the following

representation:

XM (t) =
M∑
k=0

(ξk cos(λkt) + ηk sin(λkt)),
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where ξn, ηn, n = 0,M , are independent zero-mean Gaussian random variables with

the second moment

Eξ2k = Eη2k = b2k.

Consider a particular case when b2k = 1
ks , where s > 1. Set

σ2
M+1 =

∞∑
k=M+1

b2k.

Then

σ2
M+1 =

∞∑
k=M+1

1

ks
≤

∞∑
k=M+1

∫ k

k−1

1

us
du =

∫ ∞

M

1

us
du =

1

s− 1

1

Ms−1
. [2.56]

Let us construct the model of Gaussian process X(t) on the segment [0, b] that

approximates this process with reliability 1−α and accuracy δ in the space L2([0, b]).
It follows from theorem 2.18 that it is enough to choose such M that the inequalities

p
1
2σM+1b

1
p < δ

and

2 exp

{
− δ2

2σ2
M+1b

2
p

}
≤ α,

are fulfilled. This means that

σM+1 ≤ δ

b
1
p

min

{
1

p
1
2

,
1√

2(− ln α
2 )

}
.

Hence, it follows from [2.56] and inequality above that

M ≥
(
(s− 1)δ

b
1
p

min

{
1

p
1
2

,
1√

2(− ln α
2 )

})−1/(s−1)

.

Assume that b = 1. In the case s = 2 and p = 2 the values of M dependent on

accuracy δ and reliability 1− α are found in environment for statistical computing R

and are shown in Table 2.2.
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α = 0.1 α = 0.05 α = 0.01
δ = 0.1 25 28 33
δ = 0.06 41 46 55
δ = 0.01 245 272 326

Table 2.2. The result of the simulation of stationary Gaussian
process with discrete spectrum

0.0 0.2 0.4 0.6 0.8 1.0

−
2
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2

time
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lu

e 
of
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e 

pr
oc

es
s

The model of random process

Figure 2.2. The sample path of the model of Gaussian
stationary process with discrete spectrum with accuracy 0.01

and reliability 0.99 in space L2([0, 1])

2.4.4. Accuracy and reliability of the D(T )-model in LU (T )

THEOREM 2.19.– Let U = {U(x), x ∈ R} be the C-function for which the

conditions of theorem 1.5 are satisfied. Then, stochastic process XM is D(T )-model

that approximates the process X with reliability 1 − α, 0 < α < 1 and accuracy

δ > 0 in LU (T ), if M satisfies [2.17] and [2.18], where

σ2
M+1 =

∞∑
k=M+1

b2k

The statement of theorem follows from theorem 1.6 and remark 1.9. In the next

theorem, the estimates of theorem 2.18 cannot be improved, but allows to consider a

wider class of Orlicz spaces than in theorem 2.18.
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THEOREM 2.20.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤ ak+1,

ak → ∞ as k → ∞. Assume that C-function U(x) is such that the function (U(x))
1
2

is convex. If the series

∞∑
k=1

ck(U)

(
1

ak
− 1

ak+1

)( k∑
j=1

a2jb
2
j

) 1
2

< ∞, [2.57]

converges, where

ck(U) = inf
h>0

(
h

1
2U (−1)

( 1
h

))−1(
1 + h

(
λn +

2

b

))
, [2.58]

then stochastic process XM is D(T )-model, T = [0, b], that approximates the process

X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in LU (T ), if M satisfies

inequalities

G(M + 1, a) ≥ δ, [2.59]

exp

{
1

2

}
δ(sin 1)2

G(M + 1, a)
exp

{
− δ2(sin 1)4

2(G(M + 1, a))2

}
≤ α, [2.60]

where

G(M + 1, a)

=

∞∑
k=M+1

ck(U)b
1
2S4

(
1

ak
− 1

ak+1

)( k∑
j=M+1

a2jb
2
j

) 1
2

,

S4 =

(∫ ∞

−∞

(
sinu

u

)4

du

) 1
2

.

PROOF.– Consider the Orlicz space LU (R), that is the space of measurable functions

on R with respect to the norm

‖f‖LU (R) = inf
{
r :

∫ ∞

−∞
U

(
f(t)

r

)
dt ≤ 1

}
.

For any ε > 0 define dε(t) =
(
sin tε
tε

)2
. Let f(t) be bounded on R and Borelean

function |f(t)| < A, t ∈ R. Then, the function dε(t)f(t) belongs to the space LU (R).
Really, since |dε(t)| ≤ 1, then U(dε(t)f(t)) ≤ dε(t)U(f(t)). Hence,∫ ∞

−∞
U(dε(t)f(t)) dt ≤

∫ ∞

−∞
dε(t)U(f(t)) dt

≤ U(A)

∫ ∞

−∞
dε(t) dt < ∞.
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For any 0 ≤ l ≤ m, the function

Xm
l (t, ε) = dε(t)

m∑
k=l

(ξk cos(λkt) + ηk sin(λkt)

is a function of exponential type (λm + 2ε), bounded on a real axis. Therefore, it

follows that the sequence of functions {dε(t) cos(λkt), dε(t) sin(λkt), k = 0, 1, . . .}
belongs to the class DU (c) from the space LU (R), where ck = ck(U), ε = b−1(see

[2.58]). Since random variables ξk, ηk are uncorrelated and∫ ∞

−∞
d2ε(t) cos

2(λkt) dt+

∫ ∞

−∞
d2ε(t) sin

2(λkt) dt

=

∫ ∞

−∞

(
sin εt

εt

)4

dt =
1

ε

∫ ∞

−∞

(
sinu

u

)4

du,

then from theorem 1.8 follows that as x > G(m, a) an inequality

P

{∥∥∥∥dε(t) ∞∑
k=m

(ξk cos(λkt) + ηk sin(λkt)

∥∥∥∥
LU (R)

> x

}

≤ exp

{
1

2

}
x

G(M,a)
exp

{
− x2

2(G(M,a))2

}
[2.61]

holds true, where G(M,a) is defined in [2.60]. Since as 0 ≤ t ≤ 1
ε the inequality

holds dε(t) > (sin 1)2, then for any bounded on R function f(t) and for any r > 0
the following inequalities are fulfilled∫ 1

ε

0

U

(
f(t)

r

)
dt ≤

∫ 1
ε

0

U

(
dε(t)f(t)

(sin 1)2r

)
dt

≤
∫ ∞

−∞
U

(
dε(t)f(t)

(sin 1)2r

)
dt

If, in the inequality above, r = (sin 1)−2‖dε(t)f(t)‖LU (R), then the relationship

‖f(t)‖LU (T ) ≤ (sin 1)−2‖dε(t)f(t)‖LU (R)

is obtained. If in the last inequality ε = b−1 is considered, then for any x > 0 we

obtain

P
{
‖X −XM‖LU (T ) > x

}
≤ P

{∥∥∥∥db−1(t)
∞∑

k=M+1

(ξk cos(λkt) + ηk sin(λkt)

∥∥∥∥
LU (R)

> x(sin 1)2
}
.

From the above inequality and [2.61] follows the statement of the theorem. �
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COROLLARY 2.9.– If C-function U(x) satisfies the condition of theorem 2.20 and

the series

∞∑
k=1

ck(U)b2k

( ∞∑
s=k

b2k

)− 1
2

< ∞ [2.62]

converges, where ck(U) is defined in [2.58], then the statement of theorem 2.20 holds,

if for M inequalities [2.59] and [2.60] are fulfilled, where

G(M + 1, a) = G(M + 1)

=
√
2b

1
2S4

∞∑
k=M+1

ck(U)b2k

( ∞∑
s=k

b2k

)− 1
2

. [2.63]

Corollary 2.9 follows from corollary 1.13 and theorem 2.20.

COROLLARY 2.10.– Let a = {ak, k = 1, 2, . . .} be such sequence that 0 ≤ ak ≤
ak+1, ak → ∞ as k → ∞, and

∞∑
k=1

ck(U)

(
1

ak
− 1

ak+1

)
< ∞. [2.64]

If the series converges

∞∑
j=1

a2jb
2
j < ∞, [2.65]

and C-function U(x) satisfies the conditions of theorem 2.20, then the statement of

theorem 2.20 holds true, is for M inequalities [2.59] and [2.60] are fulfilled, where

G(M + 1, a)

= b
1
2S4

( ∞∑
j=M+1

a2jb
2
j

) 1
2

∞∑
j=M+1

ck(U)

(
1

ak
− 1

ak+1

)
. [2.66]

Corollary follows from corollary 1.14 and theorem 2.20.

REMARK 2.11.– If in [2.58], we set h =
(
λn + 2

b

)−1
, then we obtain that as cn(U)

the following sequence can be considered

cn(U) =
2
(
λn + 2

b

) 1
2

U (−1)
(
λn + 2

b

) .
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2.4.5. Accuracy and reliability of the D(T )-model in C(T )

No loss of generality suggests that b ≥ 2, (T = [0, b]). Following from

example 1.14, the sequence of functions {c(t) cosλkt, c(t) sinλkt}, k = 0, 1, 2, . . .,
where

c(t) =

(
sin εt

εt

)2

, ε ∈ (0, 1/2],

(∫ ∞

−∞
c(t) dt =

π

ε

)
,

belongs to the class B, where δn(θ) =
2θ

λn+2ε . If ε = 1/b, then, taking into account

remark 1.17
(
inf |t|<b |c(t)| = (sin 1)2

)
, according to theorem 1.13 the following

theorem is obtained.

THEOREM 2.21.– Stochastic process XM is D(T )-model that approximates the

process X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 in C(T ), if for any

β ∈ (0, 1/2]M satisfies conditions

δ ≥ 2(sin 1)−2GM+1, [2.67]

where

GM =

( ∞∑
s=M

σ2
s

) 1
2

,

2πb exp

{
−δ2(sin 1)4

2G2
M+1

+ 1 +
√
2

(
δ(sin 1)2

GM+1

) 4β+1
2β+1

(
F̄β +

π

2

)

+ 2

(
δ(sin 1)2

GM+1

) 4β
2β+1

(
F̄βqβ

(
δ(sin 1)2

GM+1

)
[2.68]

+

(
δ(sin 1)2

GM+1

) 1−2β
1+2β π2

8

)}
≤ α,

ä̊a F̄β =
∞∑

k=M+1

∣∣∣∣ln λk + 2b−1

2
(
1− (1− 2x−2)

1
2

) ∣∣∣∣ 12σ2
kG

2(β−1)
k ,

x =
δ(sin 1)2

GM+1
≥ 2,

qβ(x) is from [1.129].

Similarly to theorem 1.15, the next theorem can be proved.
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THEOREM 2.22.– Stochastic process XM is D(T )-model that approximates the

process X with reliability 1−α, 0 < α < 1, and accuracy δ > 0 in C(T ), T = [0, b],
b > 2, if the conditions of theorem 2.21 hold true, but instead of [2.68] inequality

2πb exp

{
−1

2

(
δ(sin 1)2

GM+1

)2

+

(
1 +

π√
2

)2}
[2.69]

× r(−1)

(
Ḡβ

(
δ(sin 1)2

GM+1

)4β

+
√
2

)
≤ α

is fulfilled, where

Ḡβ =
∞∑

k=M+1

∣∣∣∣r( λn + 2b−1

2
(
1− (1− 2x−2)

1
2

))∣∣∣∣σ2
kG

2(β−1)
k ,

x =
δ(sin 1)2

GM+1
.

2.5. Application of Fourier expansion to simulation of stationary
stochastic processes

Let Y = {Y (t), t ∈ R} be continuous in a mean square stationary stochastic

process, EY (t) = 0, t ∈ R, EY (t + τ)Y (t) = B(τ), t, τ ∈ R. Note that on interval

[0, 2b] the correlation function B(τ) of the process Y can be expanded in Fourier

series

B(τ) =
∞∑
k=0

g2k cos
πkτ

2b
[2.70]

and the coefficients

g2k =
γk
b

∫ 2b

0

B(τ) cos
πkτ

2b
dτ

are non-negative (γk = 1, k ≥ 1, γ0 = 1
2 ).

Consider a stochastic process

X(t) =
∞∑
k=0

(
ξk cos

πkt

2b
+ ηk sin

πkt

2b

)
, [2.71]



Simulation of Stochastic Processes Presented in the Form of Series 103

where ξk, ηk, k = 0, 1, . . . are random variables such that Eηk = Eξk = 0, k =
0, 1, 2, . . ., Eη2k = Eξ2k = g2k.

It’s easy to verify that X = {X(t), t ∈ R} is stationary stochastic process. If this

process is considered on T = [0, b], then its correlation function EX(t+ τ)X(t), τ ∈
[−b, b] coincides with B(τ). Hence, this process can be used for model construction

of the process Y as t ∈ T. It is clear that out of this interval, the correlation functions

of the processes X and Y can be different.

EXAMPLE 2.3.– If the correlation function B(τ) is convex on [0, 2b], then from the

Hardi theorem [HAR 66] follows that Fourier coefficients of the function g2k are non-

negative. For instance, the correlation functions B(τ) = A exp{−β|τ |δ}, 0 < δ ≤ 1,

A > 0, B > 0, are convex for all τ > 0.

2.5.1. The model of a stationary process in which a correlation function
can be represented in the form of a Fourier series with positive
coefficients

Following expansion [2.71], let ξk, ηk, k = 0, 1, . . . be independent strictly

sub-Gaussian random variables. Then, by example 1.7, a stochastic process X is

strictly a sub-Gaussian stationary process.

If X(t) is a Gaussian stochastic process, then ξk, ηk, k = 0, 1, . . . are independent

Gaussian random variables.

DEFINITION 2.5.– Stochastic process XM = {XM (t), t ∈ T}, where T = [0, b],

XM (t) =
M∑
k=0

(
ξk cos

πkt

2b
+ ηk sin

πkt

2b

)
is called Fourier model of stationary process X = {X(t), t ∈ T} with correlation
function B(τ), τ ∈ [−b, b] (FS-model).

REMARK 2.12.– Since stochastic process X , defined in [2.71], is a stochastic

stationary process with discrete spectrum b2k = g2k, λk = πk
2b , k = 0, 1, . . ., then to

simulate these processes the results of section 2.4 can be used.

Show, for example, how to construct FS-model of the process X that

approximates the process with given accuracy and reliability in C(T ). From

example [1.11] follows that the sequence of functions{
cos

πkt

2b
, sin

πkt

2b

}
, k = 0, 1, 2, . . . , T ∈ [0, b], t ∈ T,
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belongs to the class B from c(t) ≡ 1, δn(θ) = bθ
nπ . One can easily show that the

restriction of remark 1.16 holds true. Really, Q = 1

and

∫
T

|c(t)| dt(δk(θ))−1 =
bπk

bθ
=

πk

θ
> 1, k = 1, 2, . . . .

Hence, from theorem 1.13 follows such assertion.

THEOREM 2.23.– Stochastic process XM is FS-model that approximates the process

X with reliability 1 − α, 0 < α < 1, and accuracy δ > 0 in C(T ), if M satisfies the

conditions

δ > 2GM+1, [2.72]

where

GM =

( ∞∑
s=M

g2k

) 1
2

,

and for some β ∈
[
0, 1

2

]
inequality [2.23] holds true as

F̄β =
∞∑

k=M+1

∣∣∣∣ln b

kπ

(
1−
(
1− 2G2

M+1

δ2

) 1
2
)∣∣∣∣ 12σ2

kG
2(β−1)
k . [2.73]

From theorem 1.15 follows such theorem.

THEOREM 2.24.– Stochastic process XM is FS-model that approximates the process

X with reliability 1 − α, 0 < α < 1 and accuracy δ > 0 â C(T ), if for M the

conditions of theorem 2.23 are satisfied, but instead [2.23] inequality [2.24] holds

true, where

ḠM =
∞∑

k=M+1

∣∣∣∣r(kπ

b

(
1−
(
1− 2G2

M+1

δ2

) 1
2
)−1)∣∣∣∣σ2

kG
2(β−1)
k .



3

Simulation of Gaussian Stochastic
Processes with Respect to Output

Processes of the System

In many applied areas that use the theory of stochastic processes, the problem

arises to construct the model of a stochastic process, that is considered as an input

process to some system or filter, with respect to the output process. We are interested

in the model that approximates a Gaussian stochastic process with respect to the output

process with predetermined accuracy and reliability in Banach space C(T ). In this

case, at first we estimate the probability that a certain stochastic vector process

�XT (t) = (X1(t), X2(t), . . . , Xd(t))

leaves some region on some interval of time. For example,

sup
t∈T

�XT (t)A(t) �X(t) > ε,

where ε is a sufficiently large number, (T, ρ) is a metric space, �X = ( �X(t), t ∈ T )
is a process that generates the system and A(t) is a matrix (in most cases positive

semidefinite). The process �X(t) will be considered as Gaussian due to the central

limit theorem. Thus, the problem arises to estimate the probability

P

{
sup
t∈T

�XT (t)A(t) �X(t) > ε

}
,

or the probability

P

{
sup
t∈T

| �XT (t)A(t) �X(t)− E �XT (t)A(t) �X(t)| > ε

}
,
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where �X(t) is a Gaussian vector process and A(t) is a symmetric matrix. The

process �X(t) is considered as centered one. In this chapter, the estimates of large

deviation probability for square-Gaussian stochastic processes are established. An

exact definition of the class of these processes is proposed in section 3.2.

Distribution properties of supremum of stochastic process were investigated by

many authors. They investigate the problem of existence of moments and exponential

moments of distribution of supremum of the process, estimates of probability

P
{
sup0≤t≤T |X(t)| > ε

}
, distribution of the number exceeding a certain level, etc.

For more details, readers can refer to books and papers by Cramér and Leadbetter

[CRA 67], Lindgren [LIN 71], Dudley [DUD 73], Fernique [FER 75], Nanopoulos

and Nobelis [NAN 76], Kôno [KÔN 80], Kozachenko [KOZ 85b, KOZ 85c, KOZ

99a], Piterbarg [PIT 96] and Ostrovs’kij [OST 90]. In [KOZ 99a], the estimates for

large deviations of supremum of square-Gaussian stochastic processes were obtained.

The structure of this chapter is as follows. The chapter consists of eight sections.

In section 3.1, we obtain the inequalities for exponential moments

E exp

⎧⎪⎨⎪⎩ s√
2

�ξTA�ξ − E�ξTA�ξ(
Var �ξTA�ξ

)1/2
⎫⎪⎬⎪⎭

where �ξ is a Gaussian centered random vector and A is a symmetric matrix. Estimates

depend only on the eigenvalues of the matrix B1/2AB1/2, where B = cov�ξ. Similar

estimates are obtained for the mean square limits of sequences of quadratic forms of

jointly Gaussian random variables �ξTnAn
�ξn as n → ∞. In section 3.2, the definition of

the space of square-Gaussian random variables and the definition of square-Gaussian

stochastic process are given. In section 3.3, estimates of probability of large deviation

of supremum of a square-Gaussian stochastic process on a compact metric space are

studied. Similar estimates are discussed in [KOZ 99a, KOZ 07a].

In section 3.4, the estimations of distribution of supremum of square-Gaussian

stochastic processes in the space [0, T ]d are obtained. The results of this section are

used in section 3.5 to construct the model of a Gaussian process, that is considered as

input process on some system or filter, with respect to the output process in Banach

space C(T ) with given accuracy and reliability. Section 3.6 deals with a stationary

Gaussian stochastic process with discrete spectrum. Theorems for the simulation of

these processes, that are considered as an input process on some filter with respect to

output process in space C(T ), are also proven. A particular case is also considered

when the system output process is a derivative of the initial one.

Similar results of sections 3.4–3.6 are obtained in [KOZ 03, KOZ 06b, KOZ 07a,

ROZ 07, ROZ 08, ROZ 09a].
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In section 3.7, Gaussian stochastic fields are considered. The conditions for

simulation of these fields, that are considered as input process on some filter with

respect to output process in space C(T ), are also given. Section 3.7 is based on the

study of [KOZ 04a].

3.1. The inequalities for the exponential moments of the quadratic forms
of Gaussian random variables

In this section, we prove some inequalities for the exponential moments of the

quadratic forms of jointly Gaussian random variables. These inequalities will be

applied in the following sections.

LEMMA 3.1.– Let ξ1, ξ2, . . . , ξn, ξn+1, ξn+2, . . . , ξn+m be independent Gaussian

random variables; n = 0, 1, 2, . . . ; m = 0, 1, 2, . . . ; m + n > 0; and

Eξk = 0, Eξ2k = σ2
k > 0, k = 1, 2, . . . and let

δ+N+1 =

( ∑n
i=1 σ

2(N+1)
i∑n+m

i=1 σ
2(N+1)
i

) 1
N+1

,

δ−N+1 =

(∑n+m
i=n+1 σ

2(N+1)
i∑n+m

i=1 σ
2(N+1)
i

) 1
N+1

. [3.1]

Then, for integer N = 1, 2, . . . and real s such that 0 ≤ δ+N+1s < 1, the following

inequality holds true

E exp

⎧⎪⎨⎪⎩
s
(∑n

i=1 ξ
2
i −∑n+m

i=n+1 ξ
2
i

)
2
(∑n+m

i=1 σ
2(N+1)
i

) 1
N+1

⎫⎪⎬⎪⎭ ≤

exp

⎧⎪⎨⎪⎩1

2

N∑
k=1

sk
(∑n

i=1 σ
2k
i + (−1)k

∑n+m
i=n+1 σ

2k
i

)
k
(∑n+m

i=1 σ
2(N+1)
i

) k
N+1

⎫⎪⎬⎪⎭×

exp

{
1

2

∞∑
k=N+1

(
sδ+N+1

)k
k

+
1

2

(
sδ−N+1

)N+1

N + 1
χ(N + 1)

}
, [3.2]

where χ(N + 1) = (−1)N+1+1
2 .
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PROOF.– We will prove the lemma in the case when m > 0 and n > 0. In the case of

m = 0 or n = 0, the proof is analogous.

Let r be a number such that r > 2σ2
i for i = 1, 2, . . . , n. Then, from the equality

E exp

{
uξ2i
2σ2

i

}
= (1− u)

− 1
2 ,

which holds true for all u < 1, it follows the equality

I = E exp

{
1

r

(
n∑

i=1

ξ2i −
n+m∑
i=n+1

ξ2i

)}

=

n∏
i=1

(
1− 2σ2

i

r

)− 1
2 n+m∏
i=n+1

(
1 +

2σ2
i

r

)− 1
2

. [3.3]

Therefore,

ln I = −1

2

n∑
i=1

ln

(
1− 2σ2

i

r

)
− 1

2

n+m∑
i=n+1

ln

(
1 +

2σ2
i

r

)

=
1

2

∞∑
k=1

2k

krk

n∑
i=1

σ2k
i − 1

2

n+m∑
i=n+1

ln

(
1 +

2σ2
i

r

)
.

It follows from the last inequality, then

I = exp

{
1

2

N∑
k=1

2k

krk

n∑
i=1

σ2k
i +

1

2

N∑
k=1

2k

krk
(−1)k

n+m∑
i=n+1

σ2k
i

}

× exp { 1

2

∞∑
k=N+1

2k

krk

n∑
i=1

σ2k
i +

1

2

N∑
k=1

2k(−1)k+1

krk

n+m∑
i=n+1

σ2k
i

−1

2

n+m∑
i=n+1

ln

(
1 +

2σ2
i

r

)}
. [3.4]

Since for all x ≥ 0 and all odd integer N , the inequality holds true

N∑
k=1

(−1)k+1x
k

k
− ln(1 + x) ≤ xN+1

N + 1
, [3.5]
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and for all x ≥ 0 and all even integer N holds true the inequality

N∑
k=1

(−1)k+1x
k

k
− ln(1 + x) ≤ 0, [3.6]

then from [3.4]–[3.6] follows that

I ≤ exp

{
1

2

N∑
k=1

2k

krk

n∑
i=1

σ2k
i +

1

2

N∑
k=1

2k

krk
(−1)k

n+m∑
i=n+1

σ2k
i

}

× exp

{
1

2

∞∑
k=N+1

2k

krk

n∑
i=1

σ2k
i +

1

2

n+m∑
i=n+1

σ
2(N+1)
i 2N+1

(N + 1)rN+1
χ(N + 1)

}
. [3.7]

If in [3.7] we put

r =
2

s

(
m+n∑
i=1

σ
2(N+1)
i

) 1
N+1

,

where s is an arbitrary number such that 0 ≤ s and sδ+N+1 < 1, then we will have the

inequality

E exp

{s

(
n∑

i=1

ξ2i −
n+m∑
i=n+1

ξ2i

)
2

(
n+m∑
i=1

σ
2(N+1)
i

) 1
N+1

}

≤ exp

{
1

2

N∑
k=1

sk
(

n∑
i=1

σ2k
i + (−1)k

n+m∑
i=n+1

σ2k
i

)
k

(
n+m∑
i=1

σ
2(N+1)
i

) k
N+1

}

× exp

{
1

2

∞∑
k=N+1

sk
n∑

i=1

σ2k
i

k

(
n+m∑
i=1

σ
2(N+1)
i

) k
N+1

+
1

2

sN+1
n+m∑
i=n+1

σ
2(N+1)
i

(N + 1)
n+m∑
i=1

σ
2(N+1)
i

χ(N+1)

}
.[3.8]
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Since for k ≥ N + 1, we have

n∑
i=1

σ2k
i(

n+m∑
i=1

σ
2(N+1)
i

) k
N+1

=
(
δ+N+1

)k n∑
i=1

σ2k
i(

n∑
i=1

σ
2(N+1)
i

) k
N+1

≤
(
δ+N+1

)k
,

then from [3.8] follows the statement of the lemma. �

LEMMA 3.2.– Let
−→
ξ be an d-dimensional Gaussian random vector with E

−→
ξ = 0

and covariance B = Cov
−→
ξ . Let A = ‖aij‖di,j=1 be a real-valued symmetric matrix.

Assume that S is an orthogonal matrix that transforms the matrix B1/2AB1/2 to the

diagonal one Λ = diag(λk)
d
k=1, which means STB1/2AB1/2S = Λ. If not all

λk, k = 1, 2, . . . , d are equal to zero, then for all N = 1, 2, . . . and all s such that

0 ≤ sγ+
N+1 < 1, where

γ+
N+1 =

( ∑+ |λi|N+1∑d
i=1 |λi|N+1

) 1
N+1

, γ−
N+1 =

( ∑− |λi|N+1∑d
i=1 |λi|N+1

) 1
N+1

,

and where
∑−

is sum over all negative λi while
∑+

is sum over all positive λi, the

following inequality holds true

E exp

⎧⎪⎨⎪⎩s

2

−→
ξ TA

−→
ξ(∑d

i=1 |λi|N+1
) 1

N+1

⎫⎪⎬⎪⎭
≤ exp

⎧⎪⎨⎪⎩1

2

N∑
k=1

sk
(∑+ |λi|k + (−1)k

∑− |λi|k
)

k
(∑d

i=1 |λi|N+1
) k

N+1

⎫⎪⎬⎪⎭
× exp

{
1

2

∞∑
k=N+1

(
sγ+

N+1

)k
k

+

(
sγ−

N+1

)N+1

2(N + 1)
χ(N + 1)

}
, [3.9]

where χ(N + 1) is defined in [3.2]. In the case −1 < sγ−
N+1 ≤ 0, the following

inequality holds true

E exp

⎧⎪⎨⎪⎩s

2

−→
ξ TA

−→
ξ(∑d

i=1 |λi|N+1
) 1

N+1

⎫⎪⎬⎪⎭
≤ exp

⎧⎪⎨⎪⎩1

2

N∑
k=1

|s|k
(∑− |λi|k + (−1)k

∑+ |λi|k
)

k
(∑d

i=1 |λi|N+1
) k

N+1

⎫⎪⎬⎪⎭
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× exp

{
1

2

∞∑
k=N+1

(
|s|γ−

N+1

)k
k

+

(
|s|γ+

N+1

)N+1

2(N + 1)
χ(N + 1)

}
. [3.10]

PROOF.– Let detB > 0 and let
−→
ζ = ST (B1/2)−1−→ξ . The vector

−→
ζ is a Gaussian

random vector with E
−→
ζ = 0 and

Cov
−→
ζ = ST (B1/2)−1Cov

−→
ξ (B1/2)−1S = ST (B1/2)−1B(B1/2)−1S = I,

where I is the identity matrix. Therefore, the components ζi, i = 1, 2, . . . , d of

the vector
−→
ζ are independent centered Gaussian random variables with

variance E
−→
ζ 2

i = 1. Moreover, since
−→
ξ = B1/2S

−→
ζ , then−→

ξ TA
−→
ξ =

−→
ζ TSTB1/2AB1/2S

−→
ζ =

−→
ζ TΛ

−→
ζ =

∑d
k=1 ζ

2
kλk. Therefore, the

statement of the lemma in the case 0 ≤ sγ+
N+1 < 1 follows from lemma 3.1. In the

case −1 < sγ−
N+1 ≤ 0, the statement of the lemma also follows from lemma 3.1, the

signs of λi change by substituting −s instead of s.

Consider now the case where detB = 0 (that is the matrix B−1 does not exist).

Let
−→
θ be a d-dimensional centered Gaussian vector that does not depend on

−→
ξ , and

such that Cov
−→
θ = I; let ε be an arbitrary positive number. Put

−→
ξ ε =

−→
ξ +ε

−→
θ . Since−→

ξ εis a Gaussian centered vector with covariance Bε = Cov
−→
ξ ε = B + ε2I, then

detBε > 0. Therefore, for
−→
ξ ε inequalities [3.9] and [3.10] hold true with the matrix

Λε and ST
ε B

1/2
ε AB

1/2
ε Sε = Λε = diag(λε

k)
d
k=1.Since λε

k → λk and
−→
ξ ε → −→

ξ as

ε → 0 in mean square, then the statement of the lemma follows from inequalities [3.9]

and [3.10] for
−→
ξ ε and the Fatou lemma. �

COROLLARY 3.1.– Suppose that the assumptions of lemma 3.2 are satisfied for all s
such that 0 ≤ sγ+

2 < 1 and −1 < sγ−
2 ≤ 0. Then, the following inequality holds true

E exp

⎧⎪⎨⎪⎩ s√
2

−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ(

Var
−→
ξ TA

−→
ξ
)1/2

⎫⎪⎬⎪⎭ ≤ L(sγ+
2 , sγ−

2 ), [3.11]

where

L(sγ+
2 , sγ−

2 ) =

⎧⎨⎩ (1− sγ+
2 )−1/2 exp

{
− sγ+

2

2 +
(sγ−

2 )2

4

}
, s ≥ 0;

(1− |s|γ−
2 )−1/2 exp

{
− |s|γ−

2

2 +
(sγ+

2 )2

4

}
, s ≤ 0.

Moreover

Var
−→
ξ TA

−→
ξ =

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

aijakl (Eξiξk Eξjξl +Eξiξl Eξjξk) , [3.12]

where aij are the elements of the matrix A.
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PROOF.– Consider the case s ≥ 0. In this case, the proof is similar. Let us put in

inequality [3.9] N = 1. If 0 ≤ sγ+
2 < 1, then we will have the inequality

E exp

⎧⎪⎨⎪⎩s

2

−→
ξ TA

−→
ξ(∑d

i=1 λ
2
i

) 1
2

⎫⎪⎬⎪⎭
≤ exp

⎧⎪⎨⎪⎩1

2

s
∑d

i=1 λi(∑d
i=1 λ

2
i

) 1
2

⎫⎪⎬⎪⎭ exp

{
1

2

∞∑
k=2

(
sγ+

2

)k
k

+

(
sγ−

2

)2
4

}
.

Since

1

2

∞∑
k=2

(
sγ+

2

)k
k

= −1

2
ln(1− sγ+

2 )− sγ+
2

2
,

then from the last inequality, we have

E exp

⎧⎪⎨⎪⎩s

2

−→
ξ TA

−→
ξ −∑d

i=1 λi(∑d
i=1 λ

2
i

) 1
2

⎫⎪⎬⎪⎭

≤ 1√
1− sγ+

2

exp

{
−sγ+

2

2
+

(
sγ−

2

)2
4

}
. [3.13]

Since
−→
ξ TA

−→
ξ =

−→
ζ TΛ

−→
ζ =

∑d
k=1 ζ

2
kλk, then

E
−→
ξ TA

−→
ξ = E

d∑
k=1

ζ2kλk =

d∑
k=1

λk [3.14]

and

Var
−→
ξ TA

−→
ξ = Var

d∑
k=1

ζ2kλk =

d∑
k=1

λ2
kVar ζ2k = 2

d∑
k=1

λ2
k. [3.15]

Inequality [3.11] follows from [3.13]–[3.15]. Let us prove equality [3.12]. Since

Var
−→
ξ TA

−→
ξ =

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

(Eξiξjξkξlaijakl −Eξiξj Eξkξlaijakl) ,
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then equality [3.12] follows from the Isserlis formula:

Eξiξjξkξl = Eξiξj Eξkξl +Eξiξk Eξjξl +Eξiξl Eξjξk. �

It is not a simple problem in many cases to find the values γ+
2 and γ−

2 . For this

reason, we will give some estimates that do not depend on these parameters.

COROLLARY 3.2.– Assume that the assumptions of lemma 3.2 are satisfied for all s
such that |s| < 1, the following inequality holds true

E exp

⎧⎪⎨⎪⎩ s√
2

−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ(

Var
−→
ξ TA

−→
ξ
)1/2

⎫⎪⎬⎪⎭ ≤ (1− |s|)−1/2 exp

{
−|s|

2

}
. [3.16]

PROOF.– Since (γ+
2 )2 + (γ−

2 )2 = 1, then for 0 ≤ s < 1

L(sγ+
2 , sγ−

2 ) = (1− sγ+
2 )−1/2 exp

{
−sγ+

2

2
− s2(γ+

2 )2

4

}
exp

{
s2

4

}
≤ (1− s)−1/2 exp

{
−s

2

}
.

Therefore, in the case 0 ≤ s < 1 inequality [3.16] follows from inequality [3.11].

In the case −1 < s ≤ 0, the proof is the same as in the previous case. �

COROLLARY 3.3.– Assume that the assumptions of lemma 3.2 are satisfied and let the

matrix A be positive semidefinite. Then, for any integer N > 0, the next inequalities

hold true for 0 ≤ s < 1:

IN (s) = E exp

{
s

2

−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ

(Sp((AB)N+1))
1

N+1

}

≤ Z+
N exp

{
1

2

∞∑
k=N+1

sk

k

}
, [3.17]

where Z+
1 = 1 and for N > 1

Z+
N = exp

{
1

2

N∑
k=2

skSp((AB)k)

k (Sp((AB)N+1))
k

N+1

}
.

For −∞ < s ≤ 0

IN (s) ≤ Z−
N exp

{ |s|N+1

2(N + 1)
χ(N + 1)

}
, [3.18]
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where Z−
1 = 1 and for N > 1

Z−
N = exp

{
1

2

N∑
k=2

|s|k(−1)kSp((AB)k)

k (Sp((AB)N+1))
k

N+1

}
,

the value χ(N + 1) is determined in [3.2].

PROOF.– Under assumptions of this corollary, all λi are non-negative. Therefore, the

sum of negative items is equal to zero
∑−

= 0; that implies γ+
N+1 = 1 and γ−

N+1 = 0.

Moreover,

d∑
k=1

λk
i = Sp(Λk) = Sp(STB1/2(AB)k−1AB1/2S) = Sp((AB)k).

For these reasons, inequalities [3.17] and [3.18] follow directly from inequalities

[3.9] and [3.10]. �

COROLLARY 3.4.– Suppose that the assumptions of lemma 3.2 are satisfied and let

the matrix A be positive semidefinite. Then, for all s, 0 ≤ s < 1, the following

inequality holds true

I1(s) =E exp

⎧⎪⎨⎪⎩ s√
2

−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ(

Var
−→
ξ TA

−→
ξ
)1/2

⎫⎪⎬⎪⎭
=E exp

{
s

2

−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ

((Sp(AB)2))
1/2

}
≤ (1− s)−1/2 exp

{
−s

2

}
,

and for all s, −∞ < s ≤ 0 the inequality holds true

I1(s) ≤ exp

{
s2

2

}
.

REMARK 3.1.– The assertions of lemma 3.2, as well as corollaries 3.1–3.4, may be

proved in the case where the matrix A is not symmetric. In this case, we can write

−→
ξ TA

−→
ξ =

−→
ξ T

(
A+AT

2

)−→
ξ

and use the inequalities with the symmetric matrix (A+AT )/2.

REMARK 3.2.– Let
−→
ξ k, k = 1, 2, . . . ,m be centered jointly Gaussian random

vectors and let Ak be real-valued matrices of the corresponding dimension, and let
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uk, k = 1, 2, . . . ,m be arbitrary numbers. Then, for the random variable

η =
∑m

i=1 ui
−→
ξ T

i Ai
−→
ξ i and for all s from |s| < 1, the following inequality holds true

E exp

{
s√
2

η −Eη

(Var η)1/2

}
≤ (1− |s|)−

1
2 exp

{
−|s|

2

}
. [3.19]

Inequality [3.19] follows from [3.16] since the random variable η may be

represented in the form η =
−→
ζ TA

−→
ζ , where ζ is a Gaussian centered random vector

such that ζT = (
−→
ξ T

1 ,
−→
ξ T

2 , . . . ,
−→
ξ T

m) and the matrix A is

A =

⎛⎜⎜⎝
u1A1 0 . . . 0
0 u2A2 . . . 0
. . . . . . . . . . . .
0 0 . . . umAm

⎞⎟⎟⎠ .

With the help of the symmetric matrix A+AT

2 , we can obtain inequalities from

lemma 3.2 and corollaries 3.1 and 3.3.

REMARK 3.3.– From inequalities [3.9]–[3.11] and [3.16]–[3.18], with the help of the

Chebyshev inequality

P {η > x} ≤ inf
s>0

E exp{sη}
exp{sx}

we can deduce inequalities for deviations such as

P{−→ξ TA
−→
ξ > x}, P{|−→ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ | > x}

For example, under the conditions of corollary 3.2 for all x > 0, the following

inequality holds true

P

⎧⎪⎨⎪⎩
−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ(

Var
−→
ξ TA

−→
ξ
)1/2 > x

⎫⎪⎬⎪⎭

≤ exp

{
− sx√

2

}
inf

0≤s<1
E exp

⎧⎪⎨⎪⎩ s√
2

−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ(

Var
−→
ξ TA

−→
ξ
)1/2

⎫⎪⎬⎪⎭
≤ inf

0≤s<1
(1− s)

−1/2
exp
{
−s

2

}
exp

{
− sx√

2

}
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=
(
1 + x

√
2
)1/2

exp

{
− x√

2

}
. [3.20]

In the same way, we can prove that for all x > 0, the following inequality holds

P

⎧⎪⎨⎪⎩
−→
ξ TA

−→
ξ −E

−→
ξ TA

−→
ξ(

Var
−→
ξ TA

−→
ξ
)1/2 < −x

⎫⎪⎬⎪⎭ ≤
(
1 + x

√
2
)1/2

exp

{
− x√

2

}
. [3.21]

From inequalities [3.20] and [3.21] it follows that for all x > 0, the next inequality

holds true

P

⎧⎪⎨⎪⎩ |−→ξ TA
−→
ξ −E

−→
ξ TA

−→
ξ |(

Var
−→
ξ TA

−→
ξ
)1/2 > x

⎫⎪⎬⎪⎭ ≤ 2
(
1 + x

√
2
)1/2

exp

{
− x√

2

}
. [3.22]

3.2. The space of square-Gaussian random variables and
square-Gaussian stochastic processes

In this section, we will give all necessary information concerning the space of

square-Gaussian random variables. We will use the definition of this space that was

introduced in [KOZ 98].

DEFINITION 3.1.– Let Ξ = {ξt, t ∈ T} be a family of jointly Gaussian random
variables, Eξt = 0 (for example let ξt, t ∈ T be a Gaussian stochastic process).

The space SGΞ(Ω) is called the space of square-Gaussian random variables with

respect to Ξ, if any element η from SGΞ(Ω) can be represented in the form

η = ξ̄TAξ̄ −Eξ̄TAξ̄, [3.23]

where ξ̄T = (ξ1, ξ2, . . . , ξn), ξk ∈ Ξ, k = 1, . . . , n, A is a real-valued matrix, or this

element η ∈ SGΞ(Ω) is a mean square limit of a sequence of random variables of the

form [3.23]

η = l.i.m.n→∞(ξ̄TnAξ̄n −Eξ̄TnAξ̄n).

DEFINITION 3.2.– A stochastic process X = {X(t), t ∈ T} is called
square-Gaussian if for any t ∈ T random variable X(t) belongs to the space
SGΞ(Ω).
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LEMMA 3.3.– Let η1, η2, . . . , ηn be random variables from the space SGΞ(Ω). Then,

for all real s such that |s| < 1 and all real λ1, . . . , λn, the following inequality holds

true

E exp

{
s√
2

η

(Var η)
1/2

}
≤ (1− |s|)−1/2

exp

{
−|s|

2

}
, [3.24]

where η =
∑n

i=1 λiηi.

PROOF.– The assertion of lemma 3.3 follows from inequality [3.19] and the Fatou

lemma. �

EXAMPLE 3.1.– Consider ξ1(t), ξ2(t), . . . , ξn(t), t ∈ T a family of jointly Gaussian

centered stochastic processes and let A(t) be a symmetric matrix. Then

X(t) = ξ̄T (t)A(t)ξ̄(t)−Eξ̄T (t)A(t)ξ̄(t),

where ξ̄T (t) = (ξ1(t), ξ2(t), . . . , ξn(t)) is a square-Gaussian stochastic process.

LEMMA 3.4.– Let a stochastic process X = {X(t), t ∈ T} belongs to SGΞ(Ω).
Then, for all real s, |s| < 1, and all t ∈ T, t1 ∈ T, t2 ∈ T, t1 �= t2, the following

inequality holds true

E exp

{
sX(t)√

2(VarX(t))1/2

}
≤ (1− |s|)− 1

2 exp{−|s|
2
}, [3.25]

E exp

{
s(X(t1)−X(t2))√

2(Var(X(t1)−X(t2)))1/2

}
≤ (1− |s|)− 1

2 exp{−|s|
2
}. [3.26]

PROOF.– Lemma 3.4 follows from lemma 3.3 and remark 3.2. �

REMARK 3.4.– For some stochastic process from the space SGΞ(Ω), inequality 3.25

may be obtained in more precise form. See, for example, inequalities [3.9]–[3.11],

[3.17] and [3.18].

3.3. The distribution of supremums of square-Gaussian stochastic
processes

Let (T, ρ) be a compact metric space with the metric ρ and let X = {X(t), t ∈ T}
be a square-Gaussian stochastic processes.

REMARK 3.5.– All results from this and the following sections are true in the case

where ρ is a pseudometric. For any pseudometric ρ, the equality ρ(t, s) = 0 does not

imply equality t = s. This is the difference of a pseudometric from a metric. Note



118 Simulation of Stochastic Processes with Given Accuracy and Reliability

that in many cases stochastic processes are considered on a space (T, ρ), where ρ is a

pseudometric. For example, we may consider the pseudometric

ρ(t, s) = (Var (X(t)−X(s)))
1/2

, or ρ(t, s) = ||X(t) − X(s)||, where || · || is

some norm.

Let there exist a monotonically increasing continuous function σ(h), h > 0,

σ(h) → 0 as h → 0 and such that the inequality holds true:

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 ≤ σ(h). [3.27]

Note, that this property has the function

σ(h) = sup
ρ(t,s)≤h

(Var (X(t)−X(s)))
1/2

,

if the process X(t) is continuous in mean square.

Let us also suppose that for some A− ≥ 1, A+ ≥ 1 and all s such that

−A− < s < A+ the following inequality holds true

E exp

{
s√
2

X(t)

(Var X(t))
1/2

}
≤ R(s), [3.28]

where R(s),−A− < s < A+ is a monotonically increasing for s > 0 and

monotonically decreasing for s < 0 continuous function such that R(0) = 1.

REMARK 3.6.– Inequality [3.28] makes sense only if Var X(t) > 0. But since

Var X(t) = 0 implies X(t) = 0, we will assume that in this case

X(t)

(Var X(t))
1/2

= 0.

REMARK 3.7.– It follows from lemma 3.4 (see inequality [3.25]) that at least one

function that satisfies inequality [3.28] exists. This function is

R(s) = (1− |s|)−1/2
exp

{
−|s|

2

}
.

We will use the following notations:

ε0 = inf
t∈T

sup
s∈T

ρ(t, s), t0 = σ(ε0), [3.29]

γ0 = sup
t∈T

(DX(t))1/2, [3.30]
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Under N(u) we denote a metric massiveness of the space T with respect to the

metric ρ, it means that N(u) is the least number of closed balls of radius u covering

T. σ(−1)(h) is the inverse function to the function σ(h).

LEMMA 3.5.– Let X(t) = {X(t), t ∈ T} be a separable square-Gaussian stochastic

process and the condition [3.28] holds true. Let r(u) ≥ 1, u ≥ 1 be an increasing

function such that r(u) → ∞ as u → ∞ and let the function r(exp{t}) be convex. If

the condition∫ t0

0

r(N(σ(−1)(u))du < ∞, [3.31]

is satisfied, then for all M = 1, 2, . . . and p such that 0 < p < 1, and all u such that

0 < u <
(1− p)√

2
min

{
A+

γ0
,

1

t0pM−1

}
[3.32]

the following inequality holds true:

E exp

{
u sup

t∈T
X(t)

}

≤
(
R

(
u
√
2γ0

1− p

))1−p [(
1− pM−1u

√
2t0

1− p

)−1/2

exp

{
−pM−1u

√
2t0

2(1− p)

}]p

× r(−1)

(
1

t0pM

∫ t0p
M

0

r(N(σ(−1)(v))dv

)
. [3.33]

Moreover, for all u such that

0 < u <
(1− p)√

2
min

{
A−

γ0
,

1

t0pM−1

}
[3.34]

the following inequality holds true:

E exp

{
−u inf

t∈T
X(t)

}

≤
(
R

(
−u

√
2γ0

1− p

))1−p
[(

1− pM−1u
√
2t0

1− p

)−1/2

exp

{
−pM−1u

√
2t0

2(1− p)

}]p
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× r(−1)

(
1

t0pM

∫ t0p
M

0

r(N(σ(−1)(v))dv

)
. [3.35]

PROOF.– Let εk = σ(−1)(t0p
k), k = 0, 1, . . . . Denote by Vεk the set of the centers

of closed balls of radii εk that forms a minimal covering of the space (T, ρ). It means

that Vεk is εk-net of the set T with respect to the metric ρ. The number of points in

Vεk is equal to N(εk). The set V =
⋃∞

k=1 Vεk is a countable everywhere dense set

in (T, ρ). It follows from [3.27] and properties of the function σ(u) that the process

X(t) is continuous in probability. For this reason, any countable everywhere dense in

(T, ρ) set (the set V as well) may be a set of separability of the process. That is why

with probability 1,

sup
t∈T

|X(t)| = sup
t∈V

|X(t)|. [3.36]

Consider the mapping αn(t), n = 0, 1, 2, . . . of the set V into Vεn : if t ∈ V ,

then αn(t) is a point from the set Vεn such that ρ(t, αn(t)) < εn; if t ∈ Vεn , then

αn(t) = t. If there exist many points from Vεn such that ρ(t, αn(t)) < εn, we choose

one of them and denote it by αn(t). The following inequality holds true:

P
{
|X(t)−X(αn(t))| > pn/2

}
≤

Var (X(t)−X(αn(t)))

pn
≤ σ2(εn)

pn
=

t20p
2n

pn
= t0p

n.

This inequality implies that

∞∑
n=1

P
{
|X(t)−X(αn(t))| > pn/2

}
≤ t20

∞∑
n=1

pn < ∞.

It follows from the Borel-Cantelli lemma that for sufficiently large n with

probability 1 holds true the inequality |X(t) − X(αn(t))| < pn/2. This implies that

X(t) − X(αn(t)) → 0 with probability 1 as n → ∞. Since V is a countable set,

then X(t) − X(αn(t)) → 0 with probability 1 as n → ∞ for all t ∈ V
simultaneously. Let t be an arbitrary point from V . For any m ≥ 1, denote

tm = αm(t), tm−1 = αm−1(tm), tm−2 = αm−2(tm−1), . . . , t1 = α1(t2). Then, for

any M ≥ 1,m > M the following relations hold true

X(t) = (X(t)−X(αm(t)) +
m∑

k=M+1

(X(tk)−X(tk−1)) +X(tM )

≤ max
t∈VεM

X(t) +
m∑

k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)) + (X(t)−X(αm(t))).
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Since the last inequality holds true for all m > M , then the inequality holds

X(t) ≤ lim inf
m→∞

(
max
t∈VεM

X(t) +

m∑
k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)))

+(X(t)−X(αm(t)))

)

= lim inf
m→∞

(
max
t∈VεM

X(t) +

m∑
k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)))

)
.

Since the right-hand side of the last inequality does not depend on t, then with

probability 1 the next inequality holds

sup
t∈V

X(t) ≤ lim inf
m→∞

(
max
t∈VεM

X(t) +
m∑

k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)))

)
. [3.37]

It follows from [3.36] and [3.37] and the Fatou lemma that for any u ≥ 0 the

inequality holds

E exp

{
u sup

t∈T
X(t)

}
= E exp

{
u sup

t∈V
X(t)

}

≤ E exp

{
u lim inf

m→∞

(
max
t∈VεM

X(t) +
m∑

k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)))

)}

≤ lim inf
m→∞ E exp

{
u

(
max
t∈VεM

X(t) +

m∑
k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)))

)}
. [3.38]

Let qk, k = M,M + 1, . . . be a sequence such that qk > 1 and
∑∞

k=M q−1
k = 1.

Then, from the Hölder’s inequality we will get the inequality

E exp

{
u max

t∈VεM

X(t) + u
m∑

k=M+1

max
t∈Vεk

(X(t)−X(αk−1(t)))

}

≤
(
E exp

{
qMu max

t∈VεM

X(t)

})1/qM

×
m∏

k=M+1

(
E exp

{
qku max

t∈Vεk

(X(t)−X(αk−1(t)))

})1/qk
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≤ (N(εM ))
1/qM

(
max
t∈VεM

(E exp {qMuX(t)})1/qM
)

×
m∏

k=M+1

(
N(εk)

) 1
qk
(
max
t∈Vεk

(
E exp

{
qku(X(t)−X(αk−1(t)))

}) 1
qk
)
. [3.39]

Let

Q(s) = (1− |s|)−1/2
exp

{
−|s|

2

}
.

It follows from [3.26] that for

0 < qku
√
2 (Var (X(t)−X(αk−1(t))))

1/2
< 1

the following inequality holds:

E exp {qku(X(t)−X(αk−1(t)))} ≤

Q
(
qku

√
2 (Var (X(t)−X(αk−1(t))))

1/2
)
. [3.40]

It follows from [3.27] that

(Var (X(t)−X(αk−1(t))))
1/2 ≤ σ(εk−1) = t0p

k−1. [3.41]

For this reason, from [3.41] follows that under the condition

qku
√
2t0p

k−1 < 1 [3.42]

the inequality holds true:

E exp {qku(X(t)−X(αk−1(t)))} ≤ Q(qku
√
2t0p

k−1). [3.43]

It follows from [3.28] that under the condition

qMu
√
2 (Var X(t))

1/2
< A+ [3.44]

the inequality

E exp {qMuX(t)} ≤ R
(
qMu

√
2 (Var X(t))

1/2
)

[3.45]
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holds true. Since (Var X(t))
1/2 ≤ γ0, then from [3.44] and [3.45] follows that under

the condition

qMu
√
2γ0 < A+ [3.46]

the inequality holds true:

E exp {qMuX(t)} ≤ R
(
qMu

√
2γ0

)
. [3.47]

That is why from [3.38], [3.39], [3.43] and [3.47] it follows that for all u, which

satisfy inequalities [3.42] and [3.46] holds true the inequality

E exp

{
u sup

t∈T
X(t)

}

≤ lim inf
m→∞

[
m∏

k=M

(N(εk))
1
qk

(
R
(
qMu

√
2γ0

)) 1
qM

m∏
k=M+1

(
Q(qku

√
2t0p

k−1)
) 1

qk

]

=

∞∏
k=M

(N(εk))
1/qk
(
R
(
qMu

√
2γ0

))1/qM ∞∏
k=M+1

(
Q(qku

√
2t0p

k−1)
)1/qk

. [3.48]

Let us take qk = pM−1/pk−1(1− p), k = M,M + 1, . . . For these qk, inequality

[3.42] holds true when u < (1−p)√
2t0pM−1

and inequality [3.46] holds true when u <

A+(1− p)/
√
2γ0. If we take qk = pM−1/pk−1(1− p), k = M,M+1, . . . in [3.48],

then for all u that satisfy [3.32], the following inequality holds

E exp

{
u sup

t∈T
X(t)

}

≤
( ∞∏

k=M

N(εk)

)1/qk(
R

(
u
√
2γ0

(1− p)

))1−p ∞∏
k=M+1

(
Q

(
u
√
2t0p

M−1

(1− p)

)) (1−p)pk−1

pM−1

=
∞∏

k=M

(N(εk))
1/qk

(
R

(
u
√
2γ0

(1− p)

))1−p(
Q

(
u
√
2t0p

M−1

(1− p)

))p

. [3.49]

Let us estimate
∞∏

k=M

(N(εk))
1/qk .
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Taking into consideration that the function r(exp{t}) is convex, we will have the

inequality

∞∏
k=M

(N(εk))
1/qk =

∞∏
k=M

(
N(σ(−1)(t0p

k))
) (1−p)pk−1

pM−1

= r(−1)

(
r

(
exp

{ ∞∑
k=M

p1−Mpk−1(1− p) lnN(σ(−1)(t0p
k))

}))

≤ r(−1)

( ∞∑
k=M

pk−1(1− p)p1−M
(
r
(
N(σ(−1)(t0p

k))
)))

≤ r(−1)

( ∞∑
k=M

1

t0pM

∫ t0p
k

t0pk+1

r
(
N(σ(−1)(u))

)
du

)

= r(−1)

(
1

t0pM

∫ t0p
M

0

r
(
N(σ(−1)(u))

)
du

)
. [3.50]

From [3.49] and [3.50] follows inequality [3.33]. Inequality [3.34] may be proved

similarly. �

The next theorem follows from lemma 3.5.

THEOREM 3.1.– Let X(t) = {X(t), t ∈ T} be separable square-Gaussian stochastic

process and the conditions of lemma 3.5 are satisfied.

Then, for all integer M = 1, 2, . . .,p, 0 < p < 1, and u from

0 < u <
1− p√

2
min

{
1

γ0
,

1

t0pM−1

}
, [3.51]

the inequality

P

{
sup
t∈T

|X(t)| > x

}
≤ W (p, x), [3.52]
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is satisfied, where

W (p, x) = 2

(
R
(u√2γ0

1− p

))1−p

·A(p)

×
(
1− pM−1u

√
2t0

1− p

)−p/2

exp
{
−pMu

√
2t0

2(1− p)
− ux

}
,

the function R(u) =
(
1− |s|

)−1/2
exp
{
− |s|

2

}
, and

A(p) = r(−1)

(
1

t0pM

∫ t0p
M

0

r(N(σ(−1)(v))) dv

)
.

PROOF.– The assertion of the theorem follows from lemma 3.5, remark 3.7 as A− =
A+ = 1. �

COROLLARY 3.5.– Let X(t) = {X(t), t ∈ T} be a separable square Gaussian

random process, r (u) ≥ 1, u ≥ 1 is moronically increasing function such that

function r (exp {t}) is convex. If the next integral exists∫ t0

0

r
(
N
(
σ(−1) (u)

))
du,

then for all x > 0

P

{
sup
t∈T

|X (t)| > x

}
≤ 2 inf

0<p<1

{
r(−1)

(
1

t0p

∫ t0p

0
r
(
N
(
σ(−1)(ν)

))
dν
)

×
(
1−

√
2x(1−p)

U

)− 1
2

exp
{
−x(1−p)√

2U
− x2(1−p)2

max(γ0,t0)U

}}
,

where

U = max (γ0, t0) +
√
2x(1− p).

PROOF.– Under condition of theorem 3.1, we put M = A− = A+ = 1,

R (s) = (1− |s|)−
1
2 exp

{
−|s|

2

}
.
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Let t0 > γ0. Since the function R (s) is increasing as 0 ≤ s ≤ 1, then

inf
0≤u< 1−p√

2
min

(
A+

γ0
, 1

t0pM−1

)
[(

R
(

u
√
2γ0

1−p

))1−p (
1− u

√
2t0p

M−1

1−p

)− p
2

× exp
{
−upM

√
2t0

2(1−p) − ux
}]

≤ inf0≤u< 1−p√
2t0

[(
R
(

u
√
2γ0

1−p

))1−p
((

1− u
√
2t0

1−p

)− 1
2

)p

×
(
exp
{
− u

√
2t0

2(1−p)

})p
exp {−ux}

]
≤ inf0≤u< 1−p√

2t0

[(
R
(

u
√
2γ0

1−p

))1−p (
R
(

u
√
2t0

1−p

))p
exp {−ux}

]
≤ inf0≤u< 1−p√

2t0

[(
1− u

√
2t0

1−p

)− 1
2

exp
{
− u

√
2t0

2(1−p)

}
exp {−ux}

]
.

After finding the minimum of right-hand side, we have

inf
0≤u< 1−p√

2
min

(
1
γ0

, 1

t0pM−1

)
⎡⎣(R(u

√
2γ0

1− p

))1−p(
1− u

√
2t0p

M−1

1− p

)− p
2

× exp

{
−upM

√
2t0

2(1− p)
− ux

}]

≤
(
1−

√
2x(1− p)

t0 +
√
2x(1− p)

)− 1
2

exp

{
− x(1− p)√

2
(
t0 +

√
2x(1− p)

)}

× exp

{
− x2(1− p)2

t0
(
t0 +

√
2x(1− p)

)} .

The same assertion can be obtained in the case t0 ≤ γ0.

Thereby, the corollary follows from theorem 3.1. �

3.4. The estimations of distribution for supremum of square-Gaussian
stochastic processes in the space [0, T ]d

Consider now the space T = [0, T ]d, d ≥ 1, with a metric ρ(t, s) = max
1≤i≤d

|ti−si|.
Let X = {X(t), t ∈ T} be square-Gaussian stochastic process.



Simulation of Gaussian Stochastic Processes 127

Let the function σ(h), h > 0 be monotonically increasing, continuous and such

that inequality [3.27] is satisfied. In the case when σ(h) = C · hα, α ∈ (0, 1], where

C > 0, the constants ε0 and t0 are equal to

ε0 = inf
t∈T

sup
s∈T

ρ(t, s) =
T

2
, t0 = σ(ε0) = C

(
T

2

)α

.

The next theorem about distribution of supremum of square-Gaussian stochastic

processes follows from theorem 3.1.

THEOREM 3.2.– Let X(t), t ∈ [0, T ]d be separable square-Gaussian stochastic

process and the condition

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 ≤ σ(h) = C · hα, α ∈ (0, 1], C > 0

holds true. If for integer M > 1 and any x > 0

x >

√
2γ0Md

α
max

{
1;

((T
2

)α
C

1

γ0

) 1
M−1}

, [3.53]

then the tail of distribution can be estimated as

P
{
sup
t∈T

|X(t)| > x
}
≤ 21+de

(M+1)d
α exp

{
− x√

2γ0

}
×
( αx√

2γ0Md

)Md/α(
1 +

2x√
2γ0

)1/2
, [3.54]

where γ0 = sup
t∈T

(VarX(t))
1
2 .

PROOF.– Since σ(h) = C · hα, then σ(−1)(h) =
(
h
C

)1/α
.

The metric massiveness on [0, T ]d with metric ρ(t, s) = max
1≤i≤d

|ti−si| is bounded

as

N(u) ≤
( T
2u

+ 1
)d
.

Hence,

N(σ(−1)(u)) ≤
(

T

2σ(−1)(u)
+ 1

)d

=

(
T

2

(C
u

)1/α
+ 1

)d

.



128 Simulation of Stochastic Processes with Given Accuracy and Reliability

Consider the function r(u) = uβ − 1, β ∈ (0, α
d ) that satisfies the conditions of

theorem 3.1. Since 0 < p < 1 and t0 = C

(
T
2

)α

, then T
2

(
C

pM t0

)1/α
> 1. Therefore,

under the condition 0 < u < t0p
M the inequality

N(σ(−1)(u)) ≤
(
T
(C
u

)1/α)d

holds. Since the inverse function of r(u) is equal to r(−1)(u) = (u + 1)1/β , then the

value A(p) can be estimated in such a way:

A(p) =
( 1

t0pM

∫ t0p
M

0

[(T
2

(C
u

)1/α
+ 1
)dβ − 1

]
du+ 1

)1/β
≤
( 1

t0pM

∫ t0p
M

0

[
T
(C
u

)1/α]dβ
du
)1/β

= 2d
( α

α− dβ

)1/β
p−Md/α.

Find the minimal value of the functional A(p) with respect to β

inf
β∈(0,αd )

( α

α− dβ

)1/β
= lim

β→0

( 1

1− dβ/α

)1/β
= ed/α.

Then, from inequality [3.52] of theorem 3.1, we have

W (p, x) ≤ 21+ded/αp−Md/α

(
R
(u√2γ0

1− p

))1−p

×
(
1− pM−1u

√
2t0

1− p

)− p
2

exp
{
−pMu

√
2t0

2(1− p)
− ux

}
. [3.55]

Let us recall that the function R(s) is monotonically increasing and is equal to

R(s) = (1− |s|)−1/2 exp{−|s|
2
}.

If t0p
M−1 < γ0, then from [3.55] it follows that

W (p, x) ≤ 21+ded/αp−Md/αR
(u√2γ0

1− p

)
exp{−ux}.

The minimum in u on the right-hand side of the last inequality is attained at

umin =
1

z
− 1

z + 2x
, where z =

√
2γ0

1− p
.
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Moreover, at the point umin the condition [3.51] holds true.

Substituting umin into the input inequality, we obtain

W (p, x) ≤ 21+ded/αp−Md/α exp

{
−x(1− p)√

2γ0

}(
1 +

2x(1− p)√
2γ0

)1/2
.

Since 0 < p < 1, then

W (p, x) ≤ 21+ded/αp−Md/α exp

{
−x(1− p)√

2γ0

}(
1 +

2x√
2γ0

)1/2
.

The minimum of the right-hand side of the inequality with respect to p ∈ (0, 1) is

attained in

p =

√
2γ0Md

xα
.

From this, it follows that

x >

√
2γ0Md

α
,

and it is true under the condition of the theorem. Thus,

P

{
sup
t∈T

|X(t)| > x

}
≤21+ded/α exp

{
− x√

2γ0
+

Md

α

}
×
( αx√

2γ0Md

)Md
α
(
1 +

2x√
2γ0

)1/2
.

From condition [3.53] it follows that t0p
M−1 < γ0. The theorem is proved. �

In the case when the space T is equal to T = [0, T ], the next corollary holds true.

COROLLARY 3.6.– Let X(t), t ∈ [0, T ], be separable square-Gaussian stochastic

processes and

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 ≤ σ(h) = C · hα, α ∈ (0, 1], C > 0.

Suppose that for integer M > 1 and x > 0

x >

√
2γ0M

α
max

{
1;

((T
2

)α
C

1

γ0

) 1
M−1}

,
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then the following estimator holds true

P
{
sup
t∈T

|X(t)| > x
}
≤ 4e

M+1
α exp

{
− x√

2γ0

}
×
( αx√

2γ0M

)M/α(
1 +

2x√
2γ0

)1/2
,

where γ0 = sup
t∈[0,T ]

(VarX(t))
1
2 .

Consider now the case when

σ(h) =
c

(ln(eα + 1
h ))

α
, α > 0 and c > 0.

Then

t0 = σ(ε0) =
c

(ln(eα + 2
T ))

α
.

THEOREM 3.3.– Let X(t), t ∈ [0, T ]d be separable square-Gaussian stochastic

processes and

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 ≤ σ(h) =

c

(ln(eα + 1
h ))

α
, α > 1, c > 0.

If for integer M > 1 and x > 0

x >

√
2γ0Md ln(eα + 2

T )

α− 1
max

{
1;

(
c

(γ0 ln(eα + 2
T ))

α

) M+α
α(M−1)}

, [3.56]

then

P
{
sup
t∈T

|X(t)| > x
}
≤ Kα,d exp

{
− x√

2γ0
+KM

α,d · x
M

M+α

}(
1+

2x√
2γ0

)1/2
,[3.57]

where

Kα,d = 2D
dα

α−1 ,

KM
α,d = (M + α)

(
d ln(eα + 2

T )

α− 1

) α
M+α

(
√
2γ0M)−

M
M+α ,
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D = max{T
2
, e−α}, γ0 = sup

t∈T
(VarX(t))

1
2 .

PROOF.– To prove this assertion, we will use the results of theorem 3.1. By definition

of σ(u), it follows that

σ(−1)(u) =
(
exp{(c/u)1/α} − eα

)−1

, 0 < u <
c

αα
.

Hence,

N(σ(−1)(u)) ≤
(

T

2σ(−1)(u)
+ 1

)d

=

(
T

2
(exp{(c/u)1/α} − eα) + 1

)d

.

Remind that c
αα > t0p

M , since p ∈ (0, 1) and
(ln(eα+ 2

T ))α

αα ≥ 1 as α > 0.

Consider the function

r(u) = (lnu)β , β ∈ [1, α), u ≥ 1,

for which all conditions of theorem 3.1 hold. Then

r(−1)(u) = exp{x1/β}.
For u ∈ (0, t0p

M ), the relations are satisfied

r(N(σ(−1)(u))) ≤ r

((T
2
(exp{(c/u)1/α} − eα) + 1

)d)
≤ r
(
Dd · exp{d(c/u)1/α}

)
≤
(
d lnD + d(c/u)1/α

)β
≤
( c
u

)β/α(
d lnD

( t0pM
c

)1/α
+ d
)β

=
( c
u

)β/α
ZM (t0) · dβ , [3.58]

where

D = max(e−α,
T

2
), ZM (t0) =

(
lnD ·

( t0pM
c

)1/α
+ 1
)β

.

From [3.58] it follows that

1

t0pM

∫ t0p
M

0

r(N(σ(−1)(u)))du ≤ αcβ/α

α− β
(t0p

M )−β/αZM (t0)d
β

forα > β ≥ 1.
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Hence, 1 ≤ β < α

A(p) ≤ exp

{( α

α− β

)1/β
(t0p

M )−1/αc1/α(ZM (t0))
1/βd

}
= exp

{( α

α− β

)1/β
(d lnD + d

( c

t0pM
)1/α

)

}
. [3.59]

Find the minimum of A(p) over β. Since the function f(β) =
(

α
α−β

)1/β
is

increasing , when β ∈ [1, α), then min f(β) = f(1) = α
α−1 . Hence,

A(p) ≤ exp

{
αd

α− 1

(
lnD +

( c

t0pM
)1/α)}

.

We assume that top
M−1 < γ0. Similarly to theorem 3.2, we obtain the inequality

W (p, x) ≤ 2 exp

{
αd

α− 1

(
lnD +

( c

t0pM
)1/α)}

R
(u√2γ0

1− p

)
exp{−ux}.

To minimize right-hand side over u, we get

W (p, x) ≤ 2 exp

{
αd

α− 1

(
lnD +

( c

t0pM
)1/α)− x(1− p)√

2γ0

}
×
(
1 +

2x√
2γ0

)1/2
. [3.60]

Let us find the minimum of right-hand side [3.60] over p ∈ (0, 1). The minimum

is attained at the point

p =
(√2γ0Mdc1/α

(α− 1)xt
1/α
0

) α
M+α

=
(√2γ0Md ln(eα + 2

T )

(α− 1)x

) α
M+α

. [3.61]

Therefore, for x from [3.56] the relationship

P
{
sup
t∈T

|X(t)| > x
}

≤2 exp

{
αd

α− 1

(
lnD +

(
ln(eα +

2

T
)
) α

M+α
( (α− 1)x

Md
√
2γ0

) M
M+α

)}

× exp

{
− x√

2γ0
+

x√
2γ0

(Md
√
2γ0 ln(e

α + 2
T )

(α− 1)x

) α
M+α

}(
1 +

2x√
2γ0

)1/2
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holds true, when α > 1, and for such integer M > 1, that t0p
M−1 < γ0, p is from

[3.61] and D = max(e−α, T
2 ).

We have supposed that t0p
M−1 < γ0. And it follows from [3.56] and [3.61]. The

proof of the theorem is complete. �

In the particular case when T = [0, T ], the next corollary is carried out.

COROLLARY 3.7.– Let X(t), t ∈ [0, T ], be separable square-Gaussian stochastic

processes for which

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 ≤ σ(h) =

c

(ln(eα + 1
u ))

α
, α > 0, c > 0.

If for x > 0 and integer M > 1

x >

√
2γ0M ln(eα + 2

T )

α− 1
max

{
1;

(
c

(γ0 ln(eα + 2
T ))

α

) M+α
α(M−1)}

, α > 1,

then

P
{
sup
t∈T

|X(t)| > x
}
≤ Kα,1 exp

{
− x√

2γ0
+KM

α,1 · x
M

M+α

}(
1 +

2x√
2γ0

)1/2
,

where

Kα,1 = 2D
α

α−1 ,

KM
α,1 = (M + α)

(
ln(eα + 2

T )

α− 1

) α
M+α

(
√
2γ0M)−

M
M+α ,

D = max{T
2
, e−α}, γ0 = sup

t∈T
(VarX(t))

1
2 .

3.5. Accuracy and reliability of simulation of Gaussian stochastic
processes with respect to the output process of some system

Consider the space T = [0, T ]d, d > 1, with metric ρ(t, s) = max
1≤i≤d

|ti − si|,
where t, s are vectors from T. Let ξ = {ξ(t), t ∈ T} be centered Gaussian stochastic

process and

ξ(t) =
∞∑

n=0

ξnfn(t), [3.62]
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where the functions fn(t), n ≥ 0 are continuous and such that for all t ∈ T

∞∑
n=0

f2
n(t) < ∞,

ξn, n = 0, 1, 2, . . . , are independent Gaussian random variables,

Eξn = 0, Eξ2n = 1. Since

Eξ2(t) =
∞∑

n=0

f2
n(t) < ∞,

then the series
∞∑

n=0
ξnfn(t) converges in probability (see, for example, [LOE 60]).

Consider the following situation: Let Σ be some system (filter, device) which is

intended for transformation of signals (functions) fn(t). The function that has to be

transformed is called the input function on system; the transformed function is called

the output function or reaction on input function. Under gn(t) we will define output

function. More information about filters can be found in [GIK 04].

REMARK 3.8.– In particular case, gn(t) = zn · fn(t). It means that transformation

does not change the shape of signal.

Another important situation is when gn(t) = f ′
n(t).

If input process on the system Σ is ξ(t) =
∞∑

n=0
ξnfn(t), then output process is

η(t) =
∞∑

n=0
ξngn(t). Suppose that for all t ∈ T, the series

∞∑
n=0

g2n(t) converges. It is

sufficient condition for convergence in probability of the series η(t) =
∞∑

n=0
ξngn(t).

DEFINITION 3.3.– The process ξ̃N (t) is called the model of the process ξ(t), t ∈ T
if

ξ̃N (t) =
N∑

k=0

ξkfk(t), t ∈ T.

Let us define the difference between the process and the model under

ξN (t) = ξ(t)− ξ̃N (t) =
∞∑

k=N+1

ξkfk(t), t ∈ T.
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In the same way, ηN (t) can be defined:

ηN (t) =
∞∑

k=N+1

ξkgk(t), t ∈ T.

We will investigate conditions under which the model ξ̃N (t) approximates ξ(t)
with given accuracy and reliability in Banach space C([0, T ]d) taking into account the

process η(t). For this purpose, the relationship ξ2(t) + η2(t) can be analyzed. If this

case is generalized, we can consider a semipositive quadratic form

X(x, y) = a · x2 + 2c · x · y + b · y2,

where a, b, c are constants such that a > 0, ab− c2 > 0.

For convenience, under XN (t) we will define a quadratic form that is defined on

the processes ξN (t), ηN (t) :

XN (t) = X(ξN (t), ηN (t)) = a · (ξN (t))2 + 2c · ξN (t) · ηN (t) + b · (ηN (t))2.

Stochastic process XN (t) is equal to

XN (t) =
∞∑

k=N+1

∞∑
n=N+1

ξkξnφkn(t), [3.63]

where

φkn(t) = afk(t)fn(t) + c(fk(t)gn(t) + gk(t)fn(t)) + bgk(t)gn(t). [3.64]

Evidently, the function φkn(t) is symmetric with respect to k and n. Hence,

φkn(t) = φnk(t).

Denote

X̄N (t) = XN (t)−EXN (t).

DEFINITION 3.4.– The model ξ̃N (t) approximates stochastic process ξ(t) on input of
the system, taking into account output process, with given reliability 1− ν, ν ∈ (0, 1)
and accuracy δ > 0 in Banach space C(T), if

P

{
sup
t∈T

|X̄N (t)| > δ

}
≤ ν.
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Note that XN (t)−EXN (t) = X̄N (t), t ∈ [0, T ]d, is a square-Gaussian stochastic

process.

REMARK 3.9.– In definition 3.4, the probability

P

{
sup
t∈T

|XN (t)| > δ

}
≤ ν

can be considered. But since

P

{
sup
t∈T

|XN (t)| > δ

}
≤ P

{
sup
t∈T

|X̄N (t)| > δ − sup
t∈T

|EXN (t)|
}
,

then all assertions can be easily transformed in this case.

The next additional lemma is proved.

LEMMA 3.6.– Let the series
∞∑

k,n=N+1

φ2
kn(t) be convergent for any t ∈ T. Define

Δkn(t, s) = φkn(t)− φkn(s).

Then, for the processes X̄N (t), XN (t) the following relationships hold true:

EXN (t) =
∞∑

k=N+1

φkk(t),

VarX̄N (t) = 2
∞∑

k=N+1

∞∑
n=N+1

φ2
kn(t), [3.65]

Var(XN (t)−XN (s)) = 2

∞∑
k=N+1

∞∑
n=N+1

Δ2
kn(t, s), [3.66]

where the functions φkn(t) are from [3.64].

PROOF.– From [3.63], it follows that

XN (t) =
∞∑

k=N+1

∞∑
n=N+1

φkn(t)ξkξn,

ξk, k ≥ 0, are zero-mean independent Gaussian random variables with variance 1.

Then

EXN (t) =
∞∑

k=N+1

φkk(t).
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Now find E(XN (t))2.

E(XN (t))2 =

∞∑
k=N+1

∞∑
n=N+1

∞∑
k′=N+1

∞∑
n′=N+1

φkn(t)φk′n′(t)Eξkξnξk′ξn′

Use the Isserlis’ formula for Gaussian random variables

Eξkξnξk′ξn′ = EξkξnEξk′ξn′ +Eξkξk′Eξnξn′ +Eξkξn′Eξk′ξn.

From the equality above and the symmetry φkn(t) follows that

E(XN (t))2 =

∞∑
k=N+1

∞∑
n=N+1

(
φkk(t)φnn(t) + 2φ2

kn(t)
)
.

The relationship [3.65] is obtained from VarXN (t) = Var(X̄N (t)).

Let us find EXN (t)XN (s):

EXN (t)XN (s) =
∞∑

k=N+1

∞∑
n=N+1

(φkk(t)φnn(s) + 2φkn(t)φkn(s)) .

Then

Var(X̄N (t)− X̄N (s)) = VarX̄N (t) +VarX̄N (s)

− 2EXN (t)XN (s) + 2EXN (t)EXN (s),

that yields [3.66]. The lemma is proved. �

Denote skn = sup
t∈T

|φkn(t)|, then

sup
t∈T

(VarX̄N (t))
1
2 ≤

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

. [3.67]

The following theorem holds true.

THEOREM 3.4.– Let ξ(t), t ∈ [0, T ]d, be separable Gaussian stochastic process from

[3.62] such that

sup
ρ(t,s)≤h

|φkn(t)− φkn(s)| ≤ dknh
α, α ∈ (0, 1], [3.68]



138 Simulation of Stochastic Processes with Given Accuracy and Reliability

and

2

∞∑
k=N+1

∞∑
n=N+1

d2kn = C2(N) < ∞,

where φkn(t) are from [3.64].

The model ξ̃N (t) =
N∑

k=0

ξkfk(t) approximates a separable Gaussian process ξ(t),

taking into account the output process, with given accuracy δ > 0 and reliability

1− ν, ν ∈ (0, 1), if for N ≥ 1 the conditions are fulfilled

δ >

√
2γ0(N)Md

α
max

{
1;

((T
2

)α C(N)

γ0(N)

) 1
M−1}

,

21+de
(M+1)d

α exp
{
− δ√

2γ0(N)

}( αδ√
2γ0(N)Md

)Md/α(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where M > 1 is an arbitrary integer number, γ0(N) =

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

.

PROOF.– Since the process X̄N (t) is square-Gaussian, then the results of theorem 3.2

can be used. From [3.68] and [3.66] follows that

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 = sup

ρ(t,s)≤h

(
2

∞∑
k=N+1

∞∑
n=N+1

(φkn(t)− φkn(s))
2

) 1
2

≤
(
2

∞∑
k=N+1

∞∑
n=N+1

d2kn

) 1
2

hα

= C(N)hα = σN (h), α ∈ (0, 1].

Equation [3.67] implies that

sup
t∈T

(VarX̄N (t))
1
2 ≤

(
2

∞∑
k=N+1

∞∑
n=N+1

d2kn

) 1
2

= γ0(N).

If we substitute the obtained relationships in inequalities of theorem 3.2, the

theorem will be proved. �
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In particular case T = [0, T ], the following corollary holds true.

COROLLARY 3.8.– Let ξ(t), t ∈ [0, T ] be a separable Gaussian stochastic process

and

sup
|t−s|≤h

|φkn(t)− φkn(s)| ≤ dknh
α, α ∈ (0, 1],

holds true. Suppose that

2
∞∑

k=N+1

∞∑
n=N+1

d2kn = C2(N) < ∞,

where φkn(t) are from [3.64].

Then, the model ξ̃N (t) approximates separable Gaussian process ξ(t), taking into

account the output process, with given accuracy δ > 0 and reliability 1−ν, ν ∈ (0, 1),
if for N the next inequalities are satisfied

δ >

√
2γ0(N)M

α
max

{
1;

((T
2

)α C(N)

γ0(N)

) 1
M−1}

,

4e
(M+1)

α exp
{
− δ√

2γ0(N)

}( αδ√
2γ0(N)M

)M/α(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where M > 1 is an arbitrary integer number, γ0(N) =

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

.

THEOREM 3.5.– Let ξ(t), t ∈ [0, T ]d be such separable Gaussian random process

that

sup
ρ(t,s)≤h

|φkn(t)− φkn(s)| ≤
dkn

(ln(eα + 1
h ))

α
, α > 1, [3.69]

and

2
∞∑

k=N+1

∞∑
n=N+1

d2kn = c2(N) < ∞,

where φkn(t) is defined in [3.64].

The model ξ̃N (t) approximates separable Gaussian process ξ(t), taking into

account the output process, with given accuracy δ > 0 and reliability

1− ν, ν ∈ (0, 1), if for N the next inequalities are satisfied

δ >

√
2γ0(N)Md ln(eα + 2

T )

α− 1
max

{
1;

(
c(N)

(γ0(N) ln(eα + 2
T ))

α

) M+α
α(M−1)}

, α > 1,
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Kα,d exp

{
− δ√

2γ0(N)
+KM

α,d · δ
M

M+α

}(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where

Kα,d = 2D
dα

α−1 ,

KM
α,d = (M + α)

(
d ln(eα + 2

T )

α− 1

) α
M+α

(
√
2γ0(N)M)−

M
M+α ,

D = max{T
2 , e

−α}, M > 1 is an arbitrary number,

γ0(N) =

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

.

PROOF.– Since the process X̄N (t) is square-Gaussian, then for X̄N (t) we can use

the result of theorem 3.3. From conditions [3.69] and [3.66] it follows that

sup
ρ(t,s)≤h

(Var(X(t)−X(s)))
1
2 = sup

ρ(t,s)≤h

(
2

∞∑
k=N+1

∞∑
n=N+1

(φkn(t)− φkn(s))
2

) 1
2

≤
(
2

∞∑
k=N+1

∞∑
n=N+1

d2kn

) 1
2

1

(ln(eα + 1
h ))

α

=
c(N)

(ln(eα + 1
h ))

α
= σN (h), α > 1.

The assertion [3.67] yields

sup
t∈T

(VarX̄N (t))
1
2 ≤

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

= γ0(N).

The theorem will be proved if the founded values will be substituted in the

inequalities of theorem 3.3. �

In the case when d = 1, the following result is obtained.

COROLLARY 3.9.– Let ξ(t), t ∈ [0, T ] be a separable Gaussian random process for

which

sup
ρ(t,s)≤h

|φkn(t)− φkn(s)| ≤
dkn

(ln(eα + 1
h ))

α
, α > 1,
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and

2

∞∑
k=N+1

∞∑
n=N+1

d2kn = c2(N) < ∞,

where φkn(t) is defined in [3.64].

The model ξ̃N (t) approximates separable Gaussian process ξ(t), taking into

account the output process, with given accuracy δ > 0 and reliability

1− ν, ν ∈ (0, 1), if for N the next inequalities are satisfied

δ >

√
2γ0(N)M ln(eα + 2

T )

α− 1
max

{
1;

(
c(N)

(γ0(N) ln(eα + 2
T ))

α

) M+α
α(M−1)}

, α > 1,

Kα,1 exp

{
− δ√

2γ0(N)
+KM

α,1 · δ
M

M+α

}(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where D = max{T
2 , e

−α}, M > 1 is an arbitrary integer,

Kα,1 = 2D
α

α−1 ,

KM
α,1 = (M + α)

(
ln(eα + 2

T )

α− 1

) α
M+α

(
√
2γ0(N)M)−

M
M+α ,

γ0(N) =

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

.

EXAMPLE 3.2.– Let ξ = {ξ(t), t ∈ [0, T ]} be centered Gaussian process that can

be represented in the form [3.62], where the functions fn(t), n ≥ 0 are continuously

differentiable and for all t ∈ [0, T ]
∞∑

n=0
(f ′

n(t))
2 < ∞ and

∞∑
n=0

|f ′
n(t)| < ∞.

Consider the case where the output process is equal to η(t) = ξ′(t), t ∈ [0, T ].

There exists the derivative of stochastic process ξ′(t) =
∞∑

n=0
f ′
n(t)ξn in mean square.

The difference between the process and the model is

ξN (t) = ξ(t)− ξ̃N (t) =

∞∑
k=N+1

ξkfk(t), t ∈ T
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and the process ηN (t) is equal to

ηN (t) =

∞∑
k=N+1

ξkf
′
k(t), t ∈ T.

Let us construct a semipositive quadratic form XN (t), which is defined on the

processes ξN (t), ηN (t)

XN (t) = X(ξN (t), ηN (t)) = a · (ξN (t))2 + 2c · ξN (t) · ηN (t) + b · (ηN (t))2.

The process XN (t) can be represented in the form

XN (t) =

∞∑
k=N+1

∞∑
n=N+1

ξkξnφkn(t), [3.70]

where

φkn(t) = afk(t)fn(t) + c(fk(t)f
′
n(t) + f ′

k(t)fn(t)) + bf ′
k(t)f

′
n(t). [3.71]

Then, corollaries 3.8 and 3.9 can be used for stochastic process [3.70], which

gives the conditions under which the model approximates separable Gaussian process,

taking into account its derivative, with given accuracy and reliability. It is shown in

the following theorem.

THEOREM 3.6.– Let ξ(t), t ∈ [0, T ] be such separable Gaussian stochastic process

that

sup
|t−s|≤h

|φkn(t)− φkn(s)| ≤ dknh
α, α ∈ (0, 1], [3.72]

and

2

∞∑
k=N+1

∞∑
n=N+1

d2kn = C2(N) < ∞,

where φkn(t) are from [3.71].

The model ξ̃N (t) approximates separable Gaussian process ξ(t), taking into

account the output process, with given accuracy δ > 0 and reliability

1− ν, ν ∈ (0, 1), if for N the next inequalities are satisfied

δ >

√
2γ0(N)M

α
max

{
1;

((T
2

)α C(N)

γ0(N)

) 1
M−1}

,
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4e
(M+1)

α exp
{
− δ√

2γ0(N)

}( αδ√
2γ0(N)M

)M/α(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where M > 1 is an arbitrary integer number, γ0(N) =

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

.

THEOREM 3.7.– Let ξ(t), t ∈ [0, T ] be separable Gaussian random process such that

sup
ρ(t,s)≤h

|φkn(t)− φkn(s)| ≤
dkn

(ln(eα + 1
h ))

α
, α > 1, [3.73]

and

2
∞∑

k=N+1

∞∑
n=N+1

d2kn = c2(N) < ∞,

where φkn(t) is defined in [3.71].

The model ξ̃N (t) approximates separable Gaussian process ξ(t), taking into

account output process, with given accuracy δ > 0 and reliability 1− ν, ν ∈ (0, 1), if

for N the next inequalities are satisfied

δ >

√
2γ0(N)M ln(eα + 2

T )

α− 1
max

{
1;

(
c(N)

(γ0(N) ln(eα + 2
T ))

α

) M+α
α(M−1)}

, α > 1,

Kα,1 exp

{
− δ√

2γ0(N)
+KM

α,1 · δ
M

M+α

}(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where D = max{T
2 , e

−α}, M > 1 is an arbitrary integer number,

Kα,1 = 2D
α

α−1 ,

KM
α,1 = (M + α)

(
ln(eα + 2

T )

α− 1

) α
M+α

(
√
2γ0(N)M)−

M
M+α ,

γ0(N) =

(
2

∞∑
k=N+1

∞∑
n=N+1

s2kn

) 1
2

.
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3.6. Model construction of stationary Gaussian stochastic process with
discrete spectrum with respect to output process

Consider the space T = [0, T ] with a metric ρ(t, s) = |t − s|. Let ξ(t), t ∈ T
be a stationary Gaussian stochastic process with discrete spectrum, meaning that the

process can be represented in the form

ξ(t) =
∞∑
k=0

(ξkbk cosλkt+ ηkbk sinλkt), [3.74]

where ξk, ηk are jointly independent Gaussian random variables,

Eξk = Eηk = Eξkηl = 0, k = 0, 1, 2 . . . , l = 0, 1, 2 . . . ,

and

Eξkξl = Eηkηl = 0 as k �= l, Eξ2k = Eη2l = 1.

Suggest that the coefficients bk > 0,
∞∑
k=0

b2k < ∞, λk are such numbers that

0 ≤ λk ≤ λk+1, and λk → ∞ as k → ∞. Since

Eξ2(t) =
∞∑

n=0

b2n < ∞,

then the series [3.74] converges in probability (see e.g. [LOE 60]).

The random process in the form [3.74] is a particular case of the processes that

were investigated in section 3.5.

Assume that on some system Σ the process ξ(t) is entered and the output process

of this system is obtained as

η(t) =
∞∑
k=0

zk · (ξkbk cosλkt+ ηkbk sinλkt).

Suppose that the series
∞∑
k=0

z2kb
2
k,

∞∑
k=0

zkb
2
k are convergent.

DEFINITION 3.5.– The process ξ̃N (t) is called the model of stochastic process
ξ(t), t ∈ T if

ξ̃N (t) =
N∑

k=0

(ξkbk cosλkt+ ηkbk sinλkt), t ∈ T.
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Under ξN (t) denote the difference between the process and the model

ξN (t) = ξ(t)− ξ̃N (t) =

∞∑
k=N+1

(ξkbk cosλkt+ ηkbk sinλkt), t ∈ T.

Similarly, we can define ηN (t):

ηN (t) =

∞∑
k=N+1

zk(ξkbk cosλkt+ ηkbk sinλkt), t ∈ T.

We will investigate the conditions under which the model ξ̃N (t) approximates the

process ξ(t) with given accuracy and reliability in Banach space C([0, T ]) with respect

to the output process η(t).

As in section 3.5 we consider the semipositive quadratic form XN (t), defined on

the processes ξN (t) i ηN (t).

XN (t) = a · (ξN (t))2 + 2c · ξN (t) · ηN (t) + b · (ηN (t))2,

where the numbers a, b c are such that a > 0, ab − c2 > 0. The process XN (t) can

be represented as

XN (t) =

∞∑
k=N+1

∞∑
l=N+1

Bkl

(
ξkξl · c1kl(t) + ηkηl · c2kl(t) + ξkηl · c3kl(t)

+ηkξl · c4kl(t)
)
, [3.75]

where

Bkl = bkbl(a+ c(zk + zl) + bzkzl),

c1kl(t) = cosλkt cosλlt, c2kl(t) = sinλkt sinλlt,

c3kl(t) = cosλkt sinλlt, c4kl(t) = sinλkt cosλlt.

REMARK 3.10.– Note that the coefficients Bkl, c
i
kl(t), i = 1, 2, are symmetric with

respect to k and l, meaning that Bkl = Blk, c
i
kl(t) = cilk(t), i = 1, 2, and c3kl(t) =

c4lk(t).
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PROVE AN AUXILIARY LEMMA.–

LEMMA 3.7.– Let ψ(u), u ≥ 0 be a continuous, monotonically increasing function,

ψ(0) = 0, such that the function u
ψ(u) is non-decreaasing as u > u0, where the

constant u0 ≥ 0. Then, for all u ≥ 0 and v > 0, the following inequalities holds true∣∣∣∣sin u

v

∣∣∣∣ ≤ ψ(u+ u0)

ψ(v + u0)
. [3.76]

PROOF.– Inequality [3.76] is obvious when u ≥ v. Hence, it is enough to prove

[3.76] only in the case u < v.

Since the function z
ϕ(z) is non-decreasing as z > u0, then

∣∣sin u

v

∣∣ < u

v
≤ u+ u0

v + u0
≤ ψ(u+ u0)

ψ(v + u0)
.

Lemma is completely proved. �

LEMMA 3.8.– Let ψ(u), u ≥ 0 be a function such that all conditions of lemma 3.7

are fulfilled. Assume that ψ(u) → ∞ as u → ∞. Suppose that the series
∞∑
k=0

b2kz
i
kψ

2(λk), i = 0, 1, 2, converge. Then, the following relationships holds for

the process XN (t) :

EXN (t) =
∞∑

k=N+1

Bkk, [3.77]

VarXN (t) = 2
∞∑

k=N+1

∞∑
l=N+1

(Bkl)
2, [3.78]

E(XN (t)−XN (s))2 = Var(XN (t)−XN (s)) ≤
(

Āψ
N

ψ( 1
|t−s| + u0)

)2

, [3.79]

where

(Āψ
N )2 =32

∞∑
k=N+1

∞∑
l=N+1

(
2BkkBllψ(

λk

2
+ u0)ψ(

λl

2
+ u0)

+(Bkl)
2(ψ(

λk

2
+ u0) + ψ(

λl

2
+ u0))

2

)
.
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PROOF.– From [3.75] and from relation (c1kk(t))
2 + (c2kk(t))

2 = 1, follows [3.77].

To prove [3.78] and [3.81], let us use the Isserlis’ formula

Eξ1ξ2ξ3ξ4 = Eξ1ξ2Eξ3ξ4 +Eξ1ξ3Eξ2ξ4 +Eξ1ξ4Eξ2ξ3,

where ξi, i = 1, 2, 3, 4 are Gaussian random variables.

Then, using remark 3.10, we obtain:

E (XN (t))
2
=

∞∑
k=N+1

∞∑
l=N+1

(
BkkBll

(
c1kk(t) · c1ll(t) + c2kk(t) · c2ll(t)

+ c1kk(t) · c2ll(t) + c2kk(t) · c1ll(t)
)

+2(Bkl)
2
(
(c1kl(t))

2 + (c2kl(t))
2 + (c3kl(t))

2 + (c4kl(t))
2
))

.

It is easy to check

c1kk(t) · c1ll(t) + c2kk(t) · c2ll(t) + c1kk(t) · c2ll(t) + c2kk(t) · c1ll(t)

= (c1kl(t))
2 + (c2kl(t))

2 + (c3kl(t))
2 + (c4kl(t))

2 = 1.

Therefore,

E (XN (t))
2
=

∞∑
k=N+1

∞∑
l=N+1

(
BkkBll + 2(Bkl)

2

)
.

From the above equality and from [3.77] follows [3.78].

Consider now ΔN (t, s) = XN (t)−XN (s). Let us define

Δi
kl(t, s) = cikl(t)− cikl(s), i = 1, 2, 3, 4.

Then,

ΔN (t, s) =
∞∑

k=N+1

∞∑
l=N+1

Bkl (ξkξl ·Δ1
kl(t, s) + ηkηl ·Δ2

kl(t, s)

+ξkηl · Δ3
kl(t, s) + ηkξl ·Δ4

kl(t, s)
)
.

Note that EΔN (t, s) = E(XN (t)−XN (s)) = 0.
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Similarly to the process XN (t), we have

E (ΔN (t, s))
2
=

∞∑
k=N+1

∞∑
l=N+1

(
BkkBll

(
Δ1

kk(t, s)Δ
1
ll(t, s) + Δ2

kk(t, s)Δ
2
ll(t, s)

+ Δ1
kk(t, s)Δ

2
ll(t, s) + Δ2

kk(t, s)Δ
1
ll(t, s)

)
+ 2(Bkl)

2
(
(Δ1

kl(t, s))
2 + (Δ2

kl(t, s))
2

+ (Δ3
kl(t, s))

2 + (Δ4
kl(t, s))

2
))

. [3.80]

Estimate now the differences Δi
kl(t, s), i = 1, 2, 3, 4. We will use the inequality

from lemma 3.7:∣∣∣∣sin u

v

∣∣∣∣ ≤ ψ(u+ u0)

ψ(v + u0)
.

We get:

|Δ1
kl(t, s)| = | cosλkt cosλlt− cosλks cosλls|

≤ | cosλkt− cosλks|+ | cosλkt− cosλks|

≤ 2

(∣∣∣sin λk(t− s)

2

∣∣∣+ ∣∣∣sin λl(t− s)

2

∣∣∣)
≤ 2

ψ( 1
|t−s| + u0)

(
ψ(

λk

2
+ u0) + ψ(

λl

2
+ u0)

)
.

In the same way, Δi
kl(t, s), i = 2, 3, 4 can be estimated. Hence,

|Δi
kl(t, s)| ≤

2

ψ( 1
|t−s| + u0)

(
ψ(

λk

2
+ u0) + ψ(

λl

2
+ u0)

)
, i = 1, 2, 3, 4.

If the obtained estimations will be substituted into [3.80], we have [3.81]. �

THEOREM 3.8.– Let ξ(t) be separable Gaussian stochastic process with discrete

spectrum [3.74];

∞∑
k=0

b2kz
i
kλ

2α
k < ∞, i = 0, 1, 2, α ∈ (0, 1].

if for integer M > 1 and x > 0

x >

√
2γ0(N)M

α
max

{
1;

(
Āα

N

γ0(N)

(
T

2

)α) 1
M−1
}
,
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then for the random process X̄N (t) = XN (t)−EXN (t) the estimation large deviation

probability holds true

P
{
sup
t∈T

|X̄N (t)| > x
}
≤ 4e

M+1
α exp

{
− x√

2γ0(N)

}
×
( αx√

2γ0M

)M/α(
1 +

2x√
2γ0(N)

)1/2
,

where

.γ0(N) =

(
2

∞∑
k=N+1

∞∑
l=N+1

(Bkl)
2

) 1
2

, [3.81]

Āα
N =

(
25−2α

∞∑
k=N+1

∞∑
l=N+1

(
2BkkBllλ

α
kλ

α
l + (Bkl)

2(λα
k + λα

l )
2
)) 1

2

. [3.82]

PROOF.– The theorem follows from corollary 3.6. Note that the function

ψ(u)=uα, α ∈ (0, 1] satisfies all conditions of lemma 3.7 as u0 = 0.

A stochastic process XN (t)−EXN (t) is really a Square-Gaussian process, where

XN (t) is defined in [3.75]. If we put ψ(u) = uα, α ∈ (0, 1], u0 = 0, then [3.81]

yields the estimation:

sup
|t−s|≤h

(Var(XN (t)−XN (s)))
1
2 ≤ Āα

N

ψ( 1h + u0)
.

Hence,

σN (h) = Āα
Nhα, α ∈ (0, 1],

where AN is from [3.82].

From corollary 3.6 γ0 = γ0(N) = sup
t∈[0,T ]

(VarXN (t))
1
2 . It follows from relation

[3.78] that:

VarX̄N (t) = VarXN (t) = 2

∞∑
k=N+1

∞∑
l=N+1

(Bkl)
2 = (γ0(N))2.

�

The next corollary follows from theorem 3.8 and definition 3.4.
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COROLLARY 3.10.– Let
∞∑
k=0

b2kz
i
kλ

2α
k < ∞, i = 0, 1, 2, α ∈ (0, 1].

The model ξ̃N (t) approximates separable Gaussian process ξ(t), taking into

account the output process, with given accuracy δ > 0 and reliability

1− ν, ν ∈ (0, 1), if for N ≥ 1 the conditions are fulfilled:

δ >

√
2γ0(N)M

α
max

{
1;

(
Āα

N

γ0(N)

(
T

2

)α) 1
M−1
}
,

4e
(M+1)

α exp
{
− δ√

2γ0(N)

}( αδ√
2γ0(N)M

)M/α(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where M > 1 is an arbitrary integer number, γ0(N) is from [3.81].

The following theorem holds true.

THEOREM 3.9.– Let ξ(t) be separable Gaussian stochastic process with discrete

spectrum [3.74];

∞∑
k=0

b2kz
i
k ln

2α(λk) < ∞, i = 0, 1, 2, α > 1.

If for integer M > 1 and x > 0, α > 1,

x >

√
2γ0(N)M ln(eα + 2

T )

α− 1
max

{
1;

(
Āln

N

γ0(N)(ln(eα + 2
T ))

α

) M+α
α(M−1)

}
,

then for stochastic process X̄N (t) = XN (t)−EXN (t) the inequality comes true

P
{
sup
t∈T

|X̄N (t)| > x
}
≤ Kα,1 exp

{
− x√

2γ0(N)
+KM

α,1 · x
M

M+α

}
×
(
1 +

2x√
2γ0(N)

)1/2
,

where D = max{T
2 , e

−α}, γ0(N) is from [3.81], Kα,1 = 2D
α

α−1 ,

KM
α,1 = (M + α)

(
ln(eα + 2

T )

α− 1

) α
M+α

(
√
2γ0(N)M)−

M
M+α ,
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(Āln
N )2 = 32

∞∑
k=N+1

∞∑
l=N+1

(
2BkkBll ln

α(
λk

2
+ eα) ln(

λl

2
+ eα)

+(Bkl)
2(lnα(

λk

2
+ eα) + ln(

λl

2
+ eα))2

)
.

PROOF.– The theorem follows from corollary 3.6. Note that the function ψ(u) =
lnα(u+ 1), α > 0 satisfies all conditions of lemma 3.7 as u0 = eα − 1.

It follows from [3.81] that:

sup
|t−s|≤h

(Var(XN (t)−XN (s)))
1
2 ≤ σN (h) =

Āln
N

ψ( 1h + u0)
.

As a function ψ(u) can be obtained, the function ψ(u) = lnα(u + 1), α > 1,
with constant u0 = eα−1. This function satisfies all conditions of lemma 3.7. Hence,

σN (h) =
Āln

N

lnα( 1h + eα)
, α > 1.

From [3.78] it follows that:

VarX̄N (t) = VarXN (t) = 2

∞∑
k=N+1

∞∑
l=N+1

(Bkl)
2 = (γ0(N))2.

The theorem will be complete if the obtained values will be substituted in

corollary 3.7. �

From theorem 3.9 and definition 3.4 follows the following corollary.

COROLLARY 3.11.– Let

∞∑
k=0

b2kz
i
k ln

2α(λk) < ∞, i = 0, 1, 2, α ∈ (0, 1].

The model ξ̃N (t) approximates separable Gaussian process with discrete spectrum

ξ(t), taking into account the output process, with given accuracy δ > 0 and reliability

1− ν, ν ∈ (0, 1), if for N ≥ 1 the conditions are fulfilled:

δ >

√
2γ0(N)M ln(eα + 2

T )

α− 1
max

{
1;

(
Āln

N

γ0(N)(ln(eα + 2
T ))

α

) M+α
α(M−1)

}
,

Kα,1 exp

{
− δ√

2γ0(N)
+KM

α,1 · δ
M

M+α

}(
1 +

2δ√
2γ0(N)

)1/2
< ν,
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where α > 1, Kα,1, D, AN and KM
α,1 are defined in theorem 3.9, M > 1 is an

arbitrary integer number, γ0(N) is from [3.81].

EXAMPLE 3.3.– Let ξ(t), t ∈ T = [0, T ] be a stationary Gaussian stochastic process

with discrete spectrum [3.74]. Suppose that the series
∞∑
k=0

b2kλ
4
k converges.

Consider the case where the output process is an derivative of the input

process η(t) = ξ′(t), t ∈ [0, T ]. The derivative of stochastic process

ξ′(t) =
∞∑
k=0

bkλk(−ξk sinλkt+ ηk cosλkt) exists in mean square.

Let us write the difference of the input process and the model from definition 3.5:

ξN (t) = ξ(t)− ξ̃N (t) =

∞∑
k=N+1

bk(ξk cosλkt+ ηk sinλkt), t ∈ T

Similarly, we can define ηN (t) as

ηN (t) =

∞∑
k=N+1

bkλk(−ξk sinλkt+ ηk cosλkt), t ∈ T.

Construct a semiadditive quadratic form XN (t) with respect to:

XN (t) = X(ξN (t), ηN (t)) = a · (ξN (t))2 + 2c · ξN (t) · ηN (t) + b · (ηN (t))2.

Stochastic process XN (t) can be given as

XN (t) =
∞∑

k=N+1

∞∑
l=N+1

bkbl
(
ξkξlc

1
kl(t) + ξkηlc

2
kl(t) + ηkξlc

3
kl(t) + ηkηlc

4
kl(t)

)
,

where

c1kl(t) = a cosλkt cosλlt− c(λl cosλkt sinλlt+ λk cosλlt sinλkt)

+ bλkλl sinλkt sinλlt,

c2kl(t) = a cosλkt sinλlt+ c(λl cosλkt cosλlt− λk sinλkt sinλlt)

− bλkλl sinλkt cosλlt,
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c3kl(t) = a sinλkt cosλlt− c(λl sinλkt sinλlt− λk cosλkt cosλlt)

− bλkλl cosλkt sinλlt,

c4kl(t) = a sinλkt sinλlt+ c(λl sinλkt cosλlt+ λk cosλkt sinλlt)

+ bλkλl cosλkt cosλlt.

REMARK 3.11.– Note that the function cikl(t), i = 1, 4 is symmetric with respect to

k and l, cikl(t) = cilk(t), i = 1, 4 and c3kl(t) = c2lk(t).

Denote Bkl = bkbl(a+ c(λk + λl) + bλkλl).

LEMMA 3.9.– Let the function ψ(u), u ≥ 0 satisfies the conditions of lemma 3.7,

and ψ(u) → ∞ as u → ∞.

Suggest that the series
∞∑
k=0

b2kλ
2
kψ

2(λk) converges.

Then, the following relationships holds for stochastic process XN (t):

EXN (t) =

∞∑
k=N+1

b2k(a+ bλ2
k), [3.83]

VarXN (t) ≤
∞∑

k=N+1

∞∑
l=N+1

( 4BkkBll + 8(Bkl)
2

− b2kb
2
l (a+ bλ2

k)(a+ bλ2
l )
)
= (γ0(N))2, [3.84]

E(XN (t)−XN (s))2 = Var(XN (t)−XN (s)) ≤
(

Āψ
N

ψ( 1
|t−s| + u0)

)2

, [3.85]

where

(Āψ
N )2 = 32

∞∑
k=N+1

∞∑
l=N+1

(
2BkkBllψ(

λk

2
+ u0)ψ(

λl

2
+ u0)

+(Bkl)
2(ψ(

λk

2
+ u0) + ψ(

λl

2
+ u0))

2

)
.

PROOF.– The proof of the lemma is the same as for lemma 3.8. �
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Note that the values Āψ
N in lemmas 3.9 and 3.8 coincide.

The approximation theorems for Gaussian stochastic process with discrete

spectrum also hold true.

THEOREM 3.10.– Let
∞∑
k=0

b2kλ
2+2α
k < ∞, α ∈ (0, 1].

The model ξ̃N (t) approximates separable Gaussian process with discrete spectrum

ξ(t), taking into account the derivative of the process, with given accuracy δ > 0 and

reliability 1− ν, ν ∈ (0, 1), if for N ≥ 1 the conditions are fulfilled:

δ >

√
2γ0(N)M

α
max

{
1;

(
Āα

N

γ0(N)

(
T

2

)α) 1
M−1
}
,

4e
(M+1)

α exp
{
− δ√

2γ0(N)

}( αδ√
2γ0(N)M

)M/α(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where Āα
N is from [3.82], M > 1 is an arbitrary integer number, γ0(N) is defined in

[3.84].

EXAMPLE 3.4.– Consider a Gaussian stationary process with discrete spectrum from

[3.74]. Suppose that

λk = k, bk =
1

ks
,

where s > 2, 5. Consider a particular case when α = 1. Evidently, the series in

theorem 3.10 will be convergent if 2s − 4 > 1. We consider now semi-positive

quadratic form XN (t) defined on the processes ξN (t) and ηN (t) as

XN (t) = (ξN (t))2 + (ξ′N (t))2.

In this case, the value Bkl is equal to

Bkl =
1

(kl)s
(1 + kl) .
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Let us estimate now the series
∞∑

k=N+1

∞∑
l=N+1

1
kmlp , where m > 1 and p > 1 are

some numbers:

∞∑
k=N+1

∞∑
l=N+1

1

kmlp
=

∞∑
k=N+1

∞∑
l=N+1

∫ k

k−1

∫ l

l−1

1

kmlp
dudv

≤
∫ ∞

N

∫ ∞

N

1

vmup
dudv

=
1

(m− 1)(p− 1)

1

Nm+p−2
. [3.86]

By [3.86], we obtain that

∞∑
k=N+1

(Bkl)
2 ≤ 1

(2s− 1)2N (2s−1)2
+

2

(2s− 2)2N (2s−2)2
+

1

(2s− 3)2N (2s−3)2

and

∞∑
k=N+1

Bkk ≤ 1

(2s− 1)N2s−1
+

1

(2s− 3)N2s−3
.

Then, the quantity γ0(N) from [3.84] can be estimated as:

(γ0(N))2 = 3

( ∞∑
k=N+1

Bkk

)2

+ 8

∞∑
k=N+1

∞∑
l=N+1

(Bkl)
2

≤ 1

N4s−2

(
3

(
1

2s− 1
+

N2

2s− 3

)2

+8

(
1

(2s− 1)2
+

2N2

2s− 2
+

N4

(2s− 3)2

))
.
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It is easy to show that Āα
N from [3.82] in the case α = 1 is transformed in

(
Āα

N

)2
=

4

N4s−2

((
N

2s− 2
+

N3

2s− 4

)2

+
N2

(2s− 1)(2s− 3)

+
2N4

(2s− 2)(2s− 4)
+

N6

(2s− 3)(2s− 5)
+

1

(2s− 2)2

+
2N4

(2s− 3)2
+

N6

(2s− 4)2

)
.

Consider the case when the values from theorem 3.10 are T = 1 and M = 2.

Then, the inequalities of theorem 3.10 will be rewritten as

δ > 2
√
2γ0(N)max

{
1;

Āα
N

2γ0(N)

}
and

4e3 exp
{
− δ√

2γ0(N)

}( δ

2
√
2γ0(N)

)2(
1 +

2δ√
2γ0(N)

)1/2
< ν.

Assume that s = 3. The values of N dependent on accuracy δ and reliability 1− ν
are found in environment for statistical computing R and are shown in Table 3.1.

ν = 0.1 ν = 0.05 ν = 0.01

δ = 0.1 6 7 7
δ = 0.06 7 8 8
δ = 0.01 13 13 14

Table 3.1. The result of the simulation of stationary Gaussian process
with discrete spectrum taking into account the derivative of the process

THEOREM 3.11.– Let
∞∑
k=0

b2kλ
2
k ln

2α(λk) < ∞, α > 1.

The model ξ̃N (t) approximates separable Gaussian process with discrete spectrum

ξ(t), taking into account the derivative of the process, with given accuracy δ > 0 and

reliability 1− ν, ν ∈ (0, 1), if for N ≥ 1 the conditions are fulfilled

δ >

√
2γ0(N)M ln(eα + 2

T )

α− 1
max

{
1;

(
Āln

N

γ0(N)(ln(eα + 2
T ))

α

) M+α
α(M−1)

}
,
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Kα,1 exp

{
− δ√

2γ0(N)
+KM

α,1 · δ
M

M+α

}(
1 +

2δ√
2γ0(N)

)1/2
< ν,

where α > 1, Kα,1, D, Āln
N and KM

α,1 are defined in theorem 3.9, M > 1 is an

arbitrary integer number, γ0(N) is from [3.84].

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
1

2

t

x

Figure 3.1. The sample path of the model of Gaussian stationary
process with discrete spectrum taking into account the derivative of the

process with accuracy 0.01 and reliability 0.99 in space C([0, 1])

3.7. Simulation of Gaussian stochastic fields

Let (T, ρ) be a compact metric space with the metric ρ, where T = [0, T ]d and

ρ(t, s) = max
1≤i≤d

|ti − si|, where t, s are vectors from T. Let ξ = {ξ(t), t ∈ T} be a

centered Gaussian random field that can be represented in the form

ξ(t) =

∞∑
n=1

ξnfn(t), [3.87]

where fn(t), n ≥ 1 are continuous functions and ξn, n = 1, 2, . . . are independent

Gaussian random variables such that Eξk = 0, Eξ2k = 1. We also suppose that the

following series converges for all t ∈ T:

∞∑
n=1

E(ξnfn(t))
2 =

∞∑
n=1

f2
n(t) < ∞. [3.88]
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From [3.88] it follows that the series [3.87] converges with probability one for

every t ∈ T (see, for example, [LOE 60]).

Suppose the continuous derivatives
∂fn(t)
∂ti

, i = 1, d, t ∈ T, n = 1, 2, . . . exist.

For convenience, define ξN (t) =
∞∑

n=N

ξnfn(t), N = 1, 2, . . ., a vector t ∈ [0, T ]d.

Consider a positive semidefinite quadratic form

XN (t) = ξ2N (t) +
d∑

i=1

(∂ξN (t)

∂ti

)2
, N ≥ 1. [3.89]

Consider

∞∑
k=N

∞∑
l=N

ξkξl

(
fk(t)fl(t) +

d∑
i=1

∂fk(t)

∂ti

∂fl(t)

∂ti

)
=

∞∑
k=N

∞∑
l=N

ξkξlφkl(t), [3.90]

where

φkl = fk(t)fl(t) +
d∑

i=1

∂fk(t)

∂ti

∂fl(t)

∂ti
. [3.91]

Suppose
∞∑

k=N

∞∑
l=N

φ2
kl(t) < ∞. Show now that under some conditions [3.89] is

equal to [3.90] and this series converges uniformly for t ∈ T with probability 1. The

theorem follows from [BUL 00].

THEOREM 3.12.– Let there exist the continuous derivatives
∂fn(t)
∂ti

, 1 ≤ i ≤ d and

the series
∞∑

k=N

∞∑
l=N

φ2
kl(t) converges for all t ∈ T. Suppose,

sup
|t−s|≤h

|φkl(t)− φkl(s)| ≤ ckl�(h),

∞∑
k,l=1

ckl < ∞,

where �(h), h > 0 is a continuous non-decreasing function such that �(h) → 0 as

h → 0, for which∫
0+

∣∣∣ln �(−1)(ε)
∣∣∣1/2dε < ∞,
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holds true. Then, the series
∞∑

k=N

∞∑
l=N

φkl(t)ξkξl converges uniformly as t ∈ T with

probability 1 and

XN (t) = ξ2N (t) +
d∑

i=1

(
∂ξN (t)

∂ti

)2

=
∞∑

k=N

∞∑
l=N

ξkξlφkl(t),

where φkl(t) are from [3.91].

Let us give some definitions.

DEFINITION 3.6.– A field ξ̃N (t) =
N∑

n=1
ξnfn(t), t ∈ [0, T ]d is called a model of the

field ξ(t) from [3.87].

DEFINITION 3.7.– The model ξ̃N (t) approximates ξ(t) with given reliability 1 − ν,
ν ∈ (0, 1) and accuracy δ > 0 in Banach space C1

[o,T ] if the next inequality holds

P

{
sup
t∈T

|XN+1(t)−EXN+1(t)| > δ

}
≤ ν,

where

X̃(t) = ξ̃2N (t) +

d∑
i=1

(
∂ξ̃N (t)

∂ti

)2

,

XN+1(t) = X(t)− X̃(t).

We want to construct a model ξ̃N (t) of the Gaussian field ξ(t) such that ξ̃N (t)
approximates ξ(t) with given reliability and accuracy.

Then, the next lemma is similar to lemma 3.6.

LEMMA 3.10.– For XN (t), N = 1, . . . , t ∈ [0, T ]d, the following relationships hold

true

EXN (t) =
∞∑

n=N

φnn(t),

VarXN (t) = 2
∞∑

k=N

∞∑
l=N

φ2
kl(t),

Var(XN (t)−XN (s)) = 2

∞∑
k=N

∞∑
l=N

(φkl(t)− φkl(s))
2, [3.92]

where φkl(t) is from [3.91].
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THEOREM 3.13.– Let ξ(t) = {ξ(t), t ∈ T} be a centered Gaussian separable

stochastic process and there exist continuous derivatives
∂ξ(t)
∂ti

, i = 1, d.

Assume that

sup
ρ(t,s)≤h

|φkl(t)− φkl(s)| ≤ dkl · |h|α, 2
∞∑

k=N+1

∞∑
l=N+1

d2kl = C2 < ∞, [3.93]

where α ∈ (0; 1], a constant C > 0 and φkl(t) are from [3.91]. The model ξ̃N (t)
approximates separable Gaussian field ξ(t) with given reliability 1−ν, ν ∈ (0, 1) and

accuracy δ > 0 if for α ∈ (0, 1] and integer M ≥ 1 the following inequalities hold

true:

δ >

√
2γ0Md

α
max{1;

((T
2

)α C

γ0

) 1
M−1 },

21+ddd/2e
(M+1)d

α exp
{
− δ√

2γ0

}( αδ√
2γ0Md

)Md/α(
1 +

2δ√
2γ0

)1/2
< ν,

where γ0 = sup
t∈T

(VarXN+1)
1/2.

PROOF.– From condition [3.93] it follows that theorem 3.2 holds true. Hence,

XN+1(t) = ξ2N+1(t) +
d∑

i=1

(∂ξN+1(t)
∂ti

)2
=

∞∑
k=N+1

∞∑
l=N+1

ξkξlφ
2
kl(t) and this series

converge uniformly as t ∈ T. From [3.92] and [3.93] it follows:

sup
ρ(t,s)≤h

(
Var(XN+1(t)−XN+1(s))

)1/2
=

(
2 sup
ρ(t,s)≤h

∞∑
k,l=N+1

(φkl(t)− φkl(s))
2

)1/2

≤
(
2

∞∑
k=N+1

∞∑
l=N+1

d2kl

)1/2

|h|α = C|h|α = σ(h).

Now the proof of the theorem follows from theorem 3.2. �

Using theorems 3.3 and 3.12, the following theorem is obtained.

THEOREM 3.14.– Let ξ(t) = {ξ(t), t ∈ T} be a centered Gaussian separable

stochastic process and there exist continuous derivatives
∂ξ(t)
∂ti

, i = 1, d.

Assume that

sup
ρ(t,s)≤h

|φkl(t)− φkl(s)| ≤
nkl(

ln(eα + 1
h )
)α , 2

∞∑
k=N+1

∞∑
l=N+1

n2
kl = c2 < ∞,



Simulation of Gaussian Stochastic Processes 161

where α > 1, a constant c > 0 and φkl(t) is from [3.91]. The model ξ̃N (t)
approximates separable Gaussian field ξ(t) with given reliability 1 − ν, ν ∈ (0, 1)
and accuracy δ > 0 if for α > 1 and integer M ≥ 1, the following inequalities hold

true:

δ >

√
2γ0Md ln(eα + 2

T
√
d
)

α− 1
max

{
1;

(
c

(γ0 ln(eα + 2
T ))

α

) M+α
α(M−1)}

, α > 1,

2 exp

{
dα

α− 1

(
lnD +

(
ln(eα +

2

T
)
) α

M+α
( (α− 1)δ

Md
√
2γ0

) M
M+α

)}

× exp

{
− δ√

2γ0
+

δ√
2γ0

(Md
√
2γ0 ln(e

α + 2
T )

(α− 1)δ

) α
M+α

}(
1 +

2δ√
2γ0

)1/2
< ν,

where D = max{T
√
d

2 , e−α}, γ0 = sup
t∈T

(VarXN+1(t))
1/2.

3.7.1. Simulation of Gaussian fields on spheres

Consider now the Gaussian field on unit sphere Sd ∈ R
d, d ≥ 3. Let us give some

well-known designations; (r, θ1, . . . , θd−2,P) are spherical coordinates of the point

x, where 0 ≤ θi ≤ π, 0 ≤ P ≤ 2π and in our case r = 1. Then, the coordinates of

the point x can be rewritten as

xi = sin θ1 sin θ2 · · · sin θi−1 cos θi, i = 1, . . . , d− 2,

xd−1 = sin θ1 sin θ2 · · · sin θd−3 sin θd−2 cosP,

xd = sin θ1 sin θ2 · · · sin θd−3 sin θd−2 sinP.

In this section, we will use spherical coordinates. In this case, the sphere Sd is

transformed in [0, π]d−2 × [0, 2π] and the metric ρ(x, x′) = max
1≤i≤d−1

|θi − θ′i| is

considered, where for convenience we denote θd−1 = P. Consider the full system

of orthogonal spherical harmonics. Then, for them the following theorem is fulfilled.

THEOREM 3.15.– [BAT 53] Let m0, . . . ,md−2 be such integer numbers that

m = m0 ≥ m1 ≥ . . . ≥ md−2 ≥ 0,

then the spherical harmonic polynomials:

Y (mk, θk, ± P) = Y (m,m1, . . . ,md−2, θ1, . . . , θd−2,P) =

= e±imd−2P
d−3∏
k=0

(sin θk+1)
mk+1C

mk+1+
d−2
2 − k

2
mk−mk+1

(
cos θk+1

)
[3.94]



162 Simulation of Stochastic Processes with Given Accuracy and Reliability

make up the full system of linearly independent harmonic polynomials of the power

of m on Sd.

Let us number the harmonics from theorem 3.15 and denote them by

Sl
m(θ1, . . . , θd−2,P), l = 1, . . . , h(m, d)), where m is a power of polynomials and

h(m, d) = (2m+ d− 2)
(m+ d− 3)!

(d− 2)!m!

is the number of linearly independent harmonics of the power of m.

Let Cν
m(x), ν �= 0 be the Gegenbauer polynomials that are defined by such

productive function

(1− 2xt+ t2)−ν =
∞∑

m=0

Cν
m(x)tm.

DEFINITION 3.8.– A stochastic field ξ(x) on sphere Sd is called isotropic in wide
sense if

Eξ(x1)ξ(x2) = B(cos θ)

depends only on the angular distance θ between x1 and x2.

Then, the correlation function of isotropic stochastic field can be represented in

the form [YAD 83]

B(cos θ) =
1

ωd

∞∑
m=0

bm
C

d−2
2

m (cos θ)

C
d−2
2

m (1)
h(m, d), [3.95]

where bm ≥ 0
∞∑

m=0
bmh(m, d) < ∞, ωd is a surface area of the sphere Sd,

ωd =
2π

d
2

Γ
(
d
2

) ,
and the process can be represented in the form of the series

ξ(x) =
∞∑

m=0

h(m,d)∑
l=1

ξlm
√
bmSl

m(x), [3.96]
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where the sequence of random variables ξlm is such that Eξlm = 0, Eξlmξl1m1
= δm1

m δl1l
(m = 0, 1 . . . ; l = 1, . . . , h(m, d)).

For Gegenbauer polynomials, we will use explicit representation [KOZ 76]:

Cn
l (cos θ) =

l∑
k=0

(n)k(n)l−k

k!(l − k)!
cos[(l − 2k)θ], [3.97]

where (λ)k = λ(λ+ 1) · · · (λ+ k − 1).

Consider a quadratic semipositive form:

X(x) = ξ(x)2 +

d−2∑
i=1

(
∂ξ(x)

∂θi

)2

+

(
∂ξ(x)

∂P

)2

.

Suggest that all conditions of theorem 3.12 for ξ(x) from [3.96] and for respective

X(x) are satisfied, then

X(x) =
∞∑

m=0

∞∑
m′=0

h(m,d)∑
l=1

h(m′,d)∑
l′=1

φmm′(x)ξlmξl
′
m′ ,

where

φmm′(x) =
√

bmbm′

×
(
Sl
m(x)Sl′

m′ +
d−2∑
i=1

∂Sl
m(x)

∂θi

∂Sl′
m′(x)

∂θ′i
+

∂Sl
m(x)

∂P

∂Sl′
m′(x)

∂P′

)
. [3.98]

We assume that
∞∑

m=0

∞∑
m′=0

h(m,d)∑
l=1

h(m′,d)∑
l′=1

φ2
mm′(x) converges uniformly as x ∈ Sd.

Let us denote ξN (x) =
∞∑

m=N

h(m,d)∑
l=1

ξlm
√
bmSl

m(x) and

XN (x) = ξN (x)2 +
d−2∑
i=1

(
∂ξN (x)
∂θi

)2

+

(
∂ξN (x)

∂P

)2

, N = 0, 1, . . . Similarly to

lemma 3.10, the following relationships can be obtained for XN (x):

EXN (x) =
∞∑

m=N

h(m,d)∑
l=1

φmm(x),



164 Simulation of Stochastic Processes with Given Accuracy and Reliability

VarXN (t) = 2
∞∑

m=N

∞∑
m′=N

h(m,d)∑
l=1

h(m′,d)∑
l′=1

φ2
mm′(x),

Var(XN (x)−XN (x′)) = 2
∞∑

m=N

∞∑
m′=N

h(m,d)∑
l=1

h(m′,d)∑
l′=1

×(φmm′(x)− φmm′(x′))2. [3.99]

Estimate now the difference:

|φmm′(x)− φmm′(x′)| ≤
√

bmbm′

×
[
|Sl

m(x)||Sl′
m′(x)− Sl′

m′(x′)|+ |Sl′
m′(x′)||Sl

m(x)− Sl
m(x′)|

+

d−2∑
i=1

∣∣∂Sl
m(x)

∂θi

∣∣∣∣∂Sl′
m′(x)

∂θi
− ∂Sl′

m′(x′)
∂θi

∣∣+ ∣∣∂Sl′
m′(x′)
∂θi

∣∣∣∣∂Sl
m(x)

∂θi
− ∂Sl

m(x′)
∂θi

∣∣
+
∣∣∂Sl

m(x)

∂P

∣∣∣∣∂Sl′
m′(x)

∂P
− ∂Sl′

m′(x′)
∂P

∣∣+ ∣∣∂Sl′
m′(x′)
∂P

∣∣∣∣∂Sl
m(x)

∂P
− ∂Sl

m(x′)
∂P

∣∣].
[3.100]

Theorem 3.15 allows us to use the exact representation of Sl
m(x) for estimation of

[3.100]. At first, we estimate the Gegenbauer polynomial in [3.97]. We have:

∣∣Cmk+1+
d−2
2 − k

2
mk−mk+1

(cos θk+1)
∣∣

≤
mk−mk+1∑

i=0

∣∣∣∣ (mk+1 +
d−2
2 − k

2 )i(mk+1 +
d−2
2 − k

2 )mk−mk+1−i

i!(mk −mk+1 − i)!

∣∣∣∣
≤

m∑
i=0

∣∣∣∣ (mk + d−2
2 − k

2 − 1)i(mk + d−2
2 − k

2 − 1)mk−mk+1−i

2i 2mk−mk+1−i

∣∣∣∣
≤ (m+ 1)

(
2m+ d− 4

4

)mk−mk+1

.
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Then, from [3.94] it follows that

|Sl
m(x)| ≤

d−3∏
k=0

(m+ 1)

(
2m+ d− 4

4

)mk−mk+1

≤ (m+ 1)d−2

(
2m+ d− 4

4

)m

,

for all l = 1, h(m, d). Denote L(m) = (m+ 1)d−2

(
2m+d−4

4

)m

Estimate now:

sup
ρ(x,x′)<h

|Sl
m(x)− Sl

m(x′)| ≤ (m+ 1)d−2

(
2m+ d− 4

4

)m

×
∣∣∣∣e±imd−2P

d−3∏
k=0

(
sin θk+1

)mk+1 − e±imd−2P
′
d−3∏
k=0

(
sin θ′k+1

)mk+1

∣∣∣∣ [3.101]

We use the following obvious inequality:

|
n∏

i=0

ai −
n∏

i=0

bi| ≤
n∑

i=0

|ai − bi|
∏
j �=i

max{|aj |, |bj |} ≤
n∑

i=0

|ai − bi|, [3.102]

if |ai| ≤ 1 and |bi| ≤ 1.

For mi+1 ≥ 1, we get

|(sin θi+1)
mi+1 − (sin θ′i+1)

mi+1 | = mi+1|
∫ θi+1

θ′
i+1

(sin t)mi+1−1d sin t|

≤ mi+1|
∫ θi+1

θ′
i+1

d sin t| ≤ m| sin θi+1 − sin θ′i+1| ≤ 21−αmhα, [3.103]

where ρ(x, x′) = max
1≤i≤d−1

|θi − θ′i| < h and α ∈ (0, 1]

Substituting [3.102] and [3.103] into [3.101], we obtain

sup
ρ(x,x′)<h

|Sl
m(x)− Sl

m(x′)| ≤ L(m)
d−3∑
i=0

|(sin θi+1)
mi+1 − (sin θ′i+1)

mi+1 |
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×
∏
k �=i

max{(sin θi+1)
mi+1 , (sin θ′i+1)

mi+1} ≤ 21−αm(d− 2)L(m)hα := K(m)hα,

where K(m) = 21−αm(d− 2)L(m) = 21−αm(d− 2)(m+ 1)d−2

(
2m+d−4

4

)m

.

Find now the estimations for derivatives of Sl
m(x). Since Gegenbauer polynomials

C
mk+1+

d−2
2 − k

2
mk−mk+1

(cos θk+1) are trigonometric polynomials of the power of mk−mk+1,

then for them Bernstein inequality holds true;

sup
0≤θk+1≤2π

∣∣(Cmk+1+
d−2
2 − k

2
mk−mk+1

(cos θk+1)
)′∣∣

≤ (mk −mk+1) sup
0≤θk+1≤2π

|Cmk+1+
d−2
2 − k

2
mk−mk+1

(cos θk+1)|

≤ mC
mk+1+

d−2
2 − k

2
mk−mk+1

(cos θk+1)m.

Then, from [3.94] the following inequalities can be obtained:

∣∣∂Sl
m(x)

∂θi

∣∣ ≤ 2mL(m) = 2m(m+ 1)d−2

(
2m+ d− 4

4

)m

,

∣∣∂Sl
m(x)

∂θi
− ∂Sl

m(x′)
∂θ′i

∣∣ ≤ 2mK(m)hα.

Note that
∣∣∂Sl

m(x)
∂P

∣∣ = |md−2||Sl
m(x)| ≤ mL(m) and

∣∣∂Sl
m(x)

∂P
− ∂Sl

m(x′)
∂P′

∣∣ ≤ 2mK(m)hα, α ∈ (0, 1].

The estimation for [3.100] follows from inequalities above. Hence,

|φmm′(x)− φmm′(x′)| ≤
√

bmbm′(1 + (4d− 6)mm′)

× (L(m)K(m′) + L(m′)K(m))hα

≤ 21−α(d− 2)
√

bmbm′(m′ +m)(1 + (4d− 6)mm′)L(m)L(m′)hα,

where α ∈ (0, 1], L(m) = (m+ 1)d−2

(
2m+d−4

4

)m

.
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Using the representation [3.99], we get the following inequality for α ∈ (0, 1],

sup
ρ(x,x′)<h

(
Var(XN (x)−XN (x′))

)1/2 ≤ ANhα = σ(h), N = 0, 1, 2 . . . ,

where

A2
N = 23−2α(d− 2)2

∞∑
m=N

∞∑
m′=N

bmbm′h(m, d)h(m′, d)(m+m′)2

×(1 + (4d− 6)mm′)2L2(m)L2(m′). [3.104]

We suggest that the series
∞∑

m=0
bmh(m, d)m4L2(m) < ∞.

So, the next theorems are proved.

THEOREM 3.16.– Let ξ(x) be Gaussian separable isotropic field on sphere Sd. If for

all integers M ≥ 1 and y > 0

παAN

(√2γ0M(d− 1)

yα

)M−1

< γ0,

and

y >

√
2γ0M(d− 1)

α
max{1, ( 2√

d− 1
)α/M}

then the following inequality holds true:

P
{
sup
x∈T

|XN (x)−EXN (x)| > y
}
≤ 4
(√

d− 1e1/α
)d−1

× exp
{
− y√

2γ0
+

M(d− 1)

α

}( αy√
2γ0M(d− 1)

)M(d−1)/α(
1 +

2y√
2γ0

)1/2
,

where AN is defined in [3.104] and γ0 = sup
x∈Sd

(VarXN (x))1/2.

PROOF.– Recall that for spherical coordinates the sphere Sd is transformed

to [0, π]d−2[0, 2π] = T ∈ R
d−1 and we consider the metric

ρ(x, x′) = max
1≤i≤d−1

|θi − θ′i|. Then, the following inequality for the number of closed

balls of radius u, which covers Sd, holds true:

N(u) ≤ 2

(
π
√
d− 1

u
+ 1

)d−1

.



168 Simulation of Stochastic Processes with Given Accuracy and Reliability

Note that ε0 = inft∈T sups∈T ρ(t, s) = π and t0 = σ(ε0). We proved σ(h) =
ANhα, α ∈ (0, 1], AN is from [3.104]. Hence, the result of theorem 3.13 can be

used as for d− 1 dimensional space, which proves the theorem. �

From theorem 3.16 follows the next theorem.

THEOREM 3.17.– Let all conditions of the previous theorem be satisfied. The model

ξ̃N (x) approximates the Gaussian separable isotropic field ξ(x) on Sd with given

reliability 1 − ν, ν ∈ (0, 1) and accuracy δ > 0 if for α ∈ (0, 1] and integer M ≥ 1
the following inequalities hold true:

παAN+1

(√2γ0M(d− 1)

δα

)M−1

< γ0,

δ >

√
2γ0M(d− 1)

α
max{1, ( 2√

d− 1
)α/M},

4
(√

d− 1e1/α
)d−1

exp
{
− δ√

2γ0
+ M(d−1)

α

}
×
(

αδ√
2γ0M(d−1)

)M(d−1)/α(
1 + 2δ√

2γ0

)1/2
< ν.



4

The Construction of the Model of
Gaussian Stationary Processes

This chapter offers two approaches to construct the models of Gaussian stationary

stochastic processes. These results can be found in the works of [ANT 02a] and

[KOZ 12]. The methods of model construction are generalized in the case of

random fields. Similar statements are discussed in Tegza’s studies

[TEG 07, TEG 08, TEG 11].

The proposed methods of modeling can be applied in different areas of science

and technology, particularly in radio, physics and meteorology. The models can be

interpreted as a set of the signals with limited energy, harmonic signals and signals

with limited duration.

Let {Ω,B,P} be a probabilistic space.

Let X = {X(t), t ∈ R} be a real-valued Gaussian stationary centered second-

order stochastic process with covariance function:

B(τ) = EX(t+ τ) ·X(t) =

∞∫
0

cosλτdF (λ),

where F (λ) is a spectral function. Assume that the function F (λ) is continuous.

We assume that the process X(t) is separable and almost sure sample continuous

on any interval [0, T ]. All the necessary and sufficient conditions for sample

continuous separable stationary Gaussian processes on a compact can be found in

[FER 75].
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Let us consider the close to the necessary sufficient conditions of sample continuity

of Gaussian stationary separable random processes.

THEOREM 4.1.– [HUN 51] Let X = {X(t), 0 ≤ t ≤ T} be a separable Gaussian

stationary real-valued stochastic process. It will be sample continuous if the following

relationship holds true

∞∫
0

(ln(1 + λ))
1+ε

dF (λ) < ∞, [4.1]

where F (λ) is a spectral function, ε > 0.

Note that the statement and the proof of this theorem in a weaker form (under

condition ε > 2) is contained in [CRA 67].

The process X can be represented as:

X(t) =

∞∫
0

cosλtdη1(λ) +

∞∫
0

sinλtdη2(λ), [4.2]

where η1(λ) and η2(λ) are such independent centered Gaussian processes with

independent increments that

E(ηi(λ2)− ηi(λ1))
2 = F (λ2)− F (λ1), λ1 < λ2, i = 1, 2.

Consider the partition of the set [0,∞] Λ = {λ0, . . . , λM+1} such that λ0 = 0,

λk < λk+1, λM+1 = ∞, then

X(t) =
M∑
k=0

λk+1∫
λk

cosλtdη1(λ) +
M∑
k=0

λk+1∫
λk

sinλtdη2(λ). [4.3]

Let us consider a process

XΛ(t) =
M∑
k=0

(ηk1 cos ζkt+ ηk2 sin ζkt) ,

where ζk are independent for any k, and are defined on [λk, λk+1] with cumulative

distribution function

Fk(λ) = P{ζk < λ} =
F (λ)− F (λk)

F (λk+1)− F (λk)
.
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Put ηk1 =
λk+1∫
λk

dη1(λ), ηk2 =
λk+1∫
λk

dη2(λ).

The process XΛ(t) is called a model of the Gaussian random process X(t). And it

is clear that a different selection of the number M provides different levels of accuracy

and reliability for the computer-simulated models of the process.

There are some models that will be investigated in the following sections. Let us

consider these models and their properties.

1) As a model for Gaussian random process X(t), a random process

XΛ(t) =
M∑
k=0

(ηk1 cos ζkt+ ηk2 sin ζkt) [4.4]

is studied, where ηk1 =
λk+1∫
λk

dη1(λ), ηk2 =
λk+1∫
λk

dη2(λ); ηl1, ηm2, ζk are independent

random variables for any l,m and k, Λ = {λ0, λ1, . . . , λM+1} is a division of the

set [0,∞], where λ0 = 0, λk < λk+1, λM+1 = ∞, ηk1, ηk2 are Gaussian random

variables such that Eηk1 = Eηk2 = 0, Eη2k1 = Eη2k2 = F (λk+1)−F (λk) = b2k, ζk
are random variables that take values on the segments [λk, λk+1], and if b2k > 0, then

Fk(λ) = P{ζk < λ} =
F (λ)− F (λk)

F (λk+1)− F (λk)
.

If b2k = 0, then ηk1 = 0, ηk2 = 0, ζk = 0 with probability of 1.

It is easy to check that the model is zero-mean random process:

EXΛ(t) = E
M∑
k=0

(ηk1 cos ζkt+ ηk2 sin ζkt)

=
M∑
k=0

(Eηk1E cos ζkt+Eηk2E sin ζkt) = 0.

The covariance function of the process XΛ(t) coincides with the covariance

function of stochastic process X(t)

EXΛ(t+ τ)XΛ(t)

= E

(
M∑
k=0

(ηk1 cos ζk(t+ τ) + ηk2 sin ζk(t+ τ))

)
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×
(

M∑
k=0

(ηk1 cos ζkt+ ηk2 sin ζkt)

)

=

M∑
k=0

[
Eη2k1E cos ζk(t+ τ) cos ζkt+Eη2k2E sin ζk(t+ τ) sin ζkt

]

=
M∑
k=0

b2kE cos ζkτ =
M∑
k=0

b2k

λk+1∫
λk

cosλτdFk(λ)

=

∞∫
0

cosλτdF (λ) = r(τ), [4.5]

(Eηi1 · ηj1 = 0, Eηi2 · ηj2 = 0, i �= j, Eηk1ηk2 = 0, k = 0, · · · ,M).

But XΛ(t) is not Gaussian process. Our goal is to identify how the process XΛ(t)
is closed to Gaussian process X(t).

Consider the model XΛ(t) and put

ηk1 =

λk+1∫
λk

dη1(λ), ηk2 =

λk+1∫
λk

dη2(λ).

Let ηΛ(t) = X(t)−XΛ(t). Then

ηΛ(t) =

M∑
k=0

λk+1∫
λk

cosλtdη1(λ) +

M∑
k=0

λk+1∫
λk

sinλtdη2(λ)

−
M∑
k=0

λk+1∫
λk

cos ζktdη1(λ)−
M∑
k=0

λk+1∫
λk

sin ζktdη2(λ);

ηΛ(t) =
M∑
k=0

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

+

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠ . [4.6]
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LEMMA 4.1.– The following relationships hold true:

E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠2m+1

= 0,

E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠2m+1

= 0,

E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠2m

≤ Zkm,

E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠2m

≤ Zkm,

where Zkm = 4mΔ2mE

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(ζk − λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m

, Δ2m =
(2m)!

2mm!
.

PROOF.– Since for zero-mean Gaussian random variable ξ, we have

Eξ = 0, Eξ2 = σ2, Eξ2k = Δ2kσ
2k, k = 1, 2, . . ., Δ2k = (2k − 1)!! = (2k)!

2kk!
,

and random variable ζk does not depend on ηi(λ), then it follows from Fubini theorem

that:

E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠2m

= EEζk

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠2m

≤ Δ2mE

⎛⎝ λk+1∫
λk

| cosλt− cos ζkt|2dF (λ)

⎞⎠m

≤ Δ2mE

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(ζk − λ)

2
· sin t(ζk + λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m
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≤ Δ2mE

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(ζk − λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m

= Zkm,

where Eζk denotes conditional mathematical expectation with respect to ζk.

Similarly, the second inequality is obtained:

E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠2m

≤ Δ2mE

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(λ− ζk)

2
· cos t(ζk + λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m

≤ Δ2mE

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(ζk − λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m

= Zkm.

�

THEOREM 4.2.– Random process ηΛ(t) is sub-Gaussian.

PROOF.– Show that

χk1 =

λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) òà χk2 =

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

are sub-Gaussian random variables. It follows from lemma 4.1 that⎛⎜⎝E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠2m⎞⎟⎠
1

2m

≤ 2m
√
4mΔ2m

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

(
sin

t(u− λ)

2

)2

dF (u)

⎞⎠m

dFk(λ)

⎞⎟⎠
1

2m
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≤ 2m
√
4mΔ2m

⎛⎝ λk+1∫
λk

(F (λk+1)− F (λk))
m dF (λ)

F (λk+1)− F (λk)

⎞⎠
1

2m

≤ 2m
√
4mΔ2m (F (λk+1)− F (λk))

1
2 ,

and ⎛⎜⎝E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠2m⎞⎟⎠
1/2m

≤ 2m
√
4mΔ2m

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

(
sin

t(u− λ)

2

)2

dF (u)

⎞⎠m

× dF (λ)

F (λk+1)− F (λk)

) 1
2m

≤ 2m
√
4mΔ2m (F (λk+1)− F (λk))

1
2 .

Then,

Θ1(χki) = sup
m≥1

[
1

Δ2m
Eχ2m

ki

] 1
2m

= sup
m≥1

[
2mm!

(2m)!
· 4m · (2m)!

2mm!
(F (λk+1)− F (λk))

m

] 1
2m

= 2 (F (λk+1)− F (λk))
1
2 < ∞ , i = 1, 2.

From the well-known theorem about the necessary and sufficient conditions of a

sub-Gaussian random variable [BUL 00] follows that χk1 and χk2 are sub-Gaussian

centered random variables. That is, for any t ∈ T, the value ηΛ(t) is a sub-Gaussian

random variable. Since ηΛ(t) is a boundary sum of sub-Gaussian random variables,

then this process is sub-Gaussian. �

THEOREM 4.3.– For sub-Gaussian process ηΛ(t), the next inequality is satisfied

τ(ηΛ(t)) ≤ 4

⎛⎝ M∑
k=0

b2k sup
m≥1

(
E

∣∣∣∣sin t(ζk − ζ∗k)
2

∣∣∣∣2m
) 1

m

⎞⎠
1
2

= (BΛ(t))
1
2 , [4.7]
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where b2k = F (λk+1)− F (λk), ζ
∗
k are random variables that are not dependent on ζk

and have the same distributions as ζk.

PROOF.– It follows from lemma 4.1 that

τ2

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠ ≤ Θ2
1

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠

≤ sup
m≥1

b2k

⎛⎜⎝E

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(ζk − λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠m⎞⎟⎠
1
m

= sup
m≥1

4b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

= Ik.

Similarly

τ2

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠ ≤ Θ2
1

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠

≤ sup
m≥1

4b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

= Ik.

Then

τ2

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) +

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠

≤

⎛⎝τ

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠+ τ

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠⎞⎠2

≤ 4Ik.
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Since the items of the series in [4.6] for different k are independent, then last

inequality and lemma 1.7 yield

τ2 (ηΛ(t)) ≤ 4

M∑
k=0

Ik ,

τ (ηΛ(t))

≤ 4

⎡⎢⎢⎣ M∑
k=0

sup
m≥1

1

b
2/m
k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m

dF (u)

⎞⎟⎠
1
m

⎤⎥⎥⎦
1
2

≤ 4

⎡⎣ M∑
k=0

sup
m≥1

b2k

(
E

∣∣∣∣sin t(ζk − ζ∗k)
2

∣∣∣∣2m
) 1

m

⎤⎦
1
2

.

�

2) A stochastic process

XΛ(t) =
M∑
k=0

(ηk1 cosλkt+ ηk2 sinλkt) [4.8]

will be used as a model of the Gaussian stationary random process, where ηl1, ηm2, ζk
are independent random variables for any l,m and k, DΛ = {λ0, λ1, . . . , λM+1} is a

division of the set [0,Λ], Λ ∈ R+, where λ0 = 0, λk < λk+1, λM+1 = Λ (Λ can

be equal to ∞), ηk1, ηk2 are Gaussian random variables such that Eηk1 = Eηk2 = 0,

Eη2k1 = Eη2k2 = F (λk+1)− F (λk) = b2k, ζk is any point of the segment [λk, λk+1].

3) A similar approach will be used to build the models of homogeneous random

field.

Let
{
Y
(
�t
)
,�t ∈ T

}
be a centered, homogeneous, continuous in mean square

random field,
{
Rn

+,U ,Φ
}

is a measurable space and Φ(·) is a finite measure. For

the covariance function B (�τ) of random field, the next representation holds true

B (�τ) =

∫
Rn

+

cos
(
�λ, �τ
)
dΦ
(
�λ
)
,



178 Simulation of Stochastic Processes with Given Accuracy and Reliability

where Φ
(
�λ
)

, �λ ∈ Rn
+, is the measure that Φ

(
Rn

+

)
= B(�0). By Karhunen theorem

homogeneous, centered field Y
(
�t
)

can be represented as

Y
(
�t
)
=

∫
Rn

+

cos
(
�λ,�t
)
dZ1

(
�λ
)
+

∫
Rn

+

sin
(
�λ,�t
)
dZ2

(
�λ
)
, [4.9]

where Z1 (S) and Z2 (S), S ∈ U are uncorrelated random measures that are

subordinated to Φ. It means that EZi (S1)Zi (S2) = Φ (S1 ∩ S2) , S1, S2 ∈ U,
i = 1, 2 , (· , ·) is a scalar product.

For the model of this random field, the sum Ỹ
(
�t
)

Ỹ
(
�t
)
=

N−1∑
i1,...,in=0

cos
(
�t, �λ
(
λi1
1 , . . . , λin

n

))
Z1 (Δ (i1, . . . , in))

+

N−1∑
i1,...,in=0

sin
(
�t, �λ
(
λi1
1 , . . . , λin

n

))
Z2 (Δ (i1, . . . , in)) [4.10]

will be taken, where �λ
(
λi1
1 , . . . , λin

n

)
are the points of some partition DΛn :

Δ(i1, . . . , in) =
{[

λi1
1 , λi1+1

1

)
× . . .×

[
λin
n , λin+1

n

) ∣∣λim
m < λim+1

m ,

λim+1
m − λim

m =
Λ

N
, Λ ∈ R+, N ∈ N, m = 1, n, im = 1, N − 1

}
of domain [0, Λ]

n
, Λ ∈ R.

4) The model construction of inhomogeneous Gaussian fields.

Let {Ω,B,P} be a standard probability space
{
Y
(
�t
)
,�t∈T

}
, T ⊂ Rncentered,

Gaussian, continuous in mean square random field. Then, its covariance function

B
(
�t, �s
)

is continuous on T×T.

Consider the Fredholm integral equation

φ
(
�t
)
= λ

∫
T

B
(
�t, �s
)
φ (�s) d�s. [4.11]

It is known that the set of eigenvalues λk of this equation for continuous and non-

negative definite kernel is at most countable set, eigen functions φk

(
�t
)

are continuous

and eigenvalues λk are non-negative [VLA 67]. Let us consider the eigenvalues
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λk, k = 1, 2, . . . in ascending order: 0 < λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . . We

assume that corresponding eigen functions are orthonormalized, i.e.∫
T

φk(�s)φl(�s)ds =

{
1, k = l,
0, k �= l.

The covariance function has the following representation

B
(
�t, �s
)
=

∞∑
k=1

φk

(
�t
)
φk (�s)

λk
, [4.12]

where the series on the right side is uniformly convergent as s ∈ T, and
∞∑
k=1

1
λk

is

convergent [VLA 67].

Then, the field Y
(
�t
)

admits the representation

Y
(
�t
)
=

∞∑
k=1

ξk√
λk

φk

(
�t
)
, [4.13]

where ξk ∼ N (0, 1), Eξkξl = δkl, δkl is Kronecker symbol, i.e. ξk are independent

and the series in [4.13] converges in mean square (it is follows from Karhunen

theorem).

As a model of this field, a stochastic process

Ỹ
(
�t
)
=

N∑
k=1

ξk√
λk

φk

(
�t
)

[4.14]

will be accepted.



5

The Modeling of Gaussian Stationary
Random Processes with a Certain

Accuracy and Reliability

In this chapter, the accuracy and reliability of the models of stationary Gaussian

random processes are studied in spaces Lp ([0, T ]) , p ≥ 1; in Orlicz spaces and in

the space of continuous functions C([0, T ]). The properties of models of stationary

Gaussian processes in a uniform metric, applying the theory of Subϕ(Ω) spaces, are

investigated. A generalized model of Gaussian stationary processes is also considered.

5.1. Reliability and accuracy in Lp(T), p ≥ 1 of the models for Gaussian
stationary random processes

In section 5.1.1, the theorems on approximation of a model to the Gaussian random

process in space L1([0, T ]), Lp([0, T ]), 1 < p ≤ 2 where a given accuracy and

reliability are proved. These issues are discussed in [ANT 02b].

In section 5.1.2, the theorems are considered on estimates of the “tails” of norm

distributions of random processes under different conditions in the space Lp(T),
where T is some parametric set, p ≥ 1. These statements are applied to investigate

the partition selection of the set [0,∞] such that there exists a Gaussian process that

is approximated by the model with some accuracy and reliability in the space

Lp([0, T ]) when p ≥ 1. These results can be found in [ANT 02a, TEG 04a].

Note that obtained estimates in section 5.1.2 for 1 < p ≤ 2 are worse than

estimates from section 5.1.1.
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In section 5.1.3, a theorem on model approximation of Gaussian random processes

with a given accuracy and reliability of Orlicz space LU (Ω) is presented. These issues

are discussed in [ANT 02a].

5.1.1. The accuracy of modeling stationary Gaussian processes in
Lp([0, T ]), 1 ≤ p ≤ 2

Let X = {X(t), t ∈ T} be a Gaussian stationary real centered continuous in a

mean square random process, where T is some parametric set. The definitions of this

process and its model XΛ(t) are described in sections 4.2 and 4.4, respectively.

DEFINITION 5.1.– Random process XΛ(t) approximates the process X(t) with
reliability (1 − β), 0 < β < 1 and accuracy δ > 0 in Lp([0, T ]), if there exists a
partition of Λ such that

P

⎧⎪⎨⎪⎩
⎛⎝ T∫

0

|ηΛ(t)|pdt

⎞⎠
1
p

> δ

⎫⎪⎬⎪⎭ ≤ β,

where ηΛ(t) = X(t)−XΛ(t)

THEOREM 5.1.– The model XΛ(t) approximates Gaussian random process X(t)
with reliability (1 − β), 0 < β < 1 and accuracy δ > 0 in L1([0, T ]), if for the

partition Λ

T∫
0

4

⎛⎝ M∑
k=0

b2k sup
m≥1

(
E

(
sin

t(ζk − ζ∗k)
2

)2m
) 1

m

⎞⎠
1
2

dt ≤
(

δ2

2(− ln β
2 )

) 1
2

. [5.1]

PROOF.– From corollary 1.2 and theorem 4.2 follows that for all U > 0

E exp

⎧⎨⎩U

T∫
0

|ηΛ(t)|dt

⎫⎬⎭ ≤ 2 exp

⎧⎪⎨⎪⎩U2

2

⎛⎝ T∫
0

(BΛ(t))
1
2 dt

⎞⎠2
⎫⎪⎬⎪⎭ .

From [1.20], we have

P

⎧⎨⎩
T∫

0

|ηΛ(t)|dt > δ

⎫⎬⎭ ≤ 2 exp

⎧⎪⎨⎪⎩−δ2

2

⎛⎝ T∫
0

(BΛ(t))
1
2 dt

⎞⎠−2
⎫⎪⎬⎪⎭ .

Then, by definition 5.1, the next inequality is satisfied

2 exp

⎧⎪⎨⎪⎩−δ2

2

⎛⎝ T∫
0

(BΛ(t))
1
2 dt

⎞⎠−2
⎫⎪⎬⎪⎭ ≤ β.
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If in the above inequality we determine
∫ T

0
(BΛ(t))

1
2 dt, where BΛ(t) is described

in [4.7], then condition [5.1] is obtained. �

THEOREM 5.2.– The model XΛ(t) approximates Gaussian random process X(t)
with reliability (1 − β), 0 < β < 1 and accuracy δ > 0 in Lp([0, T ]), 1 < p ≤ 2 if

for the partition of Λ

T∫
0

(BΛ(t))
p
2 dt ≤ δp,

and

T∫
0

(BΛ(t))
p
2 dt ≤ Z(p, δ), [5.2]

where BΛ(t) is described in [4.7], Z(p, δ) is a root of the equation(
δp

Z
· 2
p
+ 1− 2

p

)1/2

exp

{
1

p

}
exp

{
− δp

pZ

}
= β. [5.3]

PROOF.– From [1.19] and theorem 4.3 follows that for all 0 ≤ s < 1

E exp

⎧⎨⎩s

p

T∫
0

|ηΛ(t)|pdt ·

⎛⎝ T∫
0

|BΛ(t)|
p
2 dt

⎞⎠−1

⎫⎬⎭ ≤ (1− s)−
1
2 exp

{
(2− p)s

2p

}
.

[5.4]

From [1.21] and [5.4], we have that for
T∫
0

(BΛ(t))
p
2 dt ≤ δp

P

⎧⎪⎨⎪⎩
⎛⎝ T∫

0

|ηΛ(t)|pdt

⎞⎠
1
p

> δ

⎫⎪⎬⎪⎭
= P

⎧⎪⎨⎪⎩
T∫

0

|ηΛ(t)|pdt ·

⎛⎝ T∫
0

|BΛ(t)|
p
2 dt

⎞⎠−1

> δp

⎛⎝ T∫
0

|BΛ(t)|
p
2 dt

⎞⎠−1
⎫⎪⎬⎪⎭

≤

⎛⎜⎝δp · 2
p

⎛⎝ T∫
0

|BΛ(T )|
p
2 dt

⎞⎠−1

+ 1− 2

p

⎞⎟⎠
1
2
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× exp

{
1

p

}
· exp

⎧⎪⎨⎪⎩−δp

p

⎛⎝ T∫
0

|BΛ(t)|
p
2 dt

⎞⎠−1
⎫⎪⎬⎪⎭ .

The left side of [5.3] is increasing as Z < δp with respect to Z. Then

P

⎧⎪⎨⎪⎩
⎛⎝ T∫

0

|ηΛ(t)|pdt

⎞⎠
1
p

> δ

⎫⎪⎬⎪⎭ ≤ β.

It means that [5.2] is satisfied. �

EXAMPLE 5.1.– In theorem 4.3 evaluating the integrand expression, we obtain

τ(ηΛ(t)) ≤ 4

(
M−1∑
k=0

(
t

2

)2γ

|λk+1 − λk|2γ (F (λk+1)− F (λk))+

+F (+∞)− F (Λ))
1
2 .

Let |λk+1 − λk| = Λ
M , then

τ(ηΛ(t)) ≤ 4

((
Λt

2M

)2γ

F (Λ) + F (+∞)− F (Λ)

) 1
2

, [5.5]

Let δ = 0.01, β = 0.01, p = 2. Then, it follows from theorem 5.2 that δ√
z
exp{ 1

2−
δ2

2z} = β, whence it appears z = 8.04 × 10−6; [5.2] yields

T∫
0

16

((
Λt

2M

)2γ

F (Λ) + F (+∞)− F (Λ)

)

= 16

(
T 2γ+1

2γ + 1

(
Λ

2M

)2γ

F (Λ) + T (F (+∞)− F (Λ))

)

Let γ = 1, T = 1, F (λ) = 1 − e−λ. Then, from [5.2] and the last equality, we

have

4

3

(
Λ

M

)2

(1− e−Λ) + 16e−Λ ≤ 8.04 × 10−6
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M ≥ Λ(1− e−Λ)
1
2

(6 × 10−6 − 12e−Λ)
1
2

With the graphical editor SciDaVis, the approximate minimum of this function is

found in Λ (see Figure 5.1): M(16.75) ≈ 7, 233.

Figure 5.1. Graph of function M(Λ) = Λ(1−e−Λ)
1
2

(6·10−6−12e−Λ)
1
2

Using computer-simulated Gaussian random variables ηk1, ηk2 and variables ζk
(in the process X(t)), the model of Gaussian stationary random process is obtained

with accuracy 0.01 and reliability 0.99 in space L2([0, 1]) (see Figure 5.2).

EXAMPLE 5.2.– Let γ = 1, T = 1, F (Λ) = 1
9 − 1

9(1+Λ)9 , F (+∞) = 1
9 .

Then, from [5.2], we obtain

M ≥ Λ

3

(
1− (1 + Λ)−9

6 × 10−6 − 4
3 (1 + Λ)−9

) 1
2

With the graphical editor SciDaVis, we shall find the minimum of this function in

Λ. Figure 5.3 shows which minimum of function equals M(3.67) = 562, building a

model XΛ(t) of Gaussian process X(t) as M = 562 (see Figure 5.4).
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Figure 5.2. The model of Gaussian random process
in space L2([0, 1]), with spectral density f(λ) = e−λ

EXAMPLE 5.3.– Let γ = 1, T = 1, F (Λ) = ln 2eΛ

1+eΛ
.

Then, from [5.2], we obtain

M ≥ Λ

(
ln 2eΛ

1+eΛ

6 × 10−6 + 12 ln eΛ

1+eΛ

) 1
2

With the graphical editor SciDaVis, we shall find the minimum of this function in

Λ. Figure 5.5 shows which minimum of function equals M(16.78) = 6, 022, building

a model XΛ(t) of Gaussian process X(t) as M = 6022 (see Figure 5.6).
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Figure 5.3. Graph of function M(Λ) = Λ
3

(
1−(1+Λ)−9

6·10−6− 4
3
(1+Λ)−9

) 1
2

Figure 5.4. The model of Gaussian random process in space L2([0, 1])
with spectral density f(λ) = 1

(1+λ)10
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Figure 5.5. Graph of function M(Λ) = Λ

(
ln 2eΛ

1+eΛ

6·10−6+12 ln eΛ

1+eΛ

)1

/2

5.1.2. The accuracy of modeling stationary Gaussian processes
Lp([0, T ]) at p ≥ 1

Let X = {X(t), t ∈ T} be Gaussian stationary real centered continuous in a mean

square random process, where T is some parametric set. The definition of this process

and its model XΛ(t) are described in section 5.4.

Let {T,A, μ} be a measurable space, μ(T) < ∞, τ(t) = τ(X(t)).

LEMMA 5.1.– Let
∫
T

(τ(t))
p
dμ(t) < ∞, p ≥ 1. Then, X ∈ Lp(T) with probability

1.

PROOF.– The proof of the lemma follows from lemma 1.3 because of

E

∫
T

|X(t)|pdμ(t) =
∫
T

E|X(t)|pdμ(t) ≤ 2
(p
e

) p
2

∫
T

(
τ(X(t))

)p
dμ(t) < ∞.

So,
∫
T

|X(t)|pdμ(t) < ∞ with probability one. �
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Figure 5.6. The model of Gaussian random processes in space
L2([0, 1]) with spectral density f(λ) = 1

1+eλ

LEMMA 5.2.– For all s ≥ p ≥ 1, ε > 0, the relationship

P
{
‖X‖Lp > ε

}
≤ 2ε−s

(s
e

) s
2

∫
T

(τ(t))
s
dμ(t) ·

(
μ(T)

) s
p−1

[5.6]

holds true.

PROOF.– By the Tchebychev’s inequality

P
{
‖X‖Lp > ε

}
≤

E‖X‖sLp

εs
,
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E‖X‖sLp
= E

⎛⎝∫
T

|X(t)|p dμ(t)

⎞⎠ s
p

≤ E

⎛⎝∫
T

|X(t)|p d
(

μ(t)

μ(T)

)⎞⎠ s
p

(μ(T))
s
p

≤ E

⎛⎝∫
T

|X(t)|s d
(

μ(t)

μ(T)

)⎞⎠ (μ(T))
s
p =

∫
T

E |X(t)|s dμ(t)·(μ(T))
s
p−1

.

Then, from lemma 1.3 follows that

P
{
‖X‖Lp > ε

}
≤ ε−s · 2

(s
e

) s
2

∫
T

(τ(t))
s
dμ(t) · (μ(T))

s
p−1

.

�

PROPOSITION 5.1.– Let τ = sup
t∈T

τ(t) < ∞. Then, for all ε ≥ p
1
2 (μ(T))

1
p · τ the

following inequality holds

P
{
‖X‖Lp > ε

}
≤ 2 exp

{
− ε2

2τ2 · (μ(T))
2
p

}
.

PROOF.– By [5.6] for all ε > 0, s ≥ p, we have

P
{
‖X‖Lp > ε

}
≤ 2s

s
2 as,

where a = (μ(T ))
1
p ·τ

ε
√
e

. Consider s = a−2e−1. It is a minimum point of the right-hand

side of last inequality.

Then, for s = 1
a2e ≥ p, that is for ε > (μ(T))

1
p p

1
2 τ , we have

P
{
‖X‖Lp

> ε
}
≤ 2(a2e)−

1
2a2e a

1
a2e

= 2 exp

{
− 1

2a2e

}
= 2 exp

{
− ε2

2(μ(T))
2
p τ2

}
.

�

PROPOSITION 5.2.– Let T = [0, T ], T > 0, μ(·) be Lebesgue measure and τ(t) ≤
tνb for some ν > 0, b > 0. Then, for ε > p

1
2T ν+ 1

p b the inequality

P
{
‖X‖Lp > ε

}
≤ 2 exp

{
− ε2

2T 2ν+ 2
p b2

}(
νε2

T 2ν+ 2
p b2

+ 1

)−1

[5.7]

holds.
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PROOF.– From theorem’s conditions

T∫
0

(τ(t))
s
dt ≤ bsT νs+1

νs+ 1
and [5.6], we obtain

P
{
‖X‖Lp > ε

}
≤ 2ε−s

(s
e

) s
2 bsT νs+1

νs+ 1
· T s

p−1 = 2s
s
2

1

νs+ 1

(
T ν+ 1

p b√
eε

)s

.

If we take s = ε2

T
2ν+ 2

p b2
, then as s ≥ p, that is as ε ≥ p

1
2T ν+ 1

p b we obtain

P
{
‖X‖Lp > ε

}
≤ 2

(
ε2

T 2ν+ 2
p b2

) ε2

2T
2ν+ 2

p b2 T 2ν+ 2
p b2

νε2 + T 2ν+ 2
p b2

(
T ν+ 1

p b√
eε

) ε2

T
2ν+ 2

p b2

= 2

(
ν

ε2

T 2ν+ 2
p b2

+ 1

)−1

exp

{
− ε2

2T 2ν+ 2
p b2

}
.

�

THEOREM 5.3.– Let in model XΛ(t) the partition of Λ be such that

τ (ηΛ(t)) ≤ τ(Λ, T ),

where τ(Λ, T ) = (BΛ(t))
1
2 is defined in [4.7],

τ(Λ, T ) ≤ δ

p
1
2T

1
p

, [5.8]

τ(Λ, T ) ≤ δ

T
1
p

(
2 ln 2

β

) 1
2

, [5.9]

then the model approximates Gaussian process X(t) with reliability 1−β, 0 < β < 1
and accuracy δ > 0 in Lp([0, T ]), p ≥ 1.

PROOF.– This assertion follows from proposition 5.1.

Really, if δ > p
1
2T

1
p τ(Λ, T ) (this is the condition [5.8]), then from proposition 5.1

and definition 5.1 we have

P
{
‖ηΛ(t)‖Lp > δ

}
≤ 2 exp

{
− δ2

2τ2(Λ, T ) · T 2
p

}
≤ β.

And last inequality is satisfied when the condition [5.9] holds. �
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THEOREM 5.4.– Let in the model XΛ(t) the partition of Λ be such that

τ(ηΛ(t)) ≤ tντΛ, ν > 0;

(another form of condition [4.7])

τΛ <
δ

p
1
2T ν+ 1

p

; τΛ <
δ

T ν+ 1
p (yβ)

1
2

,

where yβ is a root of the equation 2 exp
{
−yβ

2

}
(νyβ + 1)

−1
= β. Then, the model

approximates Gaussian process X(t) with reliability (1−β), 0 < β < 1 and accuracy

δ > 0 in space Lp([0, T ]), p ≥ 1.

PROOF.– This theorem follows from proposition 5.2. Really, let τΛ be such that δ >

p
1
2T ν+ 1

p τΛ. Then

δ

T ν+ 1
p τ

1
2

Λ

≥ δ

p
1
2T ν+ 1

p τΛ
> 1.

A function f(yβ) = 2 exp
{
−yβ

2

}
(νyβ + 1)

−1
decreases as yβ > 1. Thus,

statement 5.2 implies the estimate

P
{
‖ηΛ(t)‖Lp > δ

}
≤ 2 exp

{
− δ2

2T 2ν+ 2
p τ2Λ

}
·
(
ν

δ2

T 2ν+ 2
p τ2Λ

+ 1

)−1

,

when δ2

T
2ν+ 2

p τ2
Λ

≥ yβ . �

EXAMPLE 5.4.– Let the spectral function F (λ) of the process X(t) be such that

F (+∞) = 1, F (+∞) − F (λ) ≤ 1
λ2γ , 0 ≤ γ ≤ 1, λ > 0. Using theorem 4.2, we

have

τ2(ηΛ(t)) ≤ 4
M∑
k=0

Ik,

where

Ik = sup
m≥1

4b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

,

b2k = F (λk+1)− F (λk).
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For k = 0, . . . ,M − 1:

Ik ≤ sup
m≥1

4b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

t2γ |u− v|2γ
4γ

dFk(v)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

≤ 41−γt2γb2k sup
m≥1

(
E|ζk − ζ∗k |2γm

) 1
m = 41−γt2γb2k|λk+1 − λk|2γ .

For k = M

IM ≤ sup
m≥1

4

b
2
m

M

⎛⎝ ∞∫
λM

⎛⎝ ∞∫
λM

dF (u)

⎞⎠m

dF (v)

⎞⎠
1
m

≤ 4 (F (+∞)− F (λM )) .

Hence,

τ2(ηΛ(t))

≤ 4

(
M−1∑
k=0

41−γt2γ |λk+1 − λk|2γ (F (λk+1)− F (λk)) + 4 (F (+∞)− F (λM ))

)
.

Let |λk+1 − λk| = λM

M , then

τ2(ηΛ(t)) ≤ 42−γt2γ
(
λM

M

)2γ

F (λM ) + 16 (F (+∞)− F (λM ))

≤ 16

(
λMT

2M

)2γ

+ 16λ−2γ
M ,

τ(Λ, T ) = 4

((
λMT

2M

)2γ

+
1

λ2γ
M

) 1
2

.

Find the minimum of the function τ(Λ, T ) with respect to a = λ2γ
M :

y = 4

((
T

2M

)2γ

a+
1

a

) 1
2

,

y
′
= 2

((
T

2M

)2γ

a+
1

a

)− 1
2
((

T

2M

)2γ

− 1

a2

)
= 0,

a =

(
2M

T

)γ

is a point of minimum.
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So, λ2γ
M =

(
2M
T

)γ
. Then

τ(Λ, T ) = 4

[(
2M

T

)γ (
T

2M

)2γ

+

(
T

2M

)γ
] 1

2

= 4
√
2

(
T

2M

) γ
2

.

Suppose, for example, in theorem 5.3, 2 ln 2
β > p. Then

τ <
δ

T
1
p

(
2 ln 2

β

) 1
2

<
δ

p
1
2T

1
p

,

4
√
2

(
T

2M

) γ
2

<
δ

T
1
p

(
2 ln 2

β

) 1
2

,

4
√
2
T

γ
2

δ2
γ
2

T
1
p

(
2 ln

2

β

) 1
2

< M
γ
2 ,

M > 2
5
γ −1T

1+ 2
pγ

δ
2
γ

(
2 ln

2

β

) 1
γ

.

Hence, the model XΛ(t) approximates the process X(t) with reliability 1 − β,

0 < β < 1, and accuracy δ > 0 in space Lp([0, T ]), if λM =
√
2M

1
2T− 1

2 and

M > 2
5
γ −1T

1+ 2
pγ

δ
2
γ

(
2 ln

2

β

) 1
γ

.

EXAMPLE 5.5.– Let for the function F (λ) the condition
∫∞
0

λ2γdF (λ) < ∞ for

some 0 ≤ γ ≤ 1 holds and F (+∞) = 1. Then, by theorem 4.3

τ2(ηλ(t)) ≤ 4
M∑
k=0

Ik,

Ik = sup
m≥1

4b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

.

If k = 0, . . . ,M − 1, then

Ik ≤ 41−γt2γb2k sup
m≥1

(
E|ζk − ζ∗k |2γm

) 1
m ≤ 41−γt2γb2k|λk+1 − λk|2γ ,
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where ζk, ζ
∗
k are independent random variables with the same cumulative distribution

function (cdf) Fk(λ) =
F (λ)−F (λk)

F (λk+1)−F (λk)
.

If k = M , then

IM ≤ sup
m≥1

4

b
2
m

M

⎛⎝ ∞∫
λM

⎛⎝ ∞∫
λM

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dF (u)

⎞⎠m

dF (λ)

⎞⎠
1
m

≤ sup
m≥1

4

b
2
m

M

⎛⎝ ∞∫
λM

⎛⎝ ∞∫
λM

t2γ

4γ
|u− λ|2γdF (u)

⎞⎠m

dF (λ)

⎞⎠
1
m

≤ sup
m≥1

t2γ41−γ

b
2
m

M

⎛⎝ ∞∫
λM

⎛⎝ ∞∫
λM

|u− λM |2γdF (u)

⎞⎠m

dF (λ)

⎞⎠
1
m

= t2γ41−γ

∫ ∞

λM

|u− λM |2γdF (u),

τ2(ηΛ(t))

≤ 4

⎛⎝M−1∑
k=0

41−γt2γb2k|λk+1 − λk|2γ + 41−γt2γ
∞∫

λM

|λ− λM |2γdF (λ)

⎞⎠

= 42−γt2γ

⎛⎝ max
0≤k≤M−1

|λk+1 − λk|2γF (λM ) +

∞∫
λM

|λ− λM |2γdF (λ)

⎞⎠

≤ 16t2γ

4γ

⎛⎝(λM

M

)2γ

+

∞∫
λM

|λ− λM |2γdF (λ)

⎞⎠ .

Therefore,

τ(ηΛ(t)) ≤ tγτΛ ,

where

τΛ =
4

2γ

((
λM

M

)2γ

+ J̃(λM )

) 1
2

; J̃(λM ) =

∞∫
λM

|λ− λ|2γdF (λ).
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Suppose, for example, yβ > p in theorem 5.6. Then, τΛ ≤ δ

T
γ+ 1

p (yβ)
1
2

,

4

2γ

((
λM

M

)2γ

+ J̃(λM )

) 1
2

≤ δ

T γ+ 1
p (yβ)

1
2

,

(
λM

M

)2γ

+ J̃(λM ) ≤ 22γδ2

16T 2γ+ 2
p yβ

,

M ≥ λM

(
22γδ2

16T 2γ+ 2
p yβ

− J̃(λM )

)− 1
2γ

= λM4
1
γ T 1+ 1

pγ y
1
2γ

β

(
22γδ2 − J̃(λM )16T 2γ+ 2

p yβ

)− 1
2γ

.

Thus, the model XΛ(t) approximates the process X(t) with reliability 1− β, 0 <
β < 1 and accuracy δ > 0 in space Lp([0, T ]), if

M ≥ λM2
2
γ T 1+ 1

pγ y
1
2γ

β (4γδ2 − J̃(λM )16T 2γ+ 2
p yβ)

− 1
2γ ,

where yβ is a root of the equation

2 exp
{
−yβ

2

}
(γyβ + 1)

−1
= β, 0 ≤ γ ≤ 1.

EXAMPLE 5.6.– From [5.5] and theorem 5.3 follows that

4

((
ΛT

2M

)2γ

F (Λ) + F (+∞)− F (Λ)

) 1
2

≤ δ

T
1
p

(
2 ln 2

β

) 1
2

,

where

M ≥ 2ΛT 1+ 1
p

(
2F (Λ) ln 2

β

δ2 − 32T
2
p ln 2

β (F (+∞)− F (Λ))

) 1
2

Let the spectral density be equal to f(λ) = exp(−λ), it means that F (λ) =
1− e−λ. Let T = 1, δ = 0.01, β = 0.01. Then, we have

M ≥ 2Λ

(
2(1− e−Λ) ln 200

0.0001− 32e−Λ ln 200

) 1
2
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A minimum of this function on Λ is approximately equal to M(16.55) ≈ 11, 422
(see Figure 5.7). Thus, choosing the minimum breakdown on the level of

M = 11, 422, we can computer simulate the model XΛ(t) of Gaussian process X(t)
with spectral function F (λ) = 1− e−λ (see Figure 5.8).

EXAMPLE 5.7.– Let the spectral density be equal to f(λ) = 1
(1+λ)10 , such that

F (Λ) = 1
9 − 1

9(1+λ)9 , F (+∞) = 1
9 . Let T = 1, δ = 0.01, β = 0.01. Then, we have

M ≥ Λ

(
8
9

(
1− (1 + Λ)−9

)
ln 200

0.0001− 32
9 (1 + Λ)−9 ln 200

) 1
2

�

���

���
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Figure 5.7. Graph of function M(Λ) = 2Λ
(

2(1−e−Λ) ln 200

0.0001−32e−Λ ln 200

) 1
2

A minimum of this function on Λ is approximately equal to M(3.56) = 876 (see

Figure 5.9).

Thus, choosing the minimum breakdown on the level of M = 876, we can

computer simulate the model XΛ(t) of Gaussian process X(t) with spectral function

F (Λ) = 1
9 − 1

9(1+λ)9 , F (+∞) = 1
9 (see Figure 5.10).
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Figure 5.8. The model of Gaussian random processes in space
Lp([0, 1]), p ≥ 1 with spectral density f(λ) = e−λ
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Figure 5.9. Graph of function M(Λ) = Λ

(
1
9 (1−(1+Λ)−9) ln 200

0.0001− 32
9

(1+Λ)−9 ln 200

) 1
2
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Figure 5.10. The model of Gaussian random processes in space
Lp([0, 1]), p ≥ 1 with spectral density f(λ) = 1

(1+λ)10

EXAMPLE 5.8.– Let the spectral density be equal to f(λ) = 1
1+eλ

, such that F (Λ) =

ln 2eΛ

1+eΛ , F (+∞) = ln 2. Let T = 1, δ = 0.01, β = 0.01. Then, we have

M ≥ Λ

(
8 ln 2eΛ

1+eΛ
ln 200

0.0001 + 32 ln 200 ln eΛ

1+eΛ

) 1
2

A minimum of this function on Λ is approximately equal to M(16.58) = 9, 509
(see Figure 5.11).

Thus, choosing the minimum breakdown on the level of M = 9, 509, we can

computer simulate the model XΛ(t) of Gaussian process X(t) with spectral function

F (Λ) = ln 2eΛ

1+eΛ
(see Figure 5.12).

5.1.3. The accuracy of modeling Gaussian stationary random processes
in norms of Orlicz spaces

Let X = {X(t), t ∈ T} be Gaussian centered stationary real continuous in the

mean square random process, where T is some parametric set. The definitions and

properties of this process and its model XΛ(t) are described in section 5.4.
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Figure 5.11. Graph of function M ≥ Λ

(
8 ln 2eΛ

1+eΛ
ln 200

0.0001+32 ln 200 ln eΛ

1+eΛ

) 1
2

Figure 5.12. The model of Gaussian random processes in space
Lp([0, 1]), p ≥ 1 with spectral density f(λ) = 1

1+eλ
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DEFINITION 5.2.– A random process XΛ(t) approximates process X(t) with
reliability 1 − β, 0 < β < 1 and accuracy δ > 0 in the Orlicz space LU (Ω), if there
exists a partition of Λ, that the next inequality

P {‖X(t)−XΛ(t)‖LU > δ} ≤ β

is fulfilled.

THEOREM 5.5.– [KOZ 88] Let U = {U(x), x ∈ R} be C-function such that the

function GU (t) = exp
{(

U (−1)(t− 1)
)2}

is convex for t ≥ 1. Then, with probability

1 X ∈ LU (T) and for all ε such that

ε ≥ max(μ(T), 1) · τ
(
2 +
(
U (−1)(1)

)−2
) 1

2

we have

P {‖X‖LU
> ε} ≤

√
e
εU (−1)(1)

μ̂(T) · τ · exp
{
−ε2(U (−1)(1))2

2(μ̂(T))2 · τ2
}
, [5.10]

where μ̂(T ) = max(μ(T), 1).

THEOREM 5.6.– Let the partition of Λ in the model XΛ(t) be such that inequality

τ (ηΛ(t)) ≤ τ(Λ, T )

holds, where τ(Λ, T ) is defined in [4.7].

τ(Λ, T ) ≤ δ

T̂ ·
(
2 +
(
U (−1)(1)

)−2
) 1

2

, [5.11]

τ(Λ, T ) ≤ δU (−1)(1)

T̂ x(β)
, [5.12]

where x(β) > 1 is a root of the equation
√
ex·exp

{
−x2

2

}
= β with T̂ = max(T, 1).

Then, the model approximates Gaussian process X(t) with reliability 1−β, 0 < β <
1 and accuracy δ > 0 in Orlicz space LU ([0, T ]), where C -function U satisfies the

conditions of theorem 5.5 (μ(·) is Lebesgue measure).

PROOF.– The statement of this theorem follows from theorem 5.5. Indeed, let

τ(Λ, T ) be such that δ > T̂ · τ(Λ, T ) ·
(
2 +
(
U (−1)(1)

)−2
) 1

2

(condition [5.11]).

Then

U (−1)(1) >

(
2 +
(
U (−1)(1)

)−2
) 1

2

,



202 Simulation of Stochastic Processes with Given Accuracy and Reliability

δU (−1)(1)

T̂ · τ(Λ, T )
≥ δ

T̂ τ(Λ, T )
(
2 +
(
U (−1)(1)

)−2
) 1

2

≥ 1.

The function f(x) =
√
ex exp

{
−x2

2

}
decreases as x > 1, f(1) = 1. Thus, from

[5.10] it follows that

P {‖ηΛ(t)‖LU
> δ} ≤

√
e
δU (−1)(1)

T̂ · τ(Λ, T )
· exp

{
− δ2(U (−1)(1))2

2T̂ 2 · τ2(Λ, T )

}
= β

holds if the condition
δU(−1)(1)

T̂ ·τ(Λ,T )
≥ x(β) is satisfied, that is [5.12]. �

5.2. The accuracy and reliability of the model stationary random
processes in the uniform metric

In section 5.2.1, the estimates of supremum norm for sub-Gaussian random

processes with bounded spectrum are obtained. Then, they will be used in the

investigation of selection conditions of the partition [0,Λ] (on which a spectral

function is defined) such that there exists Gaussian process for the model of a random

process that is approximated by the model with desired accuracy and reliability.

These issues are considered in [TEG 01].

In section 5.2.2, the norms of sub-Gaussian processes are estimated. Using the

theory of Lp(Ω)-processes and preliminary estimates, the conditions on partition Λ of

the set [0,∞] are found such that for model there exists a Gaussian random process,

which is approached with desired accuracy and reliability in uniform metric.

5.2.1. The accuracy of simulation of stationary Gaussian processes with
bounded spectrum

Let X(t) be a Gaussian centered stationary real continuous in mean square

stochastic process with bounded spectrum, it means that the covariance function has

the form:

r(τ) = EX(t+ τ)X(t) =

Λ∫
0

cosλtdF (λ),

where F (λ) is continuous spectral function of the process.
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DEFINITION 5.3.– A random process XΛ(t) approximates Gaussian process X(t)
with the reliability of 1− β, 0 < β < 1 and accuracy δ > 0 in the space C([0, T ]), if
there exists such partition of Λ, that inequality

P

{
sup

0≤t≤T
|X(t)−XΛ(t)| > δ

}
≤ β

holds.

The process X(t) has such representation

X(t) =

Λ∫
0

cosλtdη1(λ) +

Λ∫
0

sinλtdη2(λ),

where η1(λ) and η2(λ) are independent centered Gaussian random processes that

E(ηi(λ2)− ηi(λ1))
2 = F (λ2)− F (λ1) as λ1 < λ2, i = 1, 2.

As a model of random process, we can take

XΛ(t) =

M∑
k=0

[ηk1 cos ζkt+ ηk2 sin ζkt],

where the components are described in section 5.4.

For arbitrary t, s ∈ [0, T ], we consider the difference

ηΛ(t)− ηΛ(s) =
M∑
k=0

⎡⎣ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

+

λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

⎤⎦ ,
where the process ηΛ(t) is defined in [4.6]. The following lemma holds true.

LEMMA 5.3.– For m = 0, 1, . . .

E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

⎞⎠2m+1

= 0,
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E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

⎞⎠2m+1

= 0,

E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

⎞⎠2m

≤ Vkm,

E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

⎞⎠2m

≤ Vkm,

where

Vkm = 42mΔ2mE

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣+ ∣∣∣∣sin ζk(s− t)

2

∣∣∣∣
×
∣∣∣∣sin (t+ s)(ζk − λ)

4

∣∣∣∣)2

dF (λ)

)m

, Δ2m =
(2m)!

2mm!
.

PROOF.–

|cosλt− cos ζkt− cosλs+ cos ζks|

=

∣∣∣∣2 sin λ(s− t)

2
sin

λ(s+ t)

2
− 2 sin

ζk(s− t)

2
sin ζk

(s+ t)

2

∣∣∣∣
=

∣∣∣∣2 sin λ(s+ t)

2

(
sin

λ(s− t)

2
− sin

ζk(s− t)

2

)
+2 sin

ζk(s− t)

2

(
sin

λ(s+ t)

2
− sin

ζk(s+ t)

2

)∣∣∣∣
=

∣∣∣∣4 sin λ(s+ t)

2
sin

(s− t)(λ− ζk)

4
cos

(s− t)(λ+ ζk)

4

+ 4 sin
ζk(s− t)

2
sin

(s+ t)(λ− ζk)

4
cos

(s+ t)(λ+ ζk)

4

∣∣∣∣
≤ 4

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣+ ∣∣∣∣sin ζk(s− t)

2

∣∣∣∣ · ∣∣∣∣sin (t+ s)(ζk − λ)

4

∣∣∣∣) ,
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| sinλt− sin ζkt− sinλs+ sin ζks|

=

∣∣∣∣2 sin λ(t− s)

2
· cos λ(t+ s)

2
− 2 sin

ζk(t− s)

2
· cos ζk(t+ s)

2

∣∣∣∣
= 2

∣∣∣∣cos λ(t+ s)

2

(
sin

λ(t− s)

2
− sin

ζk(t− s)

2

)
+sin

ζk(t− s)

2

(
cos

λ(t+ s)

2
− cos

ζk(t+ s)

2

)∣∣∣∣
= 4

∣∣∣∣cos λ(t+ s)

2
sin

(t− s)(λ− ζk)

4
cos

(t− s)(λ+ ζk)

4

+ sin
ζk(t− s)

2
sin

(ζk − λ)(t+ s)

4
sin

(ζk + λ)(t+ s)

4

∣∣∣∣
≤ 4

(∣∣∣∣sin (t− s)(λ− ζk)

4

∣∣∣∣+ ∣∣∣∣sin ζk(t− s)

2

∣∣∣∣ · ∣∣∣∣sin (t+ s)(ζk − λ)

4

∣∣∣∣) .

Since for centered Gaussian random variable ξ, we have Eξ = 0, Eξ2 = σ2,

Eξ2k+1 = 0, Eξ2k = Δ2kσ
2k, k = 1, 2, . . ., Δ2k = (2k)!

2kk!
, then

E

⎛⎝ λk+1∫
λk

(cosλt− cosλs− cos ζkt+ cos ζks)dη1(λ)

⎞⎠2m

≤ Δ2mE

⎛⎝ λk+1∫
λk

(cosλt− cosλs− cos ζkt+ cos ζks)
2dF (λ)

⎞⎠m

≤ 42mΔ2mE

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣+ ∣∣∣∣sin ζk(s− t)

2

∣∣∣∣
×
∣∣∣∣sin (t+ s)(ζk − λ)

4

∣∣∣∣)2

dF (λ)

)m

.

Similarly, for the sinuses:

E

⎛⎝ λk+1∫
λk

(sinλt− sinλs− sin ζkt+ sin ζks)dη2(λ)

⎞⎠2m
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≤ 42mΔ2mE

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (t− s)(λ− ζk)

4

∣∣∣∣+ ∣∣∣∣sin ζk(t− s)

2

∣∣∣∣
×
∣∣∣∣sin (t+ s)(ζk − λ)

4

∣∣∣∣)2

dF (λ)

)m

.
�

For the process ηΛ(t) at [0, T ] find the estimates of σ0 = sup
0≤t≤T

τ(ηΛ(t)) and

σ(h) = sup
|t−s|≤h

τ(ηΛ(t)− ηΛ(s)).

Estimate σ0. From lemma 1.7, it follows that

τ2(ηΛ(t))

≤
M∑
k=0

τ2

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) +

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠

≤
M∑
k=0

⎡⎣τ
⎛⎝ λk+1∫

λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠+ τ

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠⎤⎦2

.

Since the random values χk1 =
λk+1∫
λk

(cosλt − cos ζkt)dη1(λ), and

χk2 =
λk+1∫
λk

(sinλt− sin ζkt)dη2(λ) are such that their odd moments equal zero, then

by of the corresponding theorem about the necessary and sufficient conditions for the

existence of a sub-Gaussian random variable [BUL 00], we will have

τ(χki) ≤ Θ1(χki) = sup
m≥1

[
1

Δ2m
Eχ2m

ki

] 1
2m

, i = 1, 2.

From lemma 4.1, we have

Eχ2m
ki ≤ 4mΔ2m

λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dF (λ)

⎞⎠m

dFk(u)

≤ 4mΔ2mb2mk

λk+1∫
λk

⎛⎝ λk+1∫
λk

t2|u− λ|2
4

dFk(λ)

⎞⎠m

dFk(u)
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≤ 4mΔ2mt2m
1

4m
|λk+1 − λk|2m (F (λk+1)− F (λk))

m

= t2mΔ2m|λk+1 − λk|2m (F (λk+1)− F (λk))
m
.

Then,

τ(χki) ≤ sup
m≥1

[
t2m|λk+1 − λk|2m(F (λk+1)− F (λk))

m
] 1

2m

= t|λk+1 − λk|(F (λk+1) − F (λk))
1
2 .

So,

τ2(ηΛ(t)) ≤ 4

M∑
k=0

τ2(χki) ≤ 4t2
M∑
k=0

|λk+1 − λk|2(F (λk+1)− F (λk)).

Namely,

τ(ηΛ(t)) ≤ 2t

(
M∑
k=0

|λk+1 − λk|2(F (λk+1)− F (λk))

) 1
2

,

So,

σ0 ≤ 2T

(
M∑
k=0

|λk+1 − λk|2(F (λk+1)− F (λk))

) 1
2

= b0.

If we take λk+1 − λk = Λ
M , then

b0 = 2T
Λ

M

(
M∑
k=0

(F (λk+1)− F (λk))

) 1
2

= 2T
Λ

M
(F (Λ))

1
2 .

Estimate σ(h). Consider the value

ωk1 =

λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ),

ωk2 =

λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ).



208 Simulation of Stochastic Processes with Given Accuracy and Reliability

As in estimation of τ(ηΛ(t)), the inequality

τ2(ηΛ(t)− ηΛ(s)) ≤ 2
M∑
k=0

(
τ2(ωk1) + τ2(ωk2)

)
≤ 2

M∑
k=0

(
Θ2

1(ωk1) + Θ2
1(ωk2)

)

is obtained, where Θ1(ωki) = sup
m≥1

(
2mm!
(2m)!Eω2m

ki

) 1
2m

. Thus, by lemma 5.3

τ2(ηΛ(t)− ηΛ(s))

≤ 43
M∑
k=0

sup
m≥1

⎡⎣ λk+1∫
λk

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− u)

4

∣∣∣∣
+

∣∣∣∣sin u(s− t)

2

∣∣∣∣ ∣∣∣∣sin (λ− u)(t+ s)

4

∣∣∣∣)2

dF (λ)

)m

dFk(u)

] 1
m

≤ 43
M∑
k=0

sup
m≥1

⎡⎣b2mk
λk+1∫
λk

⎛⎝ λk+1∫
λk

( |s− t||λ− u|
4

+
|u||s− t|

2
· |λ− u|(t+ s)

4

)2

dFk(λ)

)m

dFk(u)

] 1
m

≤ 43|s− t|2
M∑
k=0

sup
m≥1

⎡⎣b2mk
λk+1∫
λk

⎛⎝ λk+1∫
λk

|λ− u|
42

×
(
1 +

u(t+ s)

2

)2

dFk(λ)

)m

dFk(u)

] 1
m

≤ 4|s− t|2
M∑
k=0

b2k|λk+1 − λk|2
(
1 +

λk+1(t+ s)

2

)
.

If we put λk+1 − λk = Λ
M , then we get

τ(ηΛ(t)− ηΛ(s)) ≤ 2|s− t|
(

M∑
k=0

b2k
Λ2

M2

(
1 +

Λ(t+ s)

2

)) 1
2

≤ 2|t − s|(1 + ΛT )
Λ

M
(F (λ))

1
2 .
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σ(h) ≤ 2h(1 + ΛT )
Λ

M
(F (Λ))

1
2 . [5.13]

THEOREM 5.7.– Let the model XΛ(t) with a partition Λ be such that under δ >
8Ĩ(ε0) the relationship

2 exp

{
− 1

2ε20

(
δ −
√
8δĨ(ε0)

)2
}

≤ β

holds, where ε0 = sup
0≤t≤T

τ(ηΛ(t)) = σ0, ηΛ(t) = X(t)−XΛ(t),

Ĩ(ε0) ≤
1√
2

ε0∫
0

√
ln

(
TΛ(1 + ΛT )

εM

√
F (λ) + 1

)
dε < ∞.

Then, the model approximates Gaussian random process X(t) with the reliability

1− β, 0 < β < 1 and accuracy δ > 0 in space C([0, T ]).

PROOF.– This theorem follows from entropy characteristics [BUL 00]. Indeed, at δ >
8I(ε0) for sub-Gaussian process ηΛ(t) the inequality [TEG 01].

P

{
sup

0≤t≤T
|ηΛ(t)| > δ

}
≤ 2 exp

{
− 1

2ε20

(
δ −
√
8δĨ(ε0)

)2
}

holds, where

Ĩ(ε0) =
1√
2

ε0∫
0

√
H(ε)dε =

1√
2

ε0∫
0

√
ln

(
T

2σ(−1)(ε)
+ 1

)
dε < ∞,

H(ε) is metric entropy of a compact set [0, T ],

σ(h) = sup
|t−s|<h

τ(ηΛ(t)− ηΛ(s)).

From the previous estimates for σ(h), we have

σ(−1)(h) =
Mh

2Λ
√

F (Λ)(1 + ΛT )
,

then

Ĩ(ε0) =
1√
2

ε0∫
0

√
ln

(
TΛ(1 + TΛ)

εM

√
F (Λ) + 1

)
dε,
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which can be made as small as it needs by choosing Λ and M . It would be such a

partition Λ that the condition (by definition 5.3)

2 exp

{
− 1

2ε20
(δ −

√
8δĨ(ε0))

2

}
≤ β

is fulfilled. �

EXAMPLE 5.9.– At first, we estimate the integral Ĩ(ε0) in theorem 5.7

Ĩ(ε0) ≤
1√
2

ε0∫
0

√
ln

(
TΛ(1 + ΛT )

εM

√
F (Λ) + 1

)
dε

≤ 1√
2

ε0∫
0

√
TΛ(1 + ΛT )

εM

√
F (Λ)dε =

√
2TΛ(1 + ΛT )

√
F (Λ)ε0

M
.

Now you can find a partition of [0,Λ], by which we construct a model XΛ(t)
Gaussian process X(t). From theorem 5.7 at δ > 8Ĩ(ε0),

M >
16TΛ

δ

√
F (Λ)(1 + TΛ) [5.14]

be correct ratio

2 exp

⎧⎪⎪⎨⎪⎪⎩− 1

2ε20

⎛⎜⎝δ −

√√√√
8δ

√
2TΛ(1 + ΛT )

√
F (Λ)ε0

M

⎞⎟⎠
2
⎫⎪⎪⎬⎪⎪⎭ ≤ β

2 exp

⎧⎨⎩− M2

8T 2Λ2F (Λ)

(
δ −
√

16δTΛ

M
(F (Λ)(1 + ΛT ))

1
4

)2
⎫⎬⎭ ≤ β

δM

TΛ
√
8F (Λ)

−
√
2δM√
TΛ

(
1 + ΛT

F (Λ)

) 1
4

≥
√
ln

2

β

We obtain

M ≥ TΛ
√
F (Λ)

δ

⎛⎝2(1 + ΛT )
1
4 +

√
4
√
1 + ΛT + 2

√
2 ln

2

β

⎞⎠2

[5.15]
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Under given conditions [5.14], we can conclude that for all

M >
TΛ
√
F (Λ)

δ

⎛⎝2(1 + ΛT )
1
4 +

√
4
√
1 + ΛT + 2

√
2 ln

2

β

⎞⎠2

the model XΛ(t) approximates Gaussian process X(t) of reliability 1 − β and

accuracy δ > 0 in space C([0, T ]).

1) Let T = 1, δ = 0.01, β = 0.01, F (Λ) = 1 − e−Λ. Then, for Λ = 2.01, it

is performed M = 7, 429. Model XΛ(t) of Gaussian process will be as follows (see

Figure 5.13).

Figure 5.13. Model of Gaussian random processes in space
C([0, 1]) with spectral density f(λ) = e−λ

2) Let T = 1, δ = 0.01, β = 0.01, F (Λ) = 1
9 (1−(1+Λ)−9). Then, for Λ = 2.01

we have that M = 2, 661. The model XΛ(t) of Gaussian process will be as follows

(see Figure 5.14).

3) Let T = 1, δ = 0.01, F (Λ) = ln 2eΛ

1+eΛ
. Then, at Λ = 2.01 have that M =

6, 013. Model XΛ(t) of Gaussian process will be as follows (see Figure 5.15).
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Figure 5.14. Model of Gaussian random process in space
C([0, 1]) with spectral density f(λ) = 1

(1+λ)10

Figure 5.15. Model of Gaussian random process in space
C([0, 1]) with spectral density f(λ) = 1

1+eλ
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5.2.2. Application of Lp(Ω)-processes theory in simulation of Gaussian
stationary random processes

Consider Lp(Ω)-processes in Orlicz space of random variables generated by the

function U(x) = |x|p, x ∈ R, p ≥ 2. Random process in this space is called Lp(Ω)-
process. The norm is defined as

‖X(t)‖U = ‖X(t)‖Lp = (E|X(t)|p)
1
p .

Let X = {X(t), t ∈ T} be Gaussian stationary centered continuous in mean

square random process with covariance function

EX(t+ τ)X(t) = r(τ) =

∞∫
0

cosλτdF (λ).

The representation of Gaussian random process X(t) and its model XΛ(t) are

described in section 5.4.

Consider sub-Gaussian process ηΛ(t) = X(t) − XΛ(t). It is defined by the

expression [4.6]. Further, we will need the following assertion.

LEMMA 5.4.– [MAC 88] Let ‖ξ‖Lp = (E|ξ|p)
1
p , 1 ≤ p < ∞, ξi ∈ Lp is a sequence

of independent random variables with Eξi = 0, i = 1,∞. Then

‖
n∑

i=1

ξi‖2Lp
≤ Cp

(
n∑

i=1

‖ξi‖2Lp

)
,

where

Cp = 8

(
G(p+ 1)

2
√
π

) 2
p

.

LEMMA 5.5.– If
∞∫
0

λpdF (λ) < ∞, p ≥ 2, then for sub-Gaussian random process

ηΛ(t) the inequality

‖ηΛ(t)‖Lp ≤ 2C
1
2
p Δ̃

1
p
p T

⎡⎢⎣(λM

M

)2

F (λM ) + 4b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎤⎥⎦
1
2

[5.16]

holds.
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PROOF.– From lemma 5.4 follows that

‖ηΛ(t)‖2Lp

≤ Cp

M∑
k=0

∥∥∥∥∥∥
λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) +

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

∥∥∥∥∥∥
2

Lp

≤ 2Cp

M∑
k=0

∥∥∥∥∥∥
λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

∥∥∥∥∥∥
2

Lp

+

∥∥∥∥∥∥
λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

∥∥∥∥∥∥
2

Lp

,

From Fubini’s theorem and lemma 4.1, we have

∥∥∥∥∥∥
λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

∥∥∥∥∥∥
2

Lp

=

⎛⎜⎝E

∣∣∣∣∣∣
λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

∣∣∣∣∣∣
p⎞⎟⎠

2
p

=

⎛⎜⎝EEζk

∣∣∣∣∣∣
λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

∣∣∣∣∣∣
p⎞⎟⎠

2
p

=

⎛⎜⎝Δ̃pE

∣∣∣∣∣∣
λk+1∫
λk

(cosλt− cos ζkt)
2dF (λ)

∣∣∣∣∣∣
p
2
⎞⎟⎠

2
p

≤ Δ̃
2
p
p

⎛⎜⎝E

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(ζk − λ)

2

∣∣∣∣2 dF (λ)

⎞⎠
p
2
⎞⎟⎠

2
p

= Ykp,

where

Δ̃p =
1√
2π

∞∫
−∞

|t|pe− t2

2 dt.
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Similarly

∥∥∥∥∥∥
λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

∥∥∥∥∥∥
2

Lp

=

⎛⎜⎝E

∣∣∣∣∣∣
λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

∣∣∣∣∣∣
p⎞⎟⎠

2
p

≤

⎛⎜⎝Δ̃pE

∣∣∣∣∣∣
λk+1∫
λk

(sinλt− sin ζkt)
2dF (λ)

∣∣∣∣∣∣
p
2
⎞⎟⎠

2
p

≤ Δ̃
2
p
p

⎛⎜⎝E

⎛⎝ λk+1∫
λk

∣∣∣∣2 sin t(ζk − λ)

2

∣∣∣∣2 dF (λ)

⎞⎠
p
2
⎞⎟⎠

2
p

= Ykp,

Ykp ≤ 4Δ̃
2
p
p b

2
k

⎛⎜⎝E

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(ζk − λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠
p
2
⎞⎟⎠

2
p

= 4Δ̃
2
p
p b

2
k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣2 dFk(λ)

⎞⎠
p
2

dFk(u)

⎞⎟⎠
2
p

≤ 4Δ̃
2
p
p b

2
k

⎛⎝ λk+1∫
λk

λk+1∫
λk

∣∣∣∣sin t(u− λ)

2

∣∣∣∣p dFk(λ)dFk(u)

⎞⎠
2
p

≤ 4Δ̃
2
p
p b

2
k

⎛⎝ λk+1∫
λk

λk+1∫
λk

tp|u− λ|p
2p

dFk(λ)dFk(u)

⎞⎠
2
p

= Δ̃
2
p
p b

2
kt

2 (E|θk|p)
2
p ,

where θk is such random variable that θk = θk1 − θk2, θk1, θk2 are independent

identically distributed random variables with cdf

Fk(λ) =
F (λ)− F (λk)

F (λk+1)− F (λk)
.
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If k < M , then

(E|θk|p)
2
p =

⎛⎝ λk+1∫
λk

λk+1∫
λk

|u− λ|pdFk(λ)dFk(u)

⎞⎠
2
p

≤ |λk+1 − λk|2.

If k = M , then

(E|θM |p)
2
p ≤

⎛⎝ ∞∫
λM

∞∫
λM

|λ− u|pdFM (λ)dFM (u)

⎞⎠ 2
p

≤

⎛⎝ ∞∫
λM

∞∫
λM

|λ+ u|pdFM (λ)dFM (u)

⎞⎠ 2
p

≤

⎛⎜⎝
⎛⎝ ∞∫
λM

∞∫
λM

λpdFM (λ)dFM (u)

⎞⎠ 1
p

+

⎛⎝ ∞∫
λM

∞∫
λM

updFM (λ)dFM (u)

⎞⎠ 1
p

⎞⎟⎠
2

=

⎛⎜⎝2

⎛⎝ ∞∫
λM

updFM (u)

⎞⎠ 1
p

⎞⎟⎠
2

=
4

b
4
p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

.

Then

‖ηΛ(t)‖2Lp
≤ 4Cp

M∑
k=0

Ykp

= 4CpΔ̃
2
p
p t

2

⎛⎜⎝M−1∑
k=0

b2k|λk+1 − λk|2 + 4b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎞⎟⎠ .

If we take |λk+1 − λk| =
λM

M
, then

‖ηΛ(t)‖2Lp
= 4CpΔ̃

2
p
p T

2

⎡⎢⎣(λM

M

)2

F (λM ) + 4b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎤⎥⎦ .
�
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LEMMA 5.6.– If
∞∫
0

λpdF (λ) < ∞, p ≥ 2, then the following inequality carries out

‖ηΛ(t)− ηΛ(s)‖Lp ≤ 2C
1
2
p Δ̃

1
p
p |s− t|

[(
λM

M

)2

(1 + λMT )2F (λM )

+16b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎤⎥⎦
1
2

. [5.17]

PROOF.– From lemma 5.4, we have

∥∥ηΛ(t)− ηΛ(s)
∥∥2
Lp

≤ 2Cp

M∑
k=0

⎛⎜⎝
∥∥∥∥∥∥

λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

∥∥∥∥∥∥
2

Lp

+

∥∥∥∥∥∥
λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

∥∥∥∥∥∥
2

Lp

⎞⎟⎠ ;

From Fubini’s theorem and lemma 5.3 follows

∥∥∥∥∥∥
λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

∥∥∥∥∥∥
2

Lp

=

⎛⎜⎝E

∣∣∣∣∣∣
λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

∣∣∣∣∣∣
p⎞⎟⎠

2
p

=

⎛⎜⎝Δ̃pE

∣∣∣∣∣∣
λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)
2dF (λ)

∣∣∣∣∣∣
p
2
⎞⎟⎠

2
p

≤ 16

⎛⎝Δ̃pE

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣
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+

∣∣∣∣sin (s− t)ζk
2

∣∣∣∣ · ∣∣∣∣sin (ζk − λ)(t+ s)

4

∣∣∣∣)2

dF (λ)

) p
2

⎞⎠ 2
p

= Wkp.

A similar estimate for sine:

∥∥∥∥∥∥
λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

∥∥∥∥∥∥
2

Lp

≤ 16

⎛⎝Δ̃pE

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣
+

∣∣∣∣sin (s− t)ζk
2

∣∣∣∣ · ∣∣∣∣sin (ζk − λ)(t+ s)

4

∣∣∣∣)2

dF (λ)

) p
2

⎞⎠ 2
p

= Wkp.

Then,
∥∥ηΛ(t)− ηΛ(s)

∥∥2
Lp

≤ 4Cp

M∑
k=0

Wkp.

If k < M , then

Wkp ≤ 16Δ̃
2
p
p b

2
k

⎛⎝E

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣
+

∣∣∣∣sin (s− t)ζk
2

∣∣∣∣ · ∣∣∣∣sin (ζk − λ)(t+ s)

4

∣∣∣∣)2

dFk(λ)

) p
2

⎞⎠ 2
p

≤ 16Δ̃
2
p
p b

2
k

⎛⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

( |s− t| · |λ− u|
4

+
u|s− t|

2

|u− λ|(s+ t)

4

)2

dFk(λ)

) p
2

dFk(u)

⎞⎠ 2
p

= Δ̃
2
p
p b

2
k|s− t|2

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

|λ− u|2
(
1 +

(s+ t)u

2

)2

dFk(λ)

⎞⎠
p
2

dFk(u)

⎞⎟⎠
2
p
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≤ Δ̃
2
p
p b

2
k|s− t|2 · |λk+1 − λk|2

(
1 +

(s+ t)λk+1

2

)2

≤ Δ̃
2
p
p b

2
k|s− t|2 · |λk+1 − λk|2(1 + λMT )2.

If k = M , then

WMp ≤

≤ 16Δ̃
2
p
p b

2
M

⎛⎜⎝E

⎛⎝ ∞∫
λM

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣+ ∣∣∣∣sin (s− t)ζk
2

∣∣∣∣)2

dFM (λ)

⎞⎠
p
2

⎞⎟⎠
2
p

≤ 16Δ̃
2
p
p b

2
M

⎛⎜⎝ ∞∫
λM

⎛⎝ ∞∫
λM

( |s− t| · |λ− u|
4

+
|s− t|u

2

)2

dFM (λ)

⎞⎠
p
2

dFM (u)

⎞⎟⎠
2
p

≤ Δ̃
2
p
p b

2
M |s− t|2

⎛⎜⎝ ∞∫
λM

⎛⎝ ∞∫
λM

((u+ λ) + 2u)
2
dFM (λ)

⎞⎠
p
2

dFM (u)

⎞⎟⎠
2
p

≤ Δ̃
2
p
p b

2
M |s− t|2

⎛⎝ ∞∫
λM

∞∫
λM

(3u+ λ)
p
dFM (λ)dFM (u)

⎞⎠ 2
p

≤ Δ̃
2
p
p b

2
M |s− t|2

⎛⎜⎝
⎛⎝ ∞∫
λM

∞∫
λM

(3u)
p
dFM (λ)dFM (u)

⎞⎠ 1
p

+

⎛⎝ ∞∫
λM

∞∫
λM

λpdFM (λ)dFM (u)

⎞⎠ 1
p

⎞⎟⎠
2

= 42Δ̃
2
p
p b

2
M |s− t|2

⎛⎝ ∞∫
λM

updFM (u)

⎞⎠ 2
p

.
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Then, we obtain

WMp = 16Δ̃
2
p
p b

2− 4
p

M |s− t|2
⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

Then,

‖ηΛ(t)− ηΛ(s)‖2Lp
≤ 4CpΔ̃

2
p
p |s− t|2

(
M−1∑
k=0

b2k|λk+1 − λk|2(1 + λMT )2

+16b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎞⎟⎠ .

So,

‖ηΛ(t)− ηΛ(s)‖Lp ≤ L|s− t|,
where

L =

(
4CpΔ̃

2
p
p

(
M−1∑
k=0

b2k|λk+1 − λk|2(1 + λMT )2

+16b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎞⎟⎠
⎞⎟⎠

1
2

.

Note that when |λk+1 − λk| = λM

M , then

L ≤ 2C
1
2
p Δ̃

1
p
p

⎛⎜⎝(λM

M

)2

(1 + λMT )2F (λM ) + 16b
2− 4

p

M

⎛⎝ ∞∫
λM

updF (u)

⎞⎠ 2
p

⎞⎟⎠
1
2

.

[5.18]

�

THEOREM 5.8.– If in the model XΛ(t) the partition Λ are such that the following

inequalities hold:

∞∫
0

λpdF (λ) < ∞, p ≥ 2 [5.19]
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(p+ 1)p+1

(pδ)p

(
p

p− 1

(
TL

2

) 1
p

ε
1− 1

p

0 + ε0

)p

≤ β,

where L is defined in [5.18]. Then, the model approximates Gaussian random process

X(t) with reliability 1− β, 0 < β < 1 and accuracy δ > 0 in uniform metric.

PROOF.– In section 5.4, it is shown that the corresponding process X(t) and its model

are separable processes. And since

∞∫
0

(ln(1 + λ))
1+ε

dF (λ) ≤
∞∫
0

λpdF (λ) < ∞, p ≥ 2,

then from theorem 4.1, a separable random process ηΛ(t) is continuous with

probability 1.

If condition [5.19] is satisfied, then from lemma 5.5 it follows that the process

ηΛ(t) is Lp(Ω)-process (because of sup
0≤t≤T

‖ηΛ(t)‖Lp < ∞).

Then, the entropy characteristics for Lp(Ω)-process yields the inequality:

P

{
sup

0≤t≤T
|ηΛ(t)| > δ

}
≤

B̃p
p

δp
,

where

B̃p = inf
0≤t≤T

(E|ηΛ(t)|p)
1
p + inf

0<θ<1

1

θ(1− θ)

θ2ε0∫
0

N
1
p (ε)dε,

ε0 = sup
0≤t≤T

‖ηΛ(t)‖Lp .

Since [TEG 01] N(ε) = T
2σ(−1)(ε)

+ 1, σ(h) = sup
|t−s|<h

‖ηΛ(t)− ηΛ(s)‖Lp .

In our case σ(h) = hL, where L is defined in [5.18],

σ(−1)(h) =
h

L
, inf

0≤t≤T
(E|ηΛ(t)|p)

1
p = 0,

Then

Bp = inf
0<θ<1

1

θ(1− θ)

2θε0∫
0

(
TL

2ε
+ 1

) 1
p

dε

≤ inf
0<θ<1

1

θ(1− θ)

[(
TL

2

) 1
p

(2θε0)
1− 1

p
1

1− 1
p

+ 2θε0

]
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≤ inf
0<θ<1

θ1−
1
p

θ(1− θ)

[(
TL

2

) 1
p

(2ε0)
1− 1

p
p

p− 1
+ 2ε0

]

=
(p+ 1)1+

1
p

p

(
p

p− 1

(
TL

2

) 1
p

(2ε0)
1− 1

p + 2ε0

)
,

P{ sup
0<t≤T

|ηΛ(t)| > δ} ≤ (p+ 1)p+1

(pδ)p

(
p

p− 1

(
TL

2

) 1
p

(2ε0)
1− 1

p + 2ε0

)p

.

From [5.16] and [5.18] follows that we can take such λM and M , that ε0 and L
will be made as small as it needs. Then, there exists a partition of Λ such that by

definition 5.3 inequality

(p+ 1)p+1

(pδ)p

(
p

p− 1

(
TL

2

) 1
p

(2ε0)
1− 1

p + 2ε0

)p

≤ β

holds true. �

5.3. Application of Subϕ(Ω) space theory to find the accuracy of
modeling for stationary Gaussian processes

In the previous section, we have proved that the model approximates Gaussian

process under condition
∞∫
0

λεdF (λ) < ∞, as ε ≥ 2. In this section, under more

restrictive conditions the estimates are found that significantly improve estimates of

the previous section. The theory of spaces Subϕ(Ω) random variables is used. Note

also that new inequalities for norms of random variables with spaces Subϕ(Ω) are

obtained. These issues are considered in [KOZ 02].

Let X = {X(t), t ∈ R} be Gaussian stationary real centered in mean square

continuous random process. The model construction XΛ(t) of approximated process

is described in section 4.

The following statement is needed. This section will consider the spaces Subϕ(Ω),
generated by the functions ϕp(x), p ≥ 2

ϕp(x) =

{
|x|p, as|x| > 1
|x|2, as|x| < 1

. [5.20]

Recall that for p = 2 space Subϕ2(Ω) is called space of sub-Gaussian random

variables.
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Now prove the theorem that improves the appropriate theorem from [KOZ 85a].

THEOREM 5.9.– Let ξ be a random variable such that Eξ2k+1 = 0 as

k = 0, 1, 2, . . . , and the condition

Sϕp(ξ) = sup
n≥1

(2n)
1
p

(
Eξ2n

) 1
2n(

(2n)!
) 1

2n

< ∞

is fulfilled, then ξ ∈ Subϕp(Ω) and inequality

τϕp ≤ 2
1
2− 1

2pSϕp(ξ)

holds true.

PROOF.– For all λ > 0, we have

E exp{λξ} =
∞∑
k=0

λkEξk

k!
= 1 +

∞∑
n=1

λ2nEξ2n

(2n)!
= S(λ),

S(λ) = 1 +

∞∑
n=1

(
λ

(2n)
1
p

)2n
⎛⎝(Eξ2n

) 1
2n

((2n)!)
1
2n

(2n)
1
p

⎞⎠2n

≤ 1 +
∞∑

n=1

(
λ

(2n)
1
p

)2n (
Sϕp(ξ)

)2n
.

Note that Sϕp = S , so

S(λ) = 1 +

∞∑
n=1

(
λS

(2n)
1
p

)2n

.

Let γ be any number such that 0 < γ < 1√
2

, λ1 = 2
1
p γ
S . First, consider such λ that

0 ≤ |λ| ≤ λ1, namely |λ| ≤ 2
1
p γ
S . Then

S(λ) ≤ 1 +
∞∑

n=1

(
λS

2
1
p

)2n

= 1 +

(
λS

2
1
p

)2
(
1−
(

λS

2
1
p

)2
)−1

≤ 1 +

(
λS

2
1
p

)2

(1− γ2)−1 = 1 +

(
λS

2
1
p
√

1−γ2

)2

≤ exp

{(
λS

2
1
p
√

1−γ2

)2
}
.

[5.21]
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Since

|λ|S
2

1
p

√
1− γ2

≤ λ1S

2
1
p

√
1− γ2

=
γ√

1− γ2
≤
(

γ2

1− γ2

) 1
2

≤ 1,

then as 0 ≤ |λ| < λ1 from [5.20] and [5.21], it follows that the inequality

S(λ) ≤ exp

{
ϕp

(
λS

2
1
p

√
1− γ2

)}
[5.22]

holds. Consider now the case |λ| > λ1. Denote under nλ such integer that 1 ≤ nλ ≤
1
2

(
|λ|S
γ

)p
and nλ + 1 > 1

2

(
|λ|S
γ

)p
. There exists nλ because of

1

2

( |λ|S
γ

)p

>
1

2

(
λ1S

γ

)p

= 1.

Put

A1(λ) =

nλ∑
n=1

(
λS

(2n)
1
p

)2n

, A2(λ) =
∞∑

n=nλ+1

(
λS

(2n)
1
p

)2n

.

For n ≤ nλ( |λ|S
γ

)
(2n)−

1
p ≤

( |λ|S
γ

)p

(2n)−1.

So,

A1(λ) =

nλ∑
n=1

( |λ|S
γ γ

(2n)
1
p

)2n

≤
nλ∑
n=1

⎛⎝
(

|λ|S
γ

)p
γ

2n

⎞⎠2n

=

nλ∑
n=1

((
|λ|S
γ

)p
γ
)2n

(2n)2n
;

A2(λ) ≤
∞∑

n=nλ+1

(
|λ|S

(2(nλ + 1))
1
p

)2n

=

(
|λ|S

(2(nλ + 1))
1
p

)2(nλ+1)

=

⎛⎝1−
(

|λ|S
(2(nλ + 1))

1
p

)2
⎞⎠−1

. [5.23]

Since nλ + 1 > 1
2

(
|λ|S
γ

)p
, then

2(nλ+1)
(|λ|S)p > 1

γp , it means that γ > |λ|S
(2(nλ+1))

1
p

.

Hence, [5.23] yields

A2(λ) ≤
γ2(nλ+1)

1− γ2
≤ γ4

1− γ2
≤ γ2 γ2

1− γ2
≤ γ2 ≤ 2γ ≤

(
λS

γ

)p

γ
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(since
(

λS
γ

)p
> 2 ). So, under |λ| > λ1 the following relationship holds

S(λ) = 1 +
(

|λ|S
γ

)p
γ +

∑nλ

n=1
(( |λ|S

γ )
p
γ)

2n

(2n)2n

≤ 1 +
∞∑
k=1

(( |λ|S
γ )

p
γ)

k

k! ≤ exp
{(

|λ|S
γ

)p
γ
}

= exp

{(
|λ|S
γ2

1
2p

)p

2
1
2 γ

}
≤ exp

{(
|λ|S
γ2

1
2p

)p}
.

[5.24]

Since
|λ|S
γ2

1
2p

≥ λ1S

γ2
1
2p

≥ 1, then from [5.24] and [5.20], it follows that

S(λ) ≤ exp

{
ϕp

(
|λ|S
γ2

1
2p

)}
[5.25]

as |λ| > λ1.

[5.22] and [5.25] imply

S(λ) ≤ exp

{
ϕ

(
|λ|S
2

1
2p

inf
0≤γ≤ 1√

2

max

(
1

γ
,

1

2
1
2p

√
1− γ2

))}

= exp
{
ϕp

(
|λ|S2 1

2− 1
2p

)}
.

�

LEMMA 5.7.– Let ξ be some random variable, α > 0, b > 0, S > 0, then the

inequality

E|ξ|S ≤ bS
(
S

α

)S
α

exp

{
−S

α

}
E exp

{ |ξ|α
bα

}
[5.26]

is fulfilled.

PROOF.– As x > 0

xS ≤ ex
α

(
S

α

)S
α

e−
S
α

(It follows from max
x>0

xs

exα =
(
S
α

)S
α e−

S
α ). Put x = |ξ|

b , then

|ξ|s ≤ bs exp

{( |ξ|
b

)α}( s
α

) s
α

e−
s
α .
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If we take the mathematical expectation of the right-hand and left-hand sides of

above inequality, we get [5.26]. �

LEMMA 5.8.– As u > 0, v > 0, α ≥ 1, 0 ≤ γ ≤ α∣∣∣sin u

v

∣∣∣ ≤ ( ln(eα−1 + u)

ln(eα−1 + v)

)γ

.

PROOF.– If u > v, then inequality is trivial. Let u < v, since a function f(u) =
ln(eα−1+u)

u monotonically decreases as u > 0, then∣∣∣sin u

v

∣∣∣ ≤ |u|
|v| ≤

(
ln(eα−1 + u)

ln(eα−1 + v)

)γ

,

Really,

f ′(u) =
γ
(
ln(eα−1 + u)

)γ−1 u
eα−1+u −

(
ln(eα−1 + u)

)γ
u2

=
γu
(
ln(eα−1 + u)

)γ−1 − (eα−1 + u)
(
ln(eα−1 + u)

)γ
(eα−1 + u)u2

≤ 0

since

g(u) = γu ≤ (eα−1 + u)(ln(eα−1 + u)) = r(u),

and q′(u) = γ; r′(u) = ln(eα−1 + u) + 1; r′(u) > r′(0) = α ≥ γ = q′(u). �

COROLLARY 5.1.– An inequality∣∣∣sin u

v

∣∣∣ ≤ ( ln(1 + |u|)
ln(1 + |v|)

)α

[5.27]

holds as 0 < α ≤ 1.

PROOF.– If |u| ≥ |v|, then the inequality is trivial. If |u| < |v|, it is enough to prove

[5.27] as α = 1. So, since a function f(v) =
ln(1 + v)

v
monotonically decreases with

respect to v > 0, then as |u| < |v|∣∣∣sin u

v

∣∣∣ ≤ |u|
|v| ≤

ln(1 + |u|)
ln(1 + |v|) .

�
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Consider the random process ηΛ(t) that is described in [4.6].

REMARK 5.1.– In theorem 4.2, it was proved that the stochastic process ηΛ is sub-

Gaussian that belongs to the space Subϕ2(Ω), where ϕ2(x) = x2. From this follows

that ηΛ(t) ∈ Subϕp(Ω), where p ≥ 2.

THEOREM 5.10.– Suppose that for some α > 2 the condition

∞∫
0

exp {(ln(1 + λ))
α} dF (λ) < ∞ [5.28]

is satisfied, then inequality

τ2ϕp
(ηΛ(t)) ≤

1

ln2
(
1 + 1

t

)Cα

M∑
k=0

b2kd
2
k [5.29]

holds, where p is such number that 1
p + 1

α = 1
2 ,

(
p = 2α

α−2

)
,

Cα = 32 · 21− 1
p
(
eα
)− 2

α e
26
24 , b2k = F (λk+1) − F (λk), dk is the Luxembourg norm

of the random variable ln(1 + θk) in Orlicz space LU (Ω), where

U(x) = exp{|x|α} − 1, θk = |θk1−θk2|
2 , θk1, θk2 are independent random variables

identically distributed with function of distribution Fk(λ) =
F (λ)−F (λk)

F (λk+1−F (λk))
, F (λ) is

a spectral function of the process.

PROOF.– Since in ηΛ(t) all items with different k are independent, then it follows

that for p ≥ 2

τ2ϕp
(ηΛ(t))

≤
M∑
k=0

τ2ϕp

⎡⎣ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) +

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎤⎦
≤ 2

M∑
k=0

⎛⎝τ2ϕp

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠
+τ2ϕp

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠⎞⎠ .

[5.30]

By theorem 5.9 and [5.30], we have
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τ2ϕp
(ηΛ(t)) ≤ 2 · 21− 1

p

M∑
k=0

S2
ϕp

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠

+ S2
ϕp

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠ . [5.31]

From lemma 4.1 follows that (b2k = F (λk+1)− F (λk))

Ik = E

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠2m

≤ 4mΔ2mb2mk E

⎛⎝ λk+1∫
λk

(
sin

t(ζk − λ)

2

)2

dFk(λ)

⎞⎠m

= 4mΔ2mb2mk

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

(
sin

t(u− λ)

2

)2

dFk(u)

⎞⎠m

dFk(λ)

⎞⎟⎠

= 4mΔ2mb2mk

⎛⎝ λk+1∫
λk

λk+1∫
λk

(
sin

t(u− λ)

2

)2m

dFk(u)dFk(λ)

⎞⎠ .

From corollary 5.1 follows that

Ik ≤ 4mΔ2mb2mk

⎛⎜⎝ λk+1∫
λk

λk+1∫
λk

⎛⎝ ln
(
1 + |u−λ|

2

)
ln
(
1 + 1

t

)
⎞⎠2m

dFk(u)dFk(λ)

⎞⎟⎠
=

4mΔ2mb2mk(
ln(1 + 1

t )
)2mE (ln(1 + θk))

2m
, [5.32]

where θk is random variable that θk = |θk1−θk2|
2 , where θk1, θk2 are independent

identically distributed random variables with function of distribution

Fk(λ) =
F (λ)−F (λk)

F (λk+1)−F (λk)
.

From lemma 5.7 for any dk > 0, α > 2 follows inequality (S = 2m)

E (ln(1 + θk))
2m ≤ d2mk

(
2m

α

) 2m
α

exp

{
−2m

α

}
E exp

{
(ln(1 + θk))

α

dαk

}
. [5.33]
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Since for α > 2 the function U(x) = exp {|x|α} − 1 is N -Orlicz function then

from the conditions of theorem follows that random variable ln(1 + θk) belongs to

Orlicz space LU (Ω). Put dk = ‖ ln(1 + θk)‖α, then E exp
{

(ln(1+θk))
α

dα
k

}
≤ 2. Thus,

for each m = 1, 2, . . . of [5.33], the following inequality holds true

E (ln(1 + θk))
2m ≤ 2d2mk

(
2m

α

) 2m
α

exp

{
−2m

α

}
. [5.34]

So, from [5.34] and [5.32] follows

Ik ≤ 4mΔ2mb2mk(
ln(1 + 1

t )
)2m · 2d2mk

(
2m

α

) 2m
α

exp

{
−2m

α

}
. [5.35]

From [5.35] and definitions Sϕp(•), we have

Sϕp

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠ ≤ sup
m≥1

(2m)
1
p

(Ik)
1

2m

((2m)!)
1

2m

≤ sup
m≥1

(2m)
1
p

((2m)!)
1

2m

2((2m)!)
1

2m

√
b2k2

1
2m dk√

2(m!)
1

2m ln
(
1 + 1

t

) (2m

α

) 1
α

exp

{
− 1

α

}

= sup
m≥1

√
2bkdk2

1
p+

1
2m+ 1

αm
1
p+

1
α

(m!)
1

2m ln
(
1 + 1

t

)
α

1
α exp

{
1
α

} . [5.36]

From Stirling’s formula follows inequality
(

1
m!

) 1
2m ≤ 1

m
1
2
e

1
2+

1
24 . Moreover,

[5.36] implies
(

1
p + 1

α − 1
2 = 0

)
that

Sϕp

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠
≤

√
2

ln
(
1 + 1

t

)bkdk2 1
p+

1
α+ 1

2

(
1

eα

) 1
α

e
13
24 =

2
√
2

ln
(
1 + 1

t

)bkdk(eα)− 1
α e

13
24 .
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Similarly, we prove that

E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠2m

≤ 4mΔ2mb2mk

⎛⎝ λk+1∫
λk

λk+1∫
λk

(
sin

t(u− λ)

2

)2m

dFk(λ)dFk(u)

⎞⎠ = Ik,

Sϕp

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠
≤ sup

m≥1
(2m)

1
p

(Ik)
1

2m

((2m)!)
1

2m

≤ sup
m≥1

2
√
2

ln
(
1 + 1

t

)bkdk(eα)− 1
α e

13
24 .

From [5.31] follows

τ2ϕp
(ηΛ(t)) ≤ 32 · 21− 1

p (eα)−
2
α e

26
24

M∑
k=0

b2kd
2
k

1

ln2
(
1 + 1

t

) .
�

THEOREM 5.11.– Suppose that for some α > 2, condition [5.28] is satisfied, then

the inequality

τ2ϕp
(ηΛ(t)− ηΛ(s)) ≤

1

ln2
(
1 + 1

|t−s|
) C̃α

M∑
k=0

b2kd̂
2
k

holds, where p = 2α
α−2 , C̃α = 64 · 21− 1

p (eα)−
2
α e

26
24 , b2k = F (λk+1) − F (λk), d̂k is

the Luxembourg norm of random variable

ln

(
1 +

|θk1 − θk2|
4

)
+ ln

(
1 +

θk1
2

) ln
(
1 + |θk1−θk2|

4

)
ln
(
1 + 1

2T

)
in Orlicz space LU (Ω) , where U(x) = exp{|x|α} − 1, θk1 and θk2 are independent

identically distributed random variables with cdf Fk(λ) =
F (λ)−F (λk)

F (λk+1)−F (λk)
.

PROOF.– Denote

ωk1 =

λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ),
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ωk2 =

λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ).

From lemma 1.7 follows

τ2ϕp
(ηΛ(t)− ηΛ(t)) ≤ 2

M∑
k=0

[
τ2ϕp

(ωk1) + τ2ϕp
(ωk2)

]
.

By theorem 5.9, we have

τ2ϕp
(ηΛ(t)− ηΛ(s)) ≤ 2 · 21− 1

p

M∑
k=0

(
S2
ϕp
(ωk1) + S2

ϕp
(ωk2)

)
. [5.37]

From lemma 5.3 follows that

Ik = E (ωk1)
2m

≤ 42mΔ2mE

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣
+

∣∣∣∣sin ζk(s− t)

2

∣∣∣∣ · ∣∣∣∣sin (t+ s)(ζk − λk)

4

∣∣∣∣)2

dF (λ)

)m

= 42mΔ2mb2mk

⎛⎝ λk+1∫
λk

λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− u)

4

∣∣∣∣
+

∣∣∣∣sin u(s− t)

2

∣∣∣∣ · ∣∣∣∣sin (t+ s)(u− λ)

4

∣∣∣∣)2m

dFk(u)dFk(λ)

)
. [5.38]

By corollary 5.1

Ik ≤ 42mΔ2mb2mk

⎛⎝ λk+1∫
λk

λk+1∫
λk

⎛⎝ ln
(
1 + |u−λ|

4

)
ln
(
1 + 1

|s−t|
)

+
ln
(
1 + u

2

)
ln
(
1 + 1

|s−t|
) ln

(
1 + |u−λ|

4

)
ln
(
1 + 1

(t+s)

)
⎞⎠2m

dFk(u)dFk(λ)

⎞⎟⎠ [5.39]
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=
42mΔ2mb2mk(

ln
(
1 + 1

|s−t|
))2mE

(
ln

(
1 +

|θk1 − θk2|
4

)

+
ln
(
1 + θk1

2

)
· ln
(
1 + |θk1−θk2|

4

)
ln
(
1 + 1

2T

)
⎞⎠2m

,

where θk1, θk2 are independent identically distributed random variables with cdf

Fk(x) =
F (x)−F (λk)

F (λk+1)−F (λk)
; t, s ∈ [0, T ].

It follows from lemma 5.7 that for arbitrary d̂k > 0, α > 2

E

⎛⎝ln

(
1 +

|θk1 − θk2|
4

)
+

ln
(
1 + θk1

2

)
ln
(
1 + |θk1−θk2|

4

)
ln
(
1 + 1

2T

)
⎞⎠2m

≤ d̂2mk

((
2m

α

) 2m
α

exp

{
−2m

α

}
E exp

{
Lα

d̂αk

})
, [5.40]

where

L = ln

(
1 +

|θk1 − θk2|
4

)
+

ln
(
1 + θk1

2

)
ln
(
1 + |θk1−θk2|

4

)
ln
(
1 + 1

2T

) .

Since as α > 2 the function U(x) = exp {|x|α}−1 is N -Orlicz function, then the

condition of the theorem implies that random variable L belongs to the Orlicz space

Lu(Ω). Put d̂k = ‖L‖α, then

E exp

{
Lα

d̂α

}
≤ 2.

Hence, for each m = 1, 2, . . . from [5.40] follows that

E

⎛⎝ln

(
1 +

|θk1 − θk2|
4

)
+

ln
(
1 + θk1

2

)
ln
(
1 + |θk1−θk2|

4

)
ln
(
1 + 1

2T

)
⎞⎠

≤ 2d̂2mk

(
2m

α

) 2m
α

exp

{
−2m

α

}
. [5.41]

So, [5.39] and [5.41] imply

Ik ≤ 42mΔ2mb2mk(
ln
(
1 + 1

|s−t|
))2m 2d̂2mk

(
2m

α

) 2m
α

exp

{
−2m

α

}
. [5.42]
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Therefore, from [5.42] and definitions of Sϕp(•) follows that

Sϕp

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

⎞⎠
≤ sup

m≥1
(2m)

1
p

(Ik)
1

2m

((2m)!)
1

2m

≤ sup
m≥1

(2m)
1
p 4
(

(2m)!
2mm!

) 1
2m

bk2
1

2m

((2m)!)
1

2m ln
(
1 + 1

|s−t|
) d̂k

(
2m

α

) 1
α

exp

{
− 1

α

}

= sup
m≥1

2
√
2bkd̂k2

1
p+

1
2m+ 1

αm
1
p+

1
α

(m!)
1

2m ln
(
1 + 1

|s−t|
)
α

1
α exp

{
1
α

} .
By Stirling’s formula, we have(

1

m!

) 1
2m

≤ 1√
m
e

1
2+

1
24 .

Then, using 1
p + 1

α − 1
2 = 0, we obtain

Sϕp

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)

⎞⎠
≤ 2

√
2

ln
(
1 + 1

|s−t|
)bkd̂k2 1

p+
1
α+ 1

2 (eα)−
1
α e

13
24 =

4
√
2

ln
(
1 + 1

|s−t|
)bkd̂k(eα)− 1

α e
13
24 .

Similarly, we obtain

Sϕp

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

⎞⎠
≤ 4

√
2

ln
(
1 + 1

|s−t|
)bkd̂k(eα)− 1

α e
13
24 .

From [5.37] follows that

τ2ϕp
(ηΛ(t)− ηΛ(s)) ≤ 64 · 21− 1

p (eα)−
2
α e

26
24

M∑
k=0

b2kd̂
2
k

1

ln2
(
1 + 1

|s−t|
) .

�
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REMARK 5.2.– The value dk from theorem 5.10 can be evaluated in this way.

Consider in [5.33] E exp
{

(ln(1+θk))
α

dα
k

}
. Let k < M . Since

Lk =

λk+1∫
λk

λk+1∫
λk

exp

⎧⎨⎩
⎛⎝ ln

(
1 + |u−v|

2

)
S

⎞⎠α⎫⎬⎭ dFk(u)dFk(v)

≤ exp

⎧⎨⎩
⎛⎝ ln

(
1 + λk+1−λk

2

)
S

⎞⎠α⎫⎬⎭ ,

then Lk ≤ 2, when S ≥
ln
(
1+

λk+1−λk
2

)
(ln 2)

1
α

. Thus, by the Luxembourg norm

dk ≤
ln
(
1 + λk+1−λk

2

)
(ln 2)

1
α

.

As k = M from the theory of Orlicz spaces

dM ≤

⎛⎝ ∞∫
λM

∞∫
λM

exp

{(
ln

(
1 +

|u− v|
2

))α}
dFM (u)dFM (v)

⎞⎠ 1
α

=

⎛⎝ ∞∫
λM

⎛⎝ v∫
λM

exp

{(
ln

(
1 +

|u− v|
2

))α}
dFM (u)

+

∞∫
v

exp

{(
ln

(
1 +

|u− v|
2

))α}
dFM (u)

⎞⎠ dFM (v)

⎞⎠ 1
α

≤

⎛⎝ ∞∫
λM

⎛⎝ v∫
λM

exp

{(
ln

(
1 +

v − λM

2

))α}
dFM (u)

+

∞∫
v

exp

{(
ln

(
1 +

u− λM

2

))α}
dFM (u)

⎞⎠ dFM (v)

⎞⎠ 1
α

≤

⎛⎝ ∞∫
λM

dFM (u)

∞∫
λM

exp

{(
ln

(
1 +

v − λM

2

))α}
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+

∞∫
λM

dFM (v)

∞∫
λM

exp

{(
ln

(
1 +

u− λM

2

))α}
dFM (v)

⎞⎠ 1
α

≤

⎛⎝2

∞∫
λM

exp {(ln(1 + u))
α} dFM (u)

⎞⎠ 1
α

=

⎛⎝ 2

b2M

∞∫
λM

exp {(ln(1 + u))
α} dF (u)

⎞⎠ 1
α

.

So,

M∑
k=0

b2kd
2
k ≤

M−1∑
k=0

b2k

⎛⎝ ln
(
1 + λk+1−λk

2

)
(ln 2)

1
α

⎞⎠2

+ b
2− 4

α

M

⎛⎝2

∞∫
λM

exp {(ln(1 + u))
α} dF (u)

⎞⎠ 2
α

.

From the inequality above, condition [5.28] and α > 2 imply that the sum
M∑
k=0

b2kd
2
k

can be made as small as it needs by selecting sufficiently large λM and sufficiently

small max
0≤k≤M−1

(λk+1 − λk). For example, when λM = Λ, λk+1 − λk = Λ
M at

k = 0, 1, . . . ,M − 1,
M∑
k=0

b2k ≤ F (+∞), then

M∑
k=0

b2kd
2
k ≤

(
ln
(
1 + Λ

2M

)
(ln 2)

1
α

)2

F (+∞)

+

⎛⎝2

∞∫
Λ

exp {(ln(1 + u))
α} dF (u)

⎞⎠ 2
α

(F (+∞)− F (Λ))
2− 4

α .

Similarly, we estimate the value d̂k from theorem 5.11. Consider in [5.40]

E exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
ln
(
1 + |θk1−θk2|

4

)
+

ln
(
1+

θk1
2

)
ln
(
1+

|θk1−θk2|
4

)
ln(1+ 1

2T )

)α

d̂αk

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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Let k < M.

L̃k =

=

λk+1∫
λk

λk+1∫
λk

exp

⎧⎪⎨⎪⎩
⎛⎜⎝ ln

(
1 + |u−v|

4

)
+

ln(1+u
2 )

ln(1+ 1
2T )

ln
(
1 + |u−v|

4

)
S

⎞⎟⎠
α⎫⎪⎬⎪⎭

dFk(u)dFk(v)

≤ exp

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ ln

(
1 + λk+1−λk

4

)
+

ln
(
1+

λk+1
2

)
ln(1+ 1

2T )
ln
(
1 + λk+1−λk

4

)
S

⎞⎟⎟⎠
α⎫⎪⎪⎬⎪⎪⎭ .

L̃k ≤ 2 when

S ≥
ln
(
1 +

λk+1−λk

4

)
+

ln
(
1+

λk+1
2

)
ln(1+ 1

2T )
ln
(
1 + λk+1−λk

4

)
(ln 2)

1
α

.

Thus, by the norm of Luxembourg

d̂k ≤
ln
(
1 +

λk+1−λk

4

)
+

ln
(
1+

λk+1
2

)
ln(1+ 1

2T )
ln
(
1 + λk+1−λk

4

)
(ln 2)

1
α

.

When k = M , then we obtain

d̂M ≤

⎛⎝ ∞∫
λM

∞∫
λM

exp

{[
ln

(
1 +

|u− v|
4

)

+
ln
(
1 + u

2

)
ln
(
1 + 1

2T

) ln(1 + |u− v|
4

)]α}
dFM (u)dFM (v)

) 1
α

≤

⎛⎝ ∞∫
λM

∞∫
λM

exp
{[

ln
(
1 +

u

2

)

+
ln2
(
1 + u

2

)
ln
(
1 + 1

2T

)]α} dFM (u)dFM (v)

) 1
α
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≤

⎛⎝ 2

b2M

∞∫
λM

exp

{(
ln
(
1 +

u

2

)
+

ln2
(
1 + u

2

)
ln
(
1 + 1

2T

))α}
dF (u)

⎞⎠ 1
α

.

So,

M∑
k=0

b2kd̂
2
k

≤
M−1∑
k=0

b2k

⎛⎜⎜⎝ ln
(
1 + (λk+1−λk)

4

)
+

ln
(
1+

λk+1
2

)
ln(1+ 1

2T )
ln
(
1 + (λk+1−λk)

4

)
(ln 2)

1
α

⎞⎟⎟⎠
2

+ b
2− 4

α

M

⎛⎝2

∞∫
λM

exp

{(
ln
(
1 +

u

2

)
+

ln2
(
1 + u

2

)
ln
(
1 + 1

2T

))α}
dF (u)

⎞⎠ 2
α

.

REMARK 5.3.– The norms can always be estimated more accurately by

approximating methods. The next corollary follows from last two theorems.

COROLLARY 5.2.– Suppose that for some α > 2, condition [5.28] is fulfilled, then

for separable process ηΛ(t), which belongs to the space Subϕp
(Ω), where

ϕp(u) =

{
u2, |u| < 1,

|u|p, |u| > 1,
p =

2α

α− 2
,

inequalities

τϕp(ηΛ(t)) ≤
1

ln
(
1 + 1

t

)CΛ [5.43]

holds true, where CΛ =

(
Cα

M∑
k=0

b2kd
2
k

) 1
2

, Cα, b
2
k, d

2
k is defined by formula [5.29],

and

τϕp(ηΛ(t)− ηΛ(s)) ≤
1

ln
(
1 + 1

|t−s|
)LΛ, [5.44]

where LΛ =

(
C̃α

M∑
k=0

b2kd̂
2
k

) 1
2

, C̃α, b2k, d̂
2
k is defined in theorem 5.11.



238 Simulation of Stochastic Processes with Given Accuracy and Reliability

THEOREM 5.12.– Suppose that for some α > 2 condition [5.28] is satisfied. Then, for

any T ≥ 1, λ > 0 and δ > 0 such that δ < 1
γT

min(LΛ, κT ), where κT = LΛ

ln(1+ 2
T )

,

γT = CΛ

ln(1+ 1
T )

, CΛ is defined in [5.43], LΛ from [5.44], an inequality

E exp

{
λ sup

0≤t≤T
|ηΛ(t)|

}
≤ 2G̃(λ, δ), [5.45]

where

G̃(λ, δ) = exp

{
ϕp

(
λγT
1− δ

)
+ 2λBδ

}
,

Bδ =
1

(1− δ)δ

(
(lnT )

α+2
2α δγT + L

α−2
2α

Λ (δγT )
α−2
2α

2α

α− 2

)
,

where ϕp(x) is defined in [5.20], p = 2α
α−2 .

PROOF.– The theorem follows from entropy characteristics and corollary 5.2. Indeed,

we put T = [0, T ], ρ(t, s) = |t − s|, X(t) = ηΛ(t), ϕ(x) = ϕp(x). From corollary

5.2, we obtain that

σ(h) =
LΛ

ln
(
1 + 1

h

) , γ0 =
CΛ

ln
(
1 + 1

T

) = γT ,

κ = κT , σ
(−1)(u) =

(
exp

{
LΛ

u

}
− 1

)−1

.

It is clear that N(ε) ≤ T
2ε + 1, then

H(σ(−1)(u)) = ln
(
N(σ(−1)(u))

)
≤ ln

(
T

2

(
exp

{
LΛ

u

}
− 1

)
+ 1

)
≤ ln

(
T exp

{
LΛ

u

}
− (T − 1)

)
≤ ln

(
T exp

{
LΛ

u

})
=

LΛ

u
+ lnT.

[5.46]

Since δγT ≤ κT , then we can put β = γT , then from [5.46], we obtain

G(λ, δ) ≤ exp

⎧⎨⎩ϕp

(
λγT
1− δ

)
+ 2λ

⎡⎣ 1

(1− δ)δ

δγT∫
0

ζϕ(u)du

⎤⎦⎫⎬⎭ . [5.47]
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Since
δγT
LΛ

< 1, then

δγT∫
0

ζϕ(u)du =

δγT∫
0

(
LΛ

u
+ lnT

)1− 1
p

du ≤ L
p−1
p

Λ (δγT )
1
p p+ (lnT )1−

1
p δγT .

Last equality, inequality [5.47] implies that

E exp

{
λ sup

0≤t≤T
|ηΛ(t)|

}
≤ 2 exp

{
ϕp

(
λγT
1− δ

)
+ 2λ

[
1

(1− δ)δ

(
L

p−1
p

Λ (δγT )
1
p p+ (lnT )1−

1
p δγT

)]}
= 2 exp

{
ϕp

(
λγT
1− δ

)
+ 2λ

1

(1− δ)δ

(
(lnT )

α+2
2α δγT+

+ L
α−2
2α

Λ (δγT )
α−2
2α

2α

α− 2

)}
.

�

COROLLARY 5.3.– Assume that the conditions of theorem 5.12 are satisfied, then for

any T > 0, ε > 2Bδ , δ > 0, δ < LΛ

γT
; δ < κT

γT
an inequality

P

{
sup

0≤t≤T
|ηΛ(t)| > ε

}
≤ 2 exp

{
−ϕ∗

p

(
ε− 2Bδ

γT
(1− δ)

)}
[5.48]

holds, where Bδ =
1

(1− δ)δ

(
(lnT )

α+2
2α δγT + L

α−2
2α

Λ (δγT )
α−2
2α

2α

α− 2

)
, p = 2α

α−2 ,

ϕ∗
p(u), u > 0 is a Young–Fenchel transform of the function ϕp(u),

ϕ∗
p(u) = sup

v>0
(uv − ϕp(v)).

PROOF.– From the Chebyshev inequality and [5.45] it follows that

P

{
sup

0≤t≤T
|ηΛ(t)| > ε

}
≤ 2 exp

{
ϕp

(
λγT
1− δ

)
+ 2λBδ

}
· exp{−λε}

= 2 exp

{
−
(

λγT
1− δ

ε− 2Bδ

γT
(1− δ)− ϕp

(
λγT
1− δ

))}
.

If in the right-hand side of this inequality infinimum λγT

1−δ is taken with respect to

ε ≥ 2Bδ , we obtain [5.48].
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Find the exact form of the function ϕ∗(u):

ϕ∗
p(u) = sup

v>0
{uv − ϕp(v)} = sup

|v|<1

{uv − v2} = u
u

2
− u2

4
=

u2

4
, as 0 ≤ u < 2,

ϕ∗
p(u) = sup

v>1
{uv − vp} = u

(
u

p

) 1
p−1

−
(
u

p

) p
p−1

=
p− 1

p
p

p−1

u
p

p−1 , as u > p,

ϕ∗
p(u) = u− 1, as v = 1 and 2 ≤ u ≤ p.

So

ϕ∗
p(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u2

4
, 0 ≤ u < 2

u− 1, 2 ≤ u ≤ p .
p− 1

p
p

p−1

u
p

p−1 , u > p

�

COROLLARY 5.4.– The model XΛ(t) approximates the process X(t) with given

accuracy ε > Bδ and reliability 1 − κ, κ > 0 in uniform metric if for the partition Λ
the inequality

2 exp

{
−ϕ∗

p

(
ε− 2Bδ

γT
(1− δ)

)}
≤ κ

holds, where Bδ = 1
(1−δ)δ

(
(lnT )

α+2
2α δγT + L

α−2
2α

Λ (δγT )
α−2
2α

2α
α−2

)
, p = 2α

α−2 .

From corollary 5.3, we obtain the following statement.

COROLLARY 5.5.– If in [5.48] we put δ =
(

2A(α,T )
ε

) 2α
3α+2

, where

A(α, T ) = L
α+2
2α

Λ (γT )
α−2
2α

2α

α− 2

we find, that for any

ε > 2A(α, T ) ·max

((
γT
LΛ

) 3α+2
2α

,

(
γT
κT

) 3α+2
2α

, 2

)
the inequality

P

{
sup

0≤t≤T
|ηN,Λ(t)| ≥ ε

}

≤ 2 exp

⎧⎪⎨⎪⎩ϕ∗
p

⎛⎜⎝ε− 2δ
α−2
2α

(1−δ)δ

(
(lnT )

α+2
2α δ

α+2
2α γT +A(α, T )

)
γT

(1− δ)

⎞⎟⎠
⎫⎪⎬⎪⎭
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= 2 exp

{
ϕ∗
p

(
ε(1− δ)

γT
− 2(lnT )

α+2
2α − 2A(α, T )

γT δ
α+2
2α

)}

= 2 exp

⎧⎪⎨⎪⎩ϕ∗
p

⎛⎜⎝ε− ε
(

2A(α,T )
ε

) 2α
3α+2 − (2A(α, T ))

2α
3α+2 ε

α+2
3α+2

γT
− 2(lnT )

α+2
2α

⎞⎟⎠
⎫⎪⎬⎪⎭

= 2 exp

{
ϕ∗
p

(
ε− 2ε

α+2
3α+2 (2A(α, T ))

2α
3α+2

γT
− 2(lnT )

α+2
2α

)}

holds true.

5.4. Generalized model of Gaussian stationary processes

In this section, the model of Gaussian stationary random process is constructed

such that the correlation function of the process does not coincide with the correlation

function of the model.

With high modeling accuracy, the estimates are worse than in previous cases. But

this method does not require the additional restrictions on spectral function of the

process. The estimates hold true only under constraints that ensure sample continuity

of the process with probability 1. The results of this section are described in [TEG 02].

Let X = {X(t), t ∈ T} be Gaussian stationary real centered continuous in mean

square random process with covariance function

EX(t+ τ)X(t) = r(τ) =

∞∫
0

cosλτdF (λ),

where F (λ) is continuous spectral function of the process.

Random process X(t) can be represented as

X(t) =

∞∫
0

cosλtdη1(λ) +

∞∫
0

sinλtdη2(λ),

where η1(λ), η2(λ) are defined in [4.2]

X(t) = XΛ(t) +XΛ(t),

where XΛ(t) =
Λ∫
0

cosλtdη1(λ) +
Λ∫
0

sinλtdη2(λ) with covariance function
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rΛ(τ) = EXΛ(t+ τ)XΛ(t) =

Λ∫
0

cosλτdF (λ),

XΛ(t) =

∞∫
Λ

cosλtdη1(λ) +

∞∫
Λ

sinλtdη2(λ)

with covariance function

rΛ(τ) = EXΛ(t+ τ)XΛ(t) =

∞∫
Λ

cosλτdF (λ).

According to the model of X(t), we take the model type

XM
Λ (t) =

M∑
k=0

(ηk1 cos ζkt+ ηk2 sin ζkt),

where Λ = {λ0, . . . , λM} a partition of the set [0,Λ] that λ0 = 0, λk < λk+1,

λM = Λ, ηk1, ηk2, ζk are independent random variables such that Eηk1 = Eηk2 = 0,

Eη2k1 = Eη2k2 = F (λk+1)− F (λk) = b2k, k = 1, . . . ,M,

ζk are random variables taking values on the segments [λk, λk+1] and have the

following distribution function

P{ζk < λ} = Fk(λ) =
F (λ)− F (λk)

F (λk+1)− F (λk)
.

Show now under which conditions the partition Λ should be chosen such that for

model XM
Λ there exists a centered Gaussian process X(t), that is approximated by the

model in the space C([0, T ]) with given accuracy and reliability.

Note that

ηΛ(t) = XM
Λ (t)−XΛ(t)

=

M∑
k=0

⎡⎣ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) +

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎤⎦ .
[5.49]
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The main statements for sub-Gaussian process ηΛ(t) are given in section 5.4.

The following theorems are carried out.

THEOREM 5.13.– For sub-Gaussian random process ηΛ(t), the inequality

τ(ηΛ(t)) ≤ 4
lnγ
(
1 + Λ

M

)
lnγ
(
1 + 2

t

) (F (Λ))
1
2

holds, where Λ = {λ0, λ1, ...λM}, λ0 = 0, λk ≤ λk+1, λM = Λ, F (Λ) are spectral

function.

PROOF.– From properties Sub(Ω)- space and lemma 4.1 follows

τ2

⎛⎝ λk+1∫
λk

(cosλt− cosζkt)dη1(λ)

⎞⎠ ≤ Θ2
1

⎛⎝ λk+1∫
λk

(cosλt− cosζkt)dη1(λ)

⎞⎠

≤ sup
m≥1

⎡⎢⎣ 1

Δ2m
E

⎛⎝ λk+1∫
λk

(cosλt− cosζkt)dη1(λ)

⎞⎠2m⎤⎥⎦
1
m

≤ sup
m≥1

b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

(
2sin

t(u− λ)

2

)2

dFk(λ)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

≤ sup
m≥1

4b2k

⎛⎝ λk+1∫
λk

λk+1∫
λk

(
lnγ(1 + u− λ)

lnγ
(
1 + 2

t

) )2m

dFk(λ)dFk(u)

⎞⎠
1
m

≤ 4
ln2γ(1 + λk+1 − λk)

ln2γ
(
1 + 2

t

) (F (λk+1)− F (λk)) = Ik.

Similarly, we obtain:

τ2

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠ ≤ Θ2
1

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠

≤ sup
m≥1

⎡⎢⎣ 1

Δ2m
E

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠2m⎤⎥⎦
1
m
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≤ sup
m≥1

b2k

⎛⎜⎝ λk+1∫
λk

⎛⎝ λk+1∫
λk

(
2 sin

t(u− λ)

2

)2

dFk(λ)

⎞⎠m

dFk(u)

⎞⎟⎠
1
m

≤ sup
m≥1

4b2k

⎛⎝ λk+1∫
λk

λk+1∫
λk

(
lnγ(1 + u− λ)

lnγ
(
1 + 2

t

) )2m

dFk(λ)dFk(u)

⎞⎠
1
m

≤ 4
ln2γ(1 + λk+1 − λk)

ln2γ
(
1 + 2

t

) (F (λk+1)− F (λk)) = Ik.

τ2

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ) +

λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠

≤

⎛⎝τ

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt)dη1(λ)

⎞⎠+ τ

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt)dη2(λ)

⎞⎠⎞⎠2

≤ 4Ik. [5.50]

Since the summands of sums [5.49] for different k are independent, then [5.50]

and lemma 1.7 imply

τ2 (ηΛ(t)) ≤ 4
M∑
k=0

Ik,

τ (ηΛ(t)) ≤ 2

(
M∑
k=0

4
ln2γ(1 + λk+1 − λk)

ln2γ(1 + 2
t )

· (F (λk+1)− F (λk))

) 1
2

.

If we put λk+1 − λk = Λ
M , then

τ(ηΛ(t)) ≤ 4 ln−γ

(
1 +

2

t

)
lnγ
(
1 +

Λ

M

)
(F (Λ))

1
2 , γ > 0.

�

For any t, s ∈ T

ηΛ(t)− ηΛ(s)

=
M∑
k=0

⎡⎣ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ)
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+

λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ)

⎤⎦ .

THEOREM 5.14.– The following inequality is fulfilled.

τ (ηΛ(t)− ηΛ(s))

≤ 8 (F (Λ))
1
2

1

lnγ
(
1 + 2

|t−s|
) · lnγ

(
1 +

Λ

M

)(
1 +

lnγ(1 + Λ)

lnγ
(
1 + 2

T

)) ,

t, s ∈ [0, T ].

PROOF.– Denote

ωk1 =

λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks)dη1(λ),

ωk2 =

λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks)dη2(λ).

By lemma 1.7, we have

τ2(ηΛ(t)− ηΛ(s)) ≤ 2
M∑
k=0

(τ2(ωk1) + τ2(ωk2)) ≤ 2
M∑
k=0

(Θ2
1(ωk1) + Θ2

1(ωk2)),

where

Θ1(ωki) = sup
m≥1

(
1

Δ2m
Eω2m

ki

) 1
2m

, i = 1, 2.

From lemma 5.3 follows that

τ2

⎛⎝ λk+1∫
λk

(cosλt− cos ζkt− cosλs+ cos ζks) dη1(λ)

⎞⎠

≤ 16 sup
m≥1

⎛⎝E

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣+
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+

∣∣∣∣sin ζk(s− t)

2

∣∣∣∣ · ∣∣∣∣sin (λ− ζk)(t+ s)

4

∣∣∣∣)2

dF (λ)

)m) 1
m

≤ 16b2k sup
m≥1

⎛⎝ λk+1∫
λk

λk+1∫
λk

(
lnγ(1 + |λ− u|)
lnγ(1 + 4

|s−t| )

+
lnγ(1 + u)

lnγ(1 + 2
|s−t| )

lnγ(1 + |λ− u|)
ln
(
1 + 4

s+t

)
⎞⎠2m

dFk(λ)dFk(u)

⎞⎟⎠
1
m

≤ 16

⎛⎝ lnγ(1 + λk+1 − λk)

lnγ
(
1 + 2

|s−t|
) +

lnγ(1 + λk+1)

lnγ
(
1 + 2

|s−t|
) lnγ(1 + λk+1 − λk)

lnγ
(
1 + 4

s+t

)
⎞⎠2

× (F (λk+1)− F (λk))

≤ 16 (F (λk+1)− F (λk))
ln2γ(1 + λk+1 − λk)

ln2γ
(
1 + 2

|s−t|
) (

1 +
lnγ(1 + λk+1)

lnγ
(
1 + 2

T

) )2

= Jk.

Similarly, we obtain

τ2

⎛⎝ λk+1∫
λk

(sinλt− sin ζkt− sinλs+ sin ζks) dη2(λ)

⎞⎠

≤ 16 sup
m≥1

⎛⎝E

⎛⎝ λk+1∫
λk

(∣∣∣∣sin (s− t)(λ− ζk)

4

∣∣∣∣
+

∣∣∣∣sin ζk(s− t)

2

∣∣∣∣ · ∣∣∣∣sin (λ− ζk)(t+ s)

4

∣∣∣∣)2

dF (λ)

)m) 1
m

≤ 16b2k sup
m≥1

⎛⎝ λk+1∫
λk

λk+1∫
λk

(
lnγ(1 + |λ− u|)
lnγ(1 + 4

|s−t| )

+
lnγ(1 + u)

lnγ(1 + 2
|s−t| )

lnγ(1 + |λ− u|)
ln
(
1 + 4

s+t

)
⎞⎠2m

dFk(λ)dFk(u)

⎞⎟⎠
1
m
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≤ 16 (F (λk+1)− F (λk))
ln2γ(1 + λk+1 − λk)

ln2γ
(
1 + 2

|s−t|
) (

1 +
lnγ(1 + λk+1)

lnγ
(
1 + 2

T

) )2

= Jk.

Then, τ2 (ηΛ(t)− ηΛ(s)) ≤ 4
M∑
k=0

Jk.

If we put λk+1 − λk = Λ
M , then

τ (ηΛ(t)− ηΛ(s)) ≤ 8(F (Λ))
1
2

lnγ
(
1 + Λ

M

)
lnγ
(
1 + 2

|s−t|
) (1 + lnγ(1 + Λ)

lnγ
(
1 + 2

T

)) .

�

THEOREM 5.15.– If condition

∞∫
0

ln2ε(1 + u)dF (u) < ∞, 0 < ε ≤ 1

holds, then

τ
(
XΛ(t)−XΛ(s)

)
≤ 2Q̃

1
2

lnγ(1 + 1
|t−s| )

,

where Q̃ =
∞∫
Λ

ln2γ(1 + λ)dF (λ), 0 < γ ≤ 1.

PROOF.–

rΛ(τ) = EXΛ(t+ τ)XΛ(t) =

∞∫
Λ

cosλτdF (λ),

E
∣∣XΛ(t)−XΛ(s)

∣∣2 = 2
(
rΛ(0)− rΛ(t− s)

)
= 2

[
(F (+∞)− F (Λ))−

∞∫
Λ

cosλ(t− s)dF (λ)

]
= 2

∞∫
Λ

(1− cosλ(t− s)) dF (λ)

= 4
∞∫
Λ

sin2 λ(t−s)
2 dF (λ) ≤ 4

∞∫
Λ

ln2γ(1+λ)

ln2γ(1+ 2
|t−s| )

dF (λ).
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Then,

τ
(
XΛ(t)−XΛ(s)

)
≤
(
E
∣∣XΛ(t)−XΛ(s)

∣∣2) 1
2

= 2

⎛⎝ ∞∫
Λ

ln2γ(1 + λ)

ln2γ(1 + 2
|t−s| )

dF (λ)

⎞⎠ 1
2

=
2

lnγ(1 + 2
|t−s| )

⎛⎝ ∞∫
Λ

ln2γ(1 + λ)dF (λ)

⎞⎠ 1
2

.

�

THEOREM 5.16.– If the random process XM
Λ (t) has a partition Λ such that the

inequalities

∞∫
0

ln2γ(1 + λ)dF (λ) < ∞ , 0 < γ ≤ 1 ,

2 exp

{
− 1

2ε201

(
αδ −

√
8αδI1(ε01)

)2}
+ 2 exp

{
− 1

2ε202

(
(1− α)δ −

√
8(1− α)δI2(ε02)

)2}
≤ β [5.51]

as δ > 8max
(
I1(ε01), I2(ε02)

)
holds, where 0 < α < 1, ε01 = sup

0≤t≤T
τ(XΛ(t) −

XM
Λ (t)), ε02 = sup

0≤t≤T
τ(XΛ(t)),

I1(ε01) =
1√
2

ε01∫
0

⎛⎜⎜⎜⎝ln

⎛⎜⎜⎜⎝T

4
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎝8
√

F (Λ) lnγ
(
1 + Λ

M

)(
1 + lnγ(1+Λ)

lnγ(1+ 2
T )

)
ε

⎞⎟⎟⎠
1
γ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
−T

4
+ 1

)) 1
2

dε,

I2(ε02)

=
1√
2

ε02∫
0

⎛⎜⎜⎜⎝ln

⎛⎜⎜⎜⎝T

4
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎝2

∞∫
Λ

ln2γ(1 + λ)dF (λ)

ε

⎞⎟⎟⎠
1
γ
⎫⎪⎪⎪⎬⎪⎪⎪⎭− T

4
+ 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
2

dε,

then the model approximates Gaussian random process X(t) in the space C([0, T ])
with reliability 1− β, 0 < β < 1 and accuracy δ > 0.
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PROOF.– From entropy characteristics [BUL 00], we have

P

{
sup

0≤t≤T
|X(t)−XM

Λ (t)| ≥ δ

}
≤ P

{
sup

0≤t≤T
|XΛ(t)−XM

Λ (t)| > αδ

}
+ P

{
sup

0≤t≤T
|XΛ(t)| > (1− α)δ

}
≤ 2 exp

{
− 1

2ε201

(
αδ −

√
8αδI1(ε01)

)2}
+

+2 exp

{
− 1

2ε202

(
(1− α)

√
8(1− α)δI2(ε02)

)2}
.

From theorem 5.14 follows that σ1(h) = sup
|t−s|<h

τ(ηΛ(t) − ηΛ(s)) ≤ G̃

lnγ(1+ 2
h )

,

where

G̃ = 8
√
F (Λ) lnγ

(
1 +

Λ

M

)(
1 +

lnγ(1 + Λ)

lnγ
(
1 + 2

T

)) .

σ
(−1)
1 (h) =

2

exp

{(
G̃
h

) 1
γ

}
− 1

.

Then

I1(ε01) =
1√
2

ε01∫
0

(
ln

(
T

2σ
(−1)
1 (ε)

+ 1

)) 1
2

dε

=
1√
2

ε01∫
0

⎛⎝ln

⎛⎝T

4
exp

⎧⎨⎩
(
G̃

ε

) 1
γ

⎫⎬⎭− T

4
+ 1

⎞⎠⎞⎠
1
2

dε,

ε01 = sup
0≤t≤T

τ(ηΛ(t)) is defined in theorem 5.13.

From theorem 5.15 follows that σ2(h) = sup
|t−s|<h

(XΛ(t) −XΛ(s)) ≤ 2Q̃

lnγ(1+ 2
h )

,

where Q̃ =
∞∫
Λ

ln2γ(1 + λ)dF (λ), then

σ
(−1)
2 (h) = 2

⎛⎝exp

⎧⎨⎩
(
2Q̃

ε

) 1
γ

⎫⎬⎭− 1

⎞⎠−1

,
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I2(ε02) =
1√
2

ε02∫
0

⎛⎝ln

⎛⎝T

4
exp

⎧⎨⎩
(
2Q̃

ε

) 1
γ

⎫⎬⎭− T

4
+ 1

⎞⎠⎞⎠
1
2

dε.

where

ε02 = sup
0≤t≤T

τ(XΛ(t)) ≤ sup
0≤t≤T

(
E|Xλ(t)|2

) 1
2 =

√
F (+∞)− F (Λ).

By definition 5.3, the model XM
Λ (t) approximates the process XM

Λ (t) with

reliability of 1 − β, 0 < β < 1 and accuracy δ > 0 in the space C([0, T ]), if

condition [5.51] is fulfilled. �



6

Simulation of Cox Random Processes

In this chapter, we introduce random Cox processes and describe two algorithms

of their simulation with some given accuracy and reliability. The cases are considered

when an intensity of random Cox processes are generated by log Gaussian or square

Gaussian homogeneous and inhomogeneous processes, or fields are considered. The

results of this chapter are based on the works of [KOZ 06a, KOZ 07c, KOZ 11,

KOZ 07b, POG 07, POG 09, POG 11].

6.1. Random Cox processes

In this section, random Cox processes driven by random intensity are considered.

All necessary definitions and properties which will be used during their simulation are

described.

Let {T,B, μ} be a measurable space, μ (T) < ∞.

DEFINITION 6.1.– [MOL 98] Let {Z (t) , t ∈ T} , T ⊂ R not be a negative random
process. If {ν (B) , B ∈ B} under fixed simple function Z (t) is Poisson process with
intensity function μ (B) =

∫
B

Z(·, t)dt, then ν (B) is said to be a random Cox process

driven by process Z (t) .

Let {Y (t) , t ∈ T} , T ⊂ R be a homogeneous, Gaussian, mean square

continuous random process, EY (t) = 0, EY (t) ×Y (s) = B (t− s). If

Z (t) = exp {Y (t)} , then ν (B) is said to be the log Gaussian Cox process or Cox

process driven by a log Gaussian process exp {Y (t)} . If Z (t) = Y 2 (t) , then ν (B)
is said to be a square Gaussian Cox process or Cox process driven by a square

Gaussian process Y 2 (t) .

If T ⊂ Rn, then ν (B) is said to be a random Cox process driven by the field.
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DEFINITION 6.2.– [FEL 70] Poisson point process N on {T,B} is said to be a point
process such that for all Bk ∈ B, k = 1,m, m ∈ N, Bi ∩ Bj = ∅ if i �= j, random
variables N (Bk) , k = 1,m are independent and have Poisson distribution with mean
μ (Bk) ,

P {N (Bk) = l} =
(μ (Bk))

l

l!
exp {−μ (Bk)} .

Let ξi, i = 1, 2, . . . be independent random elements with the same distribution,

that for any set B ∈ B, P {ξi ∈ B} = μ(B)
μ(T) .

Let Θ be a Poisson random variable, which does not depend on ξi. Consider a

family of random elements ξ1, ξ2, . . . , ξΘ.

We denote Π(B) by quantity of elements from ξ1, ξ2, . . . , ξΘ, which are

contained in B ∈ B.

THEOREM 6.1.– Π(B) , B ∈ B is a Poisson ensemble with density function μ (B) .

PROOF.– Let B1, B2, . . . , Bm ∈ B, Bi ∩ Bj = ∅ when i �= j. Since joint

distribution of random variables Π(B1) , Π(B2) , . . . , Π(Bm) given that Θ = n is

polynomial, it follows from the formula of total probability:

P {Π(B1) = k1,Π(B2) = k2, . . . ,Π(Bm) = km}

=

∞∑
n=

∑m
i=1 ki

P {Π(B1)=k1,Π(B2)=k2, . . . ,Π(Bm)=km/Θ = n}P {Θ = n}

=
∞∑

n=
∑m

i=1 ki

n!

k1! . . . km! (n−∑m
i=1 ki)!

m∏
i=1

(
μ (Bi)

μ (T)

)ki

×
(
1−

∑m
i=1 μ (Bi)

μ (T)

)n−∑m
i=1 ki

e−μ(T) (μ (T))
n

n!

=

(
m∏
i=1

(μ (Bi))
ki

ki! (μ (T))
ki

)
e−μ(T)

×
∞∑

n=
∑m

i=1 ki

1

(n−∑m
i=1 ki)!

(μ (T)−∑m
i=1 μ (Bi))

n−∑m
i=1 ki

(μ (T))
n−∑m

i=1 ki
(μ (T))

n

=

(
m∏
i=1

(μ (Bi))
ki

ki!

)
e−μ(T)

∞∑
n=

∑m
i=1 ki

1

(n−∑m
i=1 ki)!

(
μ (T)−

m∑
i=1

μ (Bi)

)n−m∑
i=1

ki
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=

(
m∏
i=1

(μ (Bi))
ki

ki!

)
e−μ(T)

∞∑
s=0

1

s!

(
μ (T)−

m∑
i=1

μ (Bi)

)s

=
m∏
i=1

exp {−μ (Bi)}
(μ (Bi))

ki

ki!
.

�

Thereby, under fixed realization of the random process Y (t) log Gaussian Cox

processes ν (B) is a Poisson ensemble. This result will be used during simulation of

Cox processes.

6.2. Simulation of log Gaussian Cox processes as a demand arrival
process in actuarial mathematics

In this section, a simulation of the Cox processes methods density, generated by

Log Gaussian process (μ(B) =
∫
B

exp {Y (t)} dt, {Y (t) , t ∈ T} is centered,

homogeneous, Gaussian), is described. This method can be used as a method of

simulation of demands arrival process in actuarial mathematics, since arrival of

demands [TEU 04] often may be considered as a log Gaussian Cox process. The

model is constructed on finite domain T = [0, T ] , T ∈ R.

We construct a model of log Gaussian process in three steps. In the first step, we

simulate centered, homogeneous, Gaussian random process Y (t) . In the second step,

we simulate a Poisson random variable with density μ̃ (T) =
T∫
0

exp
{
Ỹ (t)

}
, where

Ỹ (t) is model of Y (t) . Consequently, we obtain a value of a ν̃ (T) . Under realization

of a process that generates density, it follows from theorem 6.1 that the log Gaussian

Cox process ν̃ (T) is a Poisson ensemble. In the third step, we have to simulate ν̃ (T)

independent random variables with function density G̃ (x) =
∫ x
0

exp{Ỹ (t)}dt∫
T

exp{Ỹ (u)}du .

Since the model of continuous random variable with function density G (x) is

G−1 (ζ) , where G−1 (·) is inverse to G (·) function, ζ is uniform on [0, 1] random

variable and the model of log Gaussian Cox process is constructed in such a way that

the difference between process and their model was as small as possible, we should

demand that
∣∣∣G(−1) (ζ)− G̃(−1) (ζ)

∣∣∣ for all ζ is as small as possible. In other words,

the placement of each point of the log Gaussian Cox process must differ from their

small simulated analog.
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DEFINITION 6.3.– We say that the model of Cox process {ν (B) , B ∈ B} , driven by
log Gaussian process exp {Y (t)} , approximates that process with accuracy α, 0 <
α < 1 and reliability 1− γ, 0 < γ < 1, if the following inequality holds true:

P

{
sup

0≤ζ≤1

∣∣∣G(−1) (ζ)− G̃(−1) (ζ)
∣∣∣ > α

}
< γ.

LEMMA 6.1.– Let Y (t) be a homogeneous, centered, continuous in mean square,

Gaussian process with spectral function F (λ), a partition DΛ of domain [0,Λ] , Λ ∈
R is such that λk+1 − λk = Λ

N , N ∈ N. Then, for all p > 1 we have

(
E

∣∣∣∣∣
∫ T

0

eY (u)−Y (t)du−
∫ T

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣
p) 1

p

≤ 2
1
p
√
v1AN, tp

1
2 exp

{
2pv2B (0)− 1

2

}
,

where the model is equal to

Ỹ (t) =
N−1∑
k=0

⎛⎝cosλkt

λk+1∫
λk

dξ (λ) + sinλkt

λk+1∫
λk

dη (λ)

⎞⎠
and

AN, t =

(
T 2

2
+ Tt

)√
2F (Λ)

Λ

N
+ 2T

√
2 (F (∞)− F (Λ)),

where v1 and v2 are such positive numbers, that 1
v1

+ 1
v2

= 1.

PROOF.– By virtue of the general Minkowski inequality:

(
E

∣∣∣∣∣
∫ T

0

eY (u)−Y (t)du−
∫ T

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣
p) 1

p

≤
T∫

0

(
E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣p) 1
p

du. [6.1]

It follows from inequality |ex − ey| ≤ |x− y| emax(x,y) and the Hölder inequality

that

E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣p
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≤ E
(∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣p epmax(Y (u)−Y (t),Ỹ (u)−Ỹ (t))
)

≤
(
E
∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣pv1) 1
v1

(
Eepv2 max(Y (u)−Y (t),Ỹ (u)−Ỹ (t))

) 1
v2

, [6.2]

1
v1

+ 1
v2

= 1, v1 > 1. Let us estimate each of the multipliers of the right-hand

side of the last inequality. For the estimation of the first multiplier, we proof auxiliary

relation. Let ξ be a Gaussian random variable with parameters 0 and σ2:

E|ξ|p = 1√
2πσ

∞∫
−∞

|x|p exp
{
− x2

2σ2

}
dx =

∣∣ x
σ = t, dx = σdt

∣∣
= σp 1√

2π

∞∫
−∞

|t|p exp
{
− t2

2

}
dt = cp

(
σ2
) p

2 ,

cp =
√

2
π

∞∫
0

up exp
{
−u2

2

}
du =

∣∣∣u2

2 = v, du = dv√
2v

∣∣∣
=
√

2
π

∞∫
0

(2v)
p
2 exp {−v} 1√

2v
dv

= 2
p
2√
π

∞∫
0

v
p+1
2 −1 exp {−v} dv = 2

p
2√
π
Γ
(
p+1
2

)
.

It is follows from the Stirling formula that, 0 < θ < 1

Γ
(
p+1
2

)
=

√
2π
(
p+1
2

) p+1
2 − 1

2 exp
{
−p+1

2

}
exp
{

θ
12 p+1

2

}
≤

√
2π
(
p
2

) p
2

(
1 + 1

p

) p
2

exp
{
− 1

2 + 1
6(p+1)

}
exp
{
−p

2

}
.

Finding a maximum of ln f(p), where f(p) =
(
1 + 1

p

) p
2

exp
{
− 1

2 + 1
6(p+1)

}
we obtain that under p > 1 f(p) < 1. Thereby for a Gaussian random variable, the

following relations hold true:

E|ξ|p = cp
(
σ2
) p

2 , [6.3]

cp ≤
√
2p

p
2 exp

{
−p

2

}
. [6.4]

It follows from the first proved relation that:

E
∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣pv1

= cpv1

(
E
∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣2)pv1
2

.
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Using the presentations of process

Y (t) =
N∑

k=0

λk+1∫
λk

cosλtdξ(λ) +
N∑

k=0

sinλtdη(λ), λN+1 = +∞,

and its model Ỹ (t) we obtain that:

E
∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣2
= E

∣∣∣∣∣N−1∑
k=0

λk+1∫
λk

(cosλu− cosλku− cosλt+ cosλkt) dξ (λ)

+
N−1∑
k=0

λk+1∫
λk

(sinλu− sinλku− sinλt+ sinλkt) dη (λ)

+
∞∫
Λ

(cosλu− cosλt) dξ (λ) +
∞∫
Λ

(sinλu− sinλt) dη (λ)

∣∣∣∣2
=

N−1∑
k=0

λk+1∫
λk

(cosλu− cosλku− cosλt+ cosλkt)
2
dF (λ)

+
N−1∑
k=0

λk+1∫
λk

(sinλu− sinλku− sinλt+ sinλkt)
2
dF (λ)+

+
∞∫
Λ

(cosλu− cosλt)
2
dF (λ) +

∞∫
Λ

(sinλu− sinλt)
2
dF (λ)

≤ 4
N−1∑
k=0

λk+1∫
λk

(∣∣∣sin u(λ+λk)
2 sin u(λ−λk)

2

∣∣∣
+
∣∣∣sin t(λk+λ)

2 sin t(λ−λk)
2

∣∣∣)2 dF (λ)

+4
N−1∑
k=0

λk+1∫
λk

(∣∣∣sin u(λ−λk)
2 cos u(λ+λk)

2

∣∣∣
+
∣∣∣sin t(λ−λk)

2 sin t(λk+λ)
2

∣∣∣)2 dF (λ)+

+4
∞∫
Λ

(
sin λ(u+t)

2 sin λ(u−t)
2

)2
dF (λ)

+4
∞∫
Λ

(
sin λ(u−t)

2 cos λ(u+t)
2

)2
dF (λ)

≤ 8
N−1∑
k=0

λk+1∫
λk

(
u(λ−λk)

2 + t(λ−λk)
2

)2
dF (λ) + 8 (F (∞)− F (Λ))

≤ 2 Λ2

N2 (u+ t)
2
F (Λ) + 8 (F (∞)− F (Λ)) ,

[6.5]
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since on each of the domains [λk, λk+1] , λ− λk ≤ λk+1 − λk = Λ
N . Thereby,

(
E
∣∣∣Y (u)−Y (t)−Ỹ (u)+Ỹ (t)

∣∣∣pv1) 1
v1 ≤ c

1
v1
pv1A

p
2

N, u, t, [6.6]

where

AN, u, t = 2
Λ2

N2
(u+t)

2
F (Λ) + 8 (F (∞)−F (Λ)) . [6.7]

Let us estimate Eepv2 max(Y (u)−Y (t),Ỹ (u)−Ỹ (t)). Note that for the Gaussian

random variable ξ = N(0, σ2), the next inequality holds true

E exp {λξ} = exp
{

λ2σ2

2

}
. Using this, we can write the next estimation:

E exp
{
pv2 max

(
Y (u)− Y (t) , Ỹ (u)− Ỹ (t)

)}
≤ E exp {pv2 (Y (u)− Y (t))}+E exp

{
pv2

(
Ỹ (u)− Ỹ (t)

)}
= exp

{
(pv2)

2

2
E (Y (u)− Y (t))

2

}
+

{
(pv2)

2

2
E
(
Ỹ (u)− Ỹ (t)

)2}
.

E (Y (u)− Y (t))
2
= B (0)− 2EY (u)Y (t) +B (0)

= 2B (0)− 2B (t− u) = 2

∞∫
0

(1− cosλ (t− u)) dF (λ)

= 4

∞∫
0

sin2
λ (t− u)

2
dF (λ) ≤ 4B (0) .

It is obvious that E
∣∣∣Ỹ (u)− Ỹ (t)

∣∣∣2 ≤ 4B (0). Then,

Eepv2 max(Y (u)−Y (t),Ỹ (u)−Ỹ (t)) ≤ 2e2(pv2)
2B(0).

Thereby, using estimation [6.6] as the last inequality, it follows from [6.2] that:

E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣p ≤ c
1
v1
pv1A

p
2

N, u, t2
1
v2 e2p

2v2B(0),

where AN, u, t is defined in [6.7]. It follows from the last estimation and estimation

[6.4] for cp that:



258 Simulation of Stochastic Processes with Given Accuracy and Reliability

T∫
0

(
E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣p) 1
p

du

≤
∫ T

0

(√
2 (pv1)

pv1
2 exp

{
−pv1

2

}) 1
pv1

A
1
2

N, u, t2
1

pv2 e2pv2B(0)du.

Taking the integral in the right-hand side of the above estimation and using

inequality
√
x+ y ≤ √

x+
√
y after one of them is integrated, it is evident that after

elementary transformation of the statement of lemma follows from [6.1]. �

LEMMA 6.2.– Let Y (t) be a homogeneous, centered, continuous mean square

Gaussian random process with spectral function F (λ). There exists spectral moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, and partition DΛ of domain [0,Λ] , Λ ∈ R such that

λk−1 − λk = Λ
N , N ∈ N, that for all p > 1 the following estimation holds true:⎛⎝E

∣∣∣∣∣∣
T∫

0

eY (u)−Y (t+h)du−
T∫

0

eỸ (u)−Ỹ (t+h)du

−
T∫

0

eY (u)−Y (t)du+

T∫
0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣∣
p⎞⎠

1
p

≤ hβGN,t,p,

where

GN,t,p = 2
1
p

(
T
√
2PN,t +

(
27−2βΛ2βB (0)

) 1
2 AN, t

)
p e16pB(0)− 1

2 ,

PN,t = 25−4β

((
Λ

N

)β

+ 2β−1t
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) ,

AN, t =

(
T 2

2
+ Tt

)√
2F (Λ)

Λ

N
+ 2T

√
2 (F (∞)− F (Λ)).

PROOF.–(
E
∣∣∣∫ T

0
eY (u)−Y (t+h)du−

∫ T

0
eỸ (u)−Ỹ (t+h)du

−
∫ T

0
eY (u)−Y (t)du+

∫ T

0
eỸ (u)−Ỹ (t)du

∣∣∣p) 1
p

=
(
E
∣∣∣∫ T

0
eY (u)−Y (t)dueY (t)−Y (t+h) −

∫ T

0
eY (u)−Y (t)dueỸ (t)−Ỹ (t+h)

+
∫ T

0
eY (u)−Y (t)dueỸ (t)−Ỹ (t+h) −

∫ T

0
eY (u)−Y (t)du

−
∫ T

0
eỸ (u)−Ỹ (t)dueỸ (t)−Ỹ (t+h) +

∫ T

0
eỸ (u)−Ỹ (t)du

∣∣∣p) 1
p
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=

(
E

∣∣∣∣∣
∫ T

0

eY (u)−Y (t)du
(
eY (t)−Y (t+h)−eỸ (t)−Ỹ (t+h)

)

+

∫ T

0

eY (u)−Y (t)du
(
eỸ (t)−Ỹ (t+h)−1

)
−
∫ T

0

eỸ (u)−Ỹ (t)du
(
eỸ (t)−Ỹ (t+h)−1

)∣∣∣∣∣
p) 1

p

≤
(
E

∣∣∣∣∣
∫ T

0

eY (u)−Y (t)du
(
eY (t)−Y (t+h) − eỸ (t)−Ỹ (t+h)

)∣∣∣∣∣
p) 1

p

+

(
E

∣∣∣∣∣(eỸ (t)−Ỹ (t+h) − 1
)∫ T

0

(
eY (u)−Y (t) − eỸ (u)−Ỹ (t)

)
du

∣∣∣∣∣
p) 1

p

. [6.8]

Let us estimate separately each of the summands of the right-hand side of [6.8].

Consequently, using the general Minkowsky inequality, inequality

|ex − ey| ≤ |x− y| emax(x,y) and Hölder inequality, we obtain:

(
E
∣∣∣∫ T

0
eY (u)−Y (t)du

(
eY (t)−Y (t+h) − eỸ (t)−Ỹ (t+h)

)∣∣∣p) 1
p

≤
∫ T

0

(
E
∣∣∣eY (u)−Y (t)du

(
eY (t)−Y (t+h) − eỸ (t)−Ỹ (t+h)

)∣∣∣p) 1
p

du

≤
∫ T

0

(
E
∣∣∣eY (u)−Y (t)

∣∣∣Y (t)−Y (t+ h)−Ỹ (t)+Ỹ (t+ h)
∣∣∣

×emax(Y (t)−Y (t+h),Ỹ (t)−Ỹ (t+h))
∣∣∣p) 1

p

du

≤
∫ T

0

(
(E |Δ1 (Y )|pr1)

1
r1 (E |Δ2 (Y )|pr2)

1
r2

) 1
p

du,

[6.9]

where

Δ1 (Y ) = Y (t)− Y (t+ h)− Ỹ (t) + Ỹ (t+ h) ,

Δ2 (Y ) = eY (u)−Y (t)emax(Y (t)−Y (t+h),Ỹ (t)−Ỹ (t+h)),

1
r1

+ 1
r2

= 1, r1 > 1. By virtue of [6.3]

(E |Δ1 (Y ) |pr1) =
(
E |Δ1 (Y )|2

)pr1
2

cpr1 .
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Using representations [4.3] and [4.8] of the process Y (t) and their model Ỹ (t)

and inequality |sinx| ≤ |x|β , 0 ≤ β ≤ 1, we obtain:

E |Δ1 (Y ) |2 = E
∣∣∣Y (t+ h)− Ỹ (t+ h)− Y (t) + Ỹ (t)

∣∣∣2
=

N−1∑
k=0

λk+1∫
λk

(cosλ (t+ h)− cosλk (t+ h)− cosλt+ cosλkt)
2
dF (λ)

+
N−1∑
k=0

λk+1∫
λk

(sinλ (t+ h)− sinλk (t+ h)− sinλt+ sinλkt)
2
dF (λ)

+
∞∫
Λ

(cosλ (t+ h)− cosλt)
2
dF (λ) +

∞∫
Λ

(sinλ (t+ h)− sinλt)
2
dF (λ)

≤
N−1∑
k=0

λk+1∫
λk

4
(∣∣∣sin (t+h)(λ+λk)

2

∣∣∣ ∣∣∣sin (t+h)(λ−λk)
2 − sin (λ−λk)t

2

∣∣∣
+
∣∣∣sin (λ−λk)t

2

∣∣∣ ∣∣∣sin (t+h)(λ+λk)
2 − sin (λ+λk)t

2

∣∣∣)2 dF (λ)

+
N−1∑
k=0

λk+1∫
λk

4
(∣∣∣sin (t+h)(λ−λk)

2

∣∣∣ ∣∣∣cos (t+h)(λ+λk)
2 − cos (λ+λk)t

2

∣∣∣
+
∣∣∣cos (λ+λk)t

2

∣∣∣ ∣∣∣sin (t+h)(λ−λk)
2 − sin (λ−λk)t

2

∣∣∣)2dF (λ)

+
∞∫
Λ

4
∣∣∣sin λ(2t+h)

2

∣∣∣2 ∣∣sin λh
2

∣∣2dF (λ)+
∞∫
Λ

4
∣∣∣cos λ(2t+h)

2

∣∣∣2∣∣sin λh
2

∣∣2dF (λ)

≤
N−1∑
k=0

λk+1∫
λk

4
(∣∣∣2 cos (2t+h)(λ−λk)

4 sin (λ−λk)h
4

∣∣∣
+
∣∣∣sin (λ−λk)t

2

∣∣∣ ∣∣∣2 cos (2t+h)(λ+λk)
4 sin (λ+λk)h

4

∣∣∣)2 dF (λ)

+
N−1∑
k=0

λk+1∫
λk

4
(∣∣∣sin (t+h)(λ−λk)

2

∣∣∣ ∣∣∣2 sin (2t+h)(λ+λk)
4 sin (λ+λk)h

4

∣∣∣
+
∣∣∣2 cos (2t+h)(λ−λk)

4 sin (λ−λk)h
4

∣∣∣)2 dF (λ)

+23−2βh2β
∞∫
Λ

λ2βdF (λ)

≤
N−1∑
k=0

λk+1∫
λk

16
(

(λ−λk)
βhβ

4β
+ (λ−λk)t

2
(λ+λk)

βhβ

4β

)2
dF (λ)

+
N−1∑
k=0

λk+1∫
λk

16
(

(t+h)(λ−λk)
2

(λ+λk)
βhβ

4β
+ (λ−λk)

βhβ

4β

)2
dF (λ)

+23−2βh2β
∞∫
Λ

λ2βdF (λ)

≤ 32
N−1∑
k=0

λk+1∫
λk

((
Λ
N

h
4

)β
+ Λ

N
t
2

(
2Λh

4

)β)2
dF (λ) + 23−2βh2β

∞∫
Λ

λ2βdF (λ) ,
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0 < β ≤ 1. Therefore,

E |Δ1 (Y )|2 ≤ h2βPN,t, [6.10]

where PN,t = 25−4β
((

Λ
N

)β
+ 2β−1tΛ

β+1

N

)2
F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) , 0 < β

≤ 1. Thereby:

(E |Δ1 (Y )|pr1)
1
r1 ≤ c

1
r1
pr1h

pβP
p
2

N,t. [6.11]

Let us estimate E |Δ2 (Y )|pr2 . It follows from the Hölder inequality that

E |Δ2 (Y )|pr2 ≤ (E exp {pr2f1 (Y (u)− Y (t))})
1
f1

×
(
E exp

{
pr2f2 max

(
Y (t)− Y (t+ h) , Ỹ (t)− Ỹ (t+ h)

)}) 1
f2

,

[6.12]

1
f1

+ 1
f2

= 1, f1 > 1. Since for Gaussian random variable ξ = N(0, σ2), the next

relation holds true E exp {λξ} = exp
{

λ2σ2

2

}
, and it was shown in lemma 6.1 that,

E |Y (u)− Y (t)|2 ≤ 4B (0) , E
∣∣∣Ỹ (u)− Ỹ (t)

∣∣∣2 ≤ 4B (0) , then:

E exp {pr2f1 (Y (u)− Y (t))}

= exp

{
(pr2f1)

2

2
E (Y (u)− Y (u))

2

}
≤ exp

{
2 (pr2f1)

2
B (0)

}
.

E exp
{
pr2f2 max

(
Y (t)− Y (t+ h) , Ỹ (t)− Ỹ (t+ h)

)}
≤ exp

{
(pr2f2)

2

2 E (Y (t)− Y (t+ h))
2
}

+exp

{
(pr2f2)

2

2 E
(
Ỹ (t)− Ỹ (t+ h)

)2}
≤ 2 exp

{
2 (pr2f2)

2
B (0)

}
.

Let us put f1 = f2 = 2. It is evident by using the two last inequalities and [6.12]

that

(E |Δ2 (Y )|pr2)
1
r2 ≤ 2

1
2r2 exp

{
8p2r2B (0)

}
.
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In consideration of [6.11] and the last inequality, it follow from [6.9] that:

(
E

∣∣∣∣∣
∫ T

0

eY (u)−Y (t)du
(
eY (t)−Y (t+h) − eỸ (t)−Ỹ (t+h)

)∣∣∣∣∣
p) 1

p

≤
∫ T

0

((√
2 (pr1)

pr1
2 exp

{
−pr1

2

}) 1
r1

hpβP
p
2

N,t2
1

2r2 e8p
2r2B(0)

) 1
p

du

≤ hβ2
1
2pT
√
r1PN,tp

1
2 exp

{
8pr2B (0)− 1

2

}
. [6.13]

Let us estimate the second summand of the right-hand side of [6.8].

(
E

∣∣∣∣∣(eỸ (t)−Ỹ (t+h) − 1
)∫ T

0

(
eY (u)−Y (t) − eỸ (u)−Ỹ (t)

)
du

∣∣∣∣∣
p) 1

p

≤
∫ T

0

(
E
∣∣∣(eỸ (t)−Ỹ (t+h) − 1

)(
eY (u)−Y (t) − eỸ (u)−Ỹ (t)

)∣∣∣p) 1
p

du

≤
∫ T

0

((
E
∣∣∣eỸ (t)−Ỹ (t+h) − 1

∣∣∣ps1) 1
s1

(
E
∣∣∣(eY (u)−Y (t) − eỸ (u)−Ỹ (t)

)∣∣∣ps2) 1
s2
) 1

p

du, [6.14]

1
s1
+ 1

s2
= 1. Using inequality |exp (x)− 1| ≤ |x| exp {|x|} , and after the Hölder

inequality,

E
∣∣∣eỸ (t)−Ỹ (t+h) − 1

∣∣∣ps1 ≤ E
(∣∣∣Ỹ (t)− Ỹ (t+ h)

∣∣∣ e|Ỹ (t)−Ỹ (t+h)|)ps1
≤ E

(∣∣∣Ỹ (t)− Ỹ (t+ h)
∣∣∣ps1l1) 1

l1
(
Eeps1l2|Ỹ (t)−Ỹ (t+h)|) 1

l2 ,

1
l1
+ 1

l2
= 1. Since

E |Δ2 (Y )|2 = E
∣∣∣Ỹ (t+ h)− Ỹ (t)

∣∣∣2
= E

⎛⎝N−1∑
k=0

λk+1∫
λk

cosλk (t+ h) dξ (λ) +
N−1∑
k=0

λk+1∫
λk

sinλk (t+ h) dη (λ)

−
N−1∑
k=0

λk+1∫
λk

cosλkt dξ (λ)−
N−1∑
k=0

λk+1∫
λk

sinλktdη (λ)

⎞⎠2
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= E

⎛⎝N−1∑
k=0

λk+1∫
λk

−2 sin
λk (2t+ h)

2
sin

λkh

2
dξ (λ)+

+

N−1∑
k=0

λk+1∫
λk

2 sin
λkh

2
cos

λk (2t+ h)

2
dη (λ)

⎞⎠2

=

N−1∑
k=0

λk+1∫
λk

4 sin2
λk (2t+ h)

2
sin2

λkh

2
dF (λ)

+
N−1∑
k=0

λk+1∫
λk

4 sin2
λkh

2
cos2

λk (2t+ h)

2
dF (λ)

≤ 8
N−1∑
k=0

λk+1∫
λk

sin2
λkh

2
dF (λ)

≤ 8

N−1∑
k=0

λk+1∫
λk

(
λkh

2

)2β

dF (λ) ≤ 23−2βΛ2βh2βF (Λ) , 0 < β ≤ 1,

that (
E
∣∣∣Ỹ (t)− Ỹ (t+ h)

∣∣∣ps1l1) 1
l1

≤ c
1

l1
ps1l1

(
23−2βΛ2βh2βB (0)

)ps1
2

.

In addition,(
Eeps1l2|Ỹ (t)−Ỹ (t+h)|) 1

l2 ≤ 2
1

l2 e2(ps1)
2l2B(0).

Thereby

E
∣∣∣eỸ (t)−Ỹ (t+h) − 1

∣∣∣ps1 ≤ c
1

l1
ps1l1

(
23−2βΛ2βh2βB (0)

)ps1
2

2
1

l2 e2(ps1)
2l2B(0). [6.15]

Let us estimate E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣ps2 :

E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣ps2
≤ E

(∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)
∣∣∣ emax(Y (u)−Y (t),Ỹ (u)−Ỹ (t))

)ps2
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≤
(
E
∣∣∣Y (u)−Y (t)−Ỹ (u)+Ỹ (t)

∣∣∣ps2m1
) 1

m1

(
Eeps2m2 max(Y (u)−Y (t),Ỹ (u)−Ỹ (t))

) 1
m2

,

1
m1

+ 1
m2

= 1. Since it was proved in lemma 6.1,

E
∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣2 ≤ AN, u, t,

AN, u, t = 2
Λ2

N2
(u+ t)

2
F (Λ) + 8 (F (∞)− F (Λ)) ,

that (
E
∣∣∣Y (u)− Y (t)− Ỹ (u) + Ỹ (t)

∣∣∣ps2m1
) 1

m1 ≤ c
1

m1
ps2m1A

ps2
2

N, u, t.(
Eeps2m2 max(Y (u)−Y (t),Ỹ (u)−Ỹ (t))

) 1
m2 ≤ 2

1
m2 e2(ps2)

2m2B(0).

It follows from the two last inequalities that

E
∣∣∣eY (u)−Y (t) − eỸ (u)−Ỹ (t)

∣∣∣ps2 ≤ c
1

m1
ps2m1A

ps2
2

N, u, t2
1

m2 e2(ps2)
2m2B(0)

Using [6.15] and the preceding inequality, put s1 = s2 = l1 = l2 = m1 = m2 =
2. It follows from [6.14] that:

(
E

∣∣∣∣∣(eỸ (t)−Ỹ (t+h) − 1
)∫ T

0

(
eY (u)−Y (t) − eỸ (u)−Ỹ (t)

)
du

∣∣∣∣∣
p) 1

p

≤
∫ T

0

(
c

1

l1s1
ps1l1

(
23−2βΛ2βh2βB(0)

) p
2 2

1

l2s1 e2p
2s1l2B(0)

c
1

m1s2
ps2m1A

p
2

N, u, t2
1

m2s2 e2p
2s2m2B(0)

) 1
p

du

≤
∫ T

0

((√
2 (ps1l1)

ps1l1
2 e−

ps1l1
2

) 1

l1s1 (
23−2βΛ2βh2βB (0)

) p
2 2

1

l2s1 e2p
2s1l2B(0)

×
(√

2 (ps2m1)
ps2m1

2 e−
ps2m1

2

) 1
m1s2

A
p
2

N, u, t2
1

m2s2 e2p
2s2m2B(0)

) 1
p

du

≤ hβ

∫ T

0

(
2

3
4p 4A

1
2

N, u, t

(
23−2βΛ2βB (0)

) 1
2 p e16pB(0)−1

)
du.
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Estimating the expression under integral and taking the integral, we obtain that:

(
E

∣∣∣∣∣(eỸ (t)−Ỹ (t+h) − 1
)∫ T

0

(
eY (u)−Y (t) − eỸ (u)−Ỹ (t)

)
du

∣∣∣∣∣
p) 1

p

≤ hβ2
3
4p 4AN, t

(
23−2βΛ2βB (0)

) 1
2

p e16pB(0)−1,

where AN, t =
(

T 2

2 + Tt
)√

2F (Λ) Λ
N + 2T

√
2 (F (∞)− F (Λ)). Set r1= r2=1.

The assertion of lemma follows from [6.8] if we take into account [6.13] and the last

inequality. �

LEMMA 6.3.– Let Y (t) be a homogeneous, centered, separable, continuous in mean

square, Gaussian process with spectral function F (λ) . Let there exist a spectral

moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, and the partition of domain DΛ [0,Λ] , Λ ∈ R is

such that λk−1 − λk = Λ
N , N ∈ N. If SN < α exp

{
− 64B(0)

β

}
, then:

P

{
sup

0≤ζ≤1

∣∣∣G(−1) (ζ)− G̃(−1) (ζ)
∣∣∣ > α

}

≤

⎛⎜⎝( ln α
SN

32B (0)

) ln α
SN

64B(0)

+

(
3β

2

) 1
β

T

(
ln α

SN

32B (0)

) ln α
SN

32B(0)
+ 1

β

⎞⎟⎠ exp

{
−

ln2 α
SN

64B (0)

}
,

[6.16]

where:

SN = max {SN,1, SN,2} SN,1 =
4
√
2AN, 0√
7e

,

SN,2 =
6
(
T
√
2PN +

(
27−2βΛ2βB (0)

) 1
2 AN, T

)
√
e

,

AN, 0 =
T 2

2

√
2F (Λ)

Λ

N
+ 2T

√
2 (F (∞)− F (Λ)),

AN, T =
3T 2

2

√
2F (Λ)

Λ

N
+ 2T

√
2 (F (∞)− F (Λ)),

PN = 25−4β

((
Λ

N

)β

+ 2β−1T
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) .
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PROOF.– Note that
(
G−1 (ζ)

)′
= 1

G′(G−1(ζ)) =
T∫
0

eY (u)due−Y (G−1(ζ)). It follows

from the Lagrange formula that:

sup
0≤ζ≤1

∣∣∣G(−1) (ζ)− G̃(−1) (ζ)
∣∣∣

= sup
0≤ζ≤1

∣∣∣∣G−1 (0)− G̃−1 (0) + ζ

((
G−1

(
ζ̂
))′

−
(
G̃−1

(
ζ̂
))′)∣∣∣∣

≤ sup
0≤ζ̂≤1

∣∣∣∣(G(−1)
(
ζ̂
))′

−
(
G̃(−1)

(
ζ̂
))′∣∣∣∣

= sup
0≤t≤T

∣∣∣∣∣∣
T∫

0

eY (u)−Y (t)du−
T∫

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣∣ .
Thereby,

P

{
sup

0≤ζ≤1

∣∣∣G(−1) (ζ)−G̃(−1) (ζ)
∣∣∣ >α

}

≤ P

⎧⎨⎩ sup
0≤t≤T

∣∣∣∣∣∣
T∫

0

eY (u)−Y (t)du−
T∫

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣∣ >α

⎫⎬⎭.

If follows from lemma 6.1 that

inf
0≤t≤T

⎛⎝E

∣∣∣∣∣∣
T∫

0

eY (u)−Y (t)du−
T∫

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣∣
p⎞⎠

1
p

≤ 2
1
p
√
v1AN, 0p

1
2 exp

{
2pv2B (0)− 1

2

}
, [6.17]

where AN, 0 = AN, t|t=0 . Using by 6.2, we estimate the entropy integral in

corollary 1.16.

θε0∫
0

(
T

σ(−1) (ε)

) 1
p

dε ≤
θε0∫
0

(
T

(
GN,p

ε

) 1
β

) 1
p

dε =
θ1−

1
pβ T

1
pGN,p

1− 1
pβ

,
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1− 1
pβ > 0, GN,p = GN,t,p|t=T . Taking into account that function f (θ) = 1

θ
1
pβ (1−θ)

takes a minimum value in the point θ0 = 1
pβ+1 , and also θ0 <

σ(T
2 )

ε0
, after elementary

manipulations we obtain:

inf
0<θ<1

1

θ
1
pβ (1− θ)

T βGN,p

1− 1
pβ

≤ T
1
pGN,p

(pβ + 1)
1+ 1

pβ

pβ − 1
.

In consideration of [6.17], we obtained estimation and inequality

(a+ b)
p ≤ 2p−1 (ap + bp); based on corollary 1.16, we have:

P

⎧⎨⎩ sup
0≤t≤T

∣∣∣∣∣∣
T∫

0

eY (u)−Y (t)du−
T∫

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣∣ > α

⎫⎬⎭
≤

2p−1
(
2

1
p
√
v1AN, 0p

1
2 exp

{
2pv2B (0)− 1

2

})p
αp

+

2p−1

(
T

1
pGN,p

(pβ+1)
1+ 1

pβ

(pβ−1)

)p

αp
.

By describing GN,p, and taking into consideration that under pβ ≥ 2
(

p
pβ−1

)p
≤

2p

βp and (pβ + 1)
p+ 1

β ≤ (pβ)
p+ 1

β
(
3
2

)p+ 1
β and by setting v2 = 8, after elementary

manipulations we obtain:

P

⎧⎨⎩ sup
0≤t≤T

∣∣∣∣∣∣
T∫

0

eY (u)−Y (t)du−
T∫

0

eỸ (u)−Ỹ (t)du

∣∣∣∣∣∣ > α

⎫⎬⎭
≤

Sp
N,1p

p
2 exp

{
2p2v2B (0)

}
αp

+
TSp

N,2

(
3β
2

) 1
β

pp+
1
β e16p

2B(0)

αp

≤
Sp
N

(
p

p
2 +
(

3β
2

) 1
β

Tpp+
1
β

)
exp
{
16p2B (0)

}
αp

,

where SN = max {SN,1, SN,2} , SN,1 =
4
√
2AN, 0√
7e

, SN,2=
6

(
(27−2βΛ2βB(0))

1
2 AN, T

)
√
e

+
6(T

√
2PN)√
e

, PN = PN,t |t=T , AN = AN,t |t=T . We calculate the value of the right-

hand side of the last estimation in the point p0 =
ln α

SN

32B(0) . It is the point of minimum of

function
Sp
N

(
p

p
2 +( 3β

2 )
1
β Tp

p+ 1
β

)
exp{16p2B(0)}

αp . The condition pβ > 2 to secure that

1− 1
pβ > 0 holds true. By virtue of corollary 1.16, we obtain [6.16] and the lemma is

proved. �
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THEOREM 6.2.– Let Y (t) be a homogeneous, centered, separable, continuous in

mean square, Gaussian process with spectral function F (λ) . Let there exist a spectral

moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, a partition DΛ of domain [0,Λ] , Λ ∈ R is such

that λk−1 − λk = Λ
N , N ∈ N, then the model of Cox process {ν̃ (B) , B ∈ B} ,

directed by the log Gaussian process exp
{
Ỹ (t)

}
, approximates them with accuracy

α and reliability 1− γ if the following conditions hold true:

SN < α exp

{
−64B (0)

β

}
,⎛⎜⎝( ln α

SN

32B (0)

) ln α
SN

64B(0)

+

(
3β

2

) 1
β

T

(
ln α

SN

32B (0)

) ln α
SN

32B(0)
+ 1

β

⎞⎟⎠ exp

{
−

ln2 α
SN

64B (0)

}
≤ γ,

where SN is defined in assertion of lemma 6.3.

PROOF.– The assertion of the theorem is a corollary of definition 6.3 and lemma 6.3.

�

6.3. Simplified method of simulating log Gaussian Cox processes

The method of simulation considered in the previous section is complicated to

realize on a computer. If a model of log Gaussian Cox process is obtained only under

a large value of N , then simulation of random variables with cumulative distribution

function G̃ (x) =
∫ x
0

exp{Ỹ (t)}dt∫
T
exp{Ỹ (u)}du is a long time process. That is why we propose in

this section another method of simulation. This method does not demand to simulate

random variables with the above distribution function.

The model of log Gaussian Cox process is constructed in two steps. First, we

simulate Gaussian process Y (t) . We consider some partition of domain T = [0, T ]
on k domains by length d = T

k : 0 = t0 < t1 < . . . < tk = T , ti+1 − ti = d,

i = 0, k − 1. Let Bi = [ti, ti+1] , μ̃ (Bi) =
∫
Bi

exp
{
Ỹ (t)

}
dt and Ỹ (t) is a model

of Y (t) . Second, for each i = 0, k − 1, we construct a model of log Gaussian Cox

process ν̃ (Bi), that is a model of Poisson random variables with mean μ̃ (Bi). Since

ν̃ (Bi) is a number of points of the model that belong to domain Bi, we allocate these

points in Bi by all means. If ν̃ (Bi) = 1, we place this point in the center of the

domain.

It is evident that the model ν̃ (Bi) is admissible if the conditional probabilities

pkY (Bi) = P
{
ν(Bi) = k/ Y (t) , t ∈ T

}
and p̃kY (Bi) = P

{
ν̃ (Bi) = k/Ỹ (t) ,
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t ∈ T} differ little, and the probability of the event that the number of points ν (Bi)
(respectively, ν̃ (Bi)) is more than one is also small. Therefore, the problem of

simulation of the log Gaussian Cox process consists of two problems. The first is the

problem of the choice of domain T partitioning, and the second is a construction of

the model of the field Y (t) .

Partitioning of the domain T (that is d or k) is chosen in such way that the

following inequality holds true:

P {ν (Bi) > 1} < δ, [6.18]

where δ is given and small (for example δ = 0, 01).

THEOREM 6.3.– Let {ν (B) , B ⊂ B} be a Cox process driven by log Gaussian,

homogeneous process exp {Y (t)} . The inequality [6.18] holds true if we set

d =
T

k
≤ [2δ exp {−2B (0)}]

1
2 . [6.19]

PROOF.– Since

P {ν (Bi) > 1} = E (1− exp {−μ (Bi)} − μ (Bi) exp {−μ (Bi)} ) ,

it is sufficient to choose such a partitioning that the following inequality holds true:

E (1− exp {−μ (Bi)} − μ (Bi) exp {−μ (Bi)} ) < δ.

By virtue of 1− exp {−x} (1 + x) ≤ x2

2 as x > 0, the preceding inequality holds

true if

E [μ (Bi)]
2
< 2δ. [6.20]

For ξ = N
(
0, σ2

)
we have E exp {λξ} = exp

{
λ2σ2

2

}
and:

E [μ (Bi)]
2
= E

[∫
Bi

exp {Y (t)} dt

]2
= E

∫
Bi

exp {Y (t)} dt
∫
Bi

exp {Y (s)} ds

=
∫∫

Bi×Bi

E exp {Y (t) + Y (s)} dtds

=
∫∫

Bi×Bi

exp
{

E(Y (t)+Y (s))2

2

}
dtds

=
∫∫

Bi×Bi

exp
{

E(Y (t))2

2 +EY (t)Y (s) + E(Y (s))2

2

}
dtds
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=
∫∫

Bi×Bi

exp {B (0) +B (t− s)} dtds

= exp {B (0)}
∫∫

Bi×Bi

exp {B (t− s)} dtds

≤ d2 exp {2B (0)} .

The assertion of the theorem follows from the last inequality and [6.20]. �

We want to construct such a model of the log Gaussian Cox process Y (t) that the

conditional probabilities pkY and p̃kY differ little with probability close to one for all

i = 0, k − 1.

DEFINITION 6.4.– The model of Cox process {ν̃ (B) , B ∈ B} driven by the log

Gaussian process exp
{
Ỹ (t)

}
approximates the process with accuracy α, 0 < α < 1

and reliability 1− γ, 0 < γ < 1, if the following inequality holds true:

P

{
max

Bi∈B i=0, k−1
| pkY (Bi)− p̃kY (Bi) | > α

}
< γ.

LEMMA 6.4.– Let Y (t) be a homogeneous, centered, continuous in mean square

Gaussian process with spectral function F (λ) , the partition DΛ of domain [0,Λ] ,
Λ ∈ R is such that λk−1 − λk = Λ

N , N ∈ N, then for all p > 1, the next estimation

holds true(
E
∣∣∣exp {Y (t)} − exp

{
Ỹ (t)

}∣∣∣p) 1
p ≤ 2

1
p Â

1
2

N,t (pv1)
1
2 exp

{
pv2
2

B (0)− 1

2

}
,

where

ÂN,t = B (0)− F (Λ) + 22−2bt2b
(
Λ

N

)2b

F (Λ) ,

b ∈ [0, 1] , v1 and v2 are such numbers that 1
v1

+ 1
v2

= 1.

PROOF.– It follows from |exp {x} − exp {y}| ≤ |x− y| exp {max (x, y)} and the

Hölder inequality that:

(
E
∣∣∣exp {Y (t)} − exp

{
Ỹ (t)

}∣∣∣p) 1
p

≤
(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣p exp{p max
(
Y (t) , Ỹ (t)

)}) 1
p

≤
(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣pv1
) 1

pv1
(
E exp

{
pv2 max

(
Y (t) , Ỹ (t)

)}) 1
pv2

,

[6.21]
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1
v1

+ 1
v2

= 1. By virtue of [6.3],

E
∣∣∣Y (t)− Ỹ (t)

∣∣∣pv1

=

(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2)pv1
2

cpv1 ,

where the value c· is from [6.4]. Since for Gaussian, homogeneous, centered random

processes, we have E (Y (t))
2
= B (0), E

(
Ỹ (t)

)2
= F (Λ), such that:

E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2 = B (0) + F (Λ)− 2EY (t) Ỹ (t) .

EY (t) Ỹ (t) = E

(
N−1∑
k=0

λk+1∫
λk

cosλt dξ (λ) +
N−1∑
k=0

λk+1∫
λk

sinλt dη (λ)

+
∞∫
Λ

cosλt dξ (λ) +
∞∫
Λ

sinλt dη (λ)

)
×
(

N−1∑
k=0

λk+1∫
λk

cosλkt dξ (λ) +
N−1∑
k=0

λk+1∫
λk

sinλkt dη (λ)

)
=

N−1∑
k=0

λk+1∫
λk

cosλt cosλkt dF (λ)+
N−1∑
k=0

λk+1∫
λk

sinλt sinλkt dF (λ)

=
N−1∑
k=0

λk+1∫
λk

cos t (λ− λk) dF (λ) .

That is why

E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2
= B (0)− F (Λ) + 2F (Λ)− 2

N−1∑
k=0

λk+1∫
λk

cos t (λ− λk) dF (λ)

= B (0)− F (Λ) + 2
N−1∑
k=0

λk+1∫
λk

2 sin2
(

t(λ−λk)
2

)
dF (λ)

≤ B (0)− F (Λ) + 4
N−1∑
k=0

λk+1∫
λk

t2b(λ−λk)
2b

22b
dF (λ) , 0 < b < 1.

Since λ− λk ≤ λk+1 − λk = Λ
N , k = 0, N − 1, then

E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2 ≤ ÂN,t,

ÂN,t = B (0)− F (Λ) + 22−2bt2b
(
Λ
N

)2b
F (Λ) , b ∈ [0, 1] .

[6.22]

Thereby:

(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣pv1
) 1

pv1 ≤ Â
1
2

N,tc
1

pv1
pv1 . [6.23]
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Let us estimate exp
{
p v2 max

(
Y (t) , Ỹ (t)

)}
. For ξ = N

(
0, σ2

)
, we have

E exp {λξ} = exp

{
λ2σ2

2

}
,

thus:

E exp
{
p v2 max

(
Y (t) , Ỹ (t)

)}
≤ E exp {p v2Y (t)}+E exp

{
p v2Ỹ (t)

}
= exp

{
(p v2)

2

2
B (0)

}
+exp

{
(p v2)

2

2
F (Λ)

}
≤ 2 exp

{
(p v2)

2

2
B (0)

}
.

Thereby by using the last inequality, [6.23] and estimation [6.4] for cp, the

assertion of the lemma follows from [6.21]. �

LEMMA 6.5.– Let Y (t) be a homogeneous, centered, continuous in mean square

Gaussian process with spectral function F (λ) . There exists spectral moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, the partition DΛ of domain [0,Λ] , Λ ∈ R is such that

λk−1 − λk = Λ
N , N ∈ N, then for all p > 1, the next estimation holds true:

(
E
∣∣∣exp {Y (t+ h)} − exp

{
Ỹ (t+ h)

}
−
(
exp {Y (t)} − exp

{
Ỹ (t)

})∣∣∣p ) 1
p ≤ hβĜN,t,p,

where:

ĜN,t,p = 2
1
p p exp

{
pr2
2

(
f1ÂN,t + f2B (0)

)
− 1

2

}
K̂N,t,

K̂N,t =

√
r1P̂N,t +

√
23−2βs1s2Λ2βF (Λ) ÂN,t,

P̂N,t = 25−4β

((
Λ

N

)β

+ 2β−1t
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) ,

ÂN,t = B (0) − F (Λ) + 22−2bt2b
(
Λ

N

)2b

F (Λ) ,

b ∈ [0, 1] , f1, f2, s1, s2, s3, r1, r2 are such numbers that r2 = s3, 1
f1

+ 1
f2

= 1,
1
s1

+ 1
s2

+ 1
s3

= 1, 1
r1

+ 1
r2

= 1.
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PROOF.– It is evident that

(
E
∣∣∣ eY (t+h) − eỸ (t+h) −

(
eY (t) − eỸ (t)

)∣∣∣p ) 1
p

=
(
E
∣∣∣(eY (t+h)−Ỹ (t+h) − eY (t)−Ỹ (t)

)
eỸ (t+h)

+
(
eỸ (t+h) − eỸ (t)

)(
eY (t)−Ỹ (t) − 1

)∣∣∣p) 1
p

≤ (E |Δ1 (Y ) V1|p)
1
p + (E |Δ2 (Y ) Δ3 (Y ) V2|p)

1
p ,

where:

Δ1 (Y ) =
∣∣∣Y (t+ h)− Ỹ (t+ h)− Y (t) + Ỹ (t)

∣∣∣ ,
V1 = exp

{
max

(
Y (t+ h)− Ỹ (t+ h) , Y (t)− Ỹ (t)

)}
exp
{
Ỹ (t+ h)

}
,

Δ2 (Y ) =
∣∣∣ Ỹ (t+ h)− Ỹ (t)

∣∣∣ ,
Δ3 (Y ) =

∣∣∣Y (t)− Ỹ (t)
∣∣∣ ,

V2 = exp
{
max

(
Ỹ (t+ h) , Ỹ (t)

)}
exp
{∣∣∣Y (t)− Ỹ (t)

∣∣∣} .
Let 1

r1
+ 1

r2
= 1, 1

s1
+ 1

s2
+ 1

s3
= 1, by using the Holder inequality:

E |Δ1 (Y ) V1|p ≤ (E |Δ1 (Y ) |pr1)
1
r1 (E |V1|pr2)

1
r2 ,

E |Δ2 (Y ) Δ3 (Y ) V2|p ≤ (E |Δ2 (Y )|ps1)
1
s1 (E |Δ3 (Y )|ps2)

1
s2 (E |V2|ps3)

1
s3 .

By virtue of [6.3], E |Δ1 (Y ) |pr1 =
(
E |Δ1 (Y )|2

)pr1
2

cpr1 . This was shown

during the proof of lemma 6.2

E |Δ1 (Y )|2 = E
∣∣∣Y (t+ h)− Ỹ (t+ h)− Y (t) + Ỹ (t)

∣∣∣2 ≤ h2βP̂N,t,

where

P̂N,t = 25−4β

((
Λ

N

)β

+ 2β−1t
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) ,

0 < β ≤ 1. Thereby

E |Δ1 (Y )|pr1 ≤ hpr1β P̂
pr1
2

N,t cpr1 . [6.24]

Let us estimate E |V1|p r2 . Let 1
f1

+ 1
f2

= 1, by using the Holder inequality

E |V1|pr2 = E
∣∣∣emax(Y (t+h)−Ỹ (t+h), Y (t)−Ỹ (t)) exp

{
Ỹ (t+ h)

}∣∣∣pr2
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≤
(
E exp

{
p r2f1 max

(
Y (t+ h)− Ỹ (t+ h) , Y (t)− Ỹ (t)

)}) 1
f1

×
(
E exp

{
p r2f2 Ỹ (t+ h)

}) 1
f2

. [6.25]

E exp
{
p r2f1 max

(
Y (t+ h)− Ỹ (t+ h) , Y (t)− Ỹ (t)

)}
≤ exp

{
(p r2f1)

2

2
E
∣∣∣Y (t+ h)− Ỹ (t+ h)

∣∣∣2}

+ exp

{
(p r2f1)

2

2
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2} .

It is evident that

E
∣∣∣Y (t+ h)− Ỹ (t+ h)

∣∣∣2 ≤ ÂN,t,

where ÂN,t is defined in [6.22]. Then:

(
E exp

{
p r2f1 max

(
Y (t+ h)−Ỹ (t+ h) , Y (t)−Ỹ (t)

)}) 1
f1

≤ 2
1
f1 exp

{
(p r2)

2
f1

2
ÂN,t

}
.

(
E exp

{
p r2f2Ỹ (t+ h)

}) 1
f2 ≤

(
exp

{
(p r2f2)

2

2
F (λ)

}) 1
f2

= exp

{
(p r2)

2
f2

2
F (λ)

}
.

By using two preceding inequalities, it follows from [6.25] that;

E |V1|pr2 ≤ 2
1
f1 exp

{
(p r2)

2

2

(
f1ÂN,t + f2B (0)

)}
. [6.26]

Let us estimate E |Δ2 (Y )|ps1 . As a result of [6.3],

|Δ2 (Y )|ps1 =
(
E |Δ2 (Y )|2

)ps1
2

cps1 .
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It was shown during the proof of lemma 6.2 that

E |Δ2 (Y )|2 = E
∣∣∣Ỹ (t+ h)− Ỹ (t)

∣∣∣2 ≤ 23−2βΛ2βh2βF (Λ) , 0 < β ≤ 1.

Thereby,

E |Δ2 (Y )|ps1 ≤
(
23−2βΛ2βh2βF (Λ)

)ps1
2 cps1 . [6.27]

Let us estimate E |Δ3 (Y )|ps2 . Since E |Δ3 (Y )|2 = E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2 ≤ ÂN,t,

and E |Δ3 (Y )|ps2 =
(
E |Δ3 (Y )|2

)ps2
2

cps2 , then

E |Δ3 (Y )|ps2 ≤ Â
ps2
2

N,t cps2 . [6.28]

Let us estimate E |V2|ps3 . Let 1
e1

+ 1
e2

= 1, by using the Holder inequality

E |V2|ps3 = E
∣∣∣ exp{max

(
Ỹ (t+ h) , Ỹ (t)

)}
exp
{∣∣∣Y (t)− Ỹ (t)

∣∣∣}∣∣∣ps3
≤
(
E exp

{
ps3e1 max

(
Ỹ (t+ h) , Ỹ (t)

)}) 1
e1

×
(
E exp

{
ps3e2

∣∣∣Y (t)−Ỹ (t)
∣∣∣}) 1

e2
.

E exp
{
ps3e1 max

(
Ỹ (t+ h) , Ỹ (t)

)}
≤ 2 exp

{
(ps3e1)

2

2
F (Λ)

}
.

For Gaussian random variable ξ with parameters 0 and σ2, we have

E exp {λ |ξ|} ≤ E exp {λξ}+E exp {−λξ} = 2 exp
{

λ2σ2

2

}
, which is why:

E exp
{
ps3e2

∣∣∣Y (t)− Ỹ (t)
∣∣∣} ≤ 2 exp

{
(ps3e2)

2

2
ÂN,t

}
.

That is,

E |V2|ps3 ≤ 2 exp

{
(ps3)

2

2

(
e2ÂN,t + e1B (0)

)}
. [6.29]
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Thereby, by using [6.24], [6.26]–[6.29], and [6.4], we obtain:

(
E
∣∣∣ exp {Y (t+ h)}−exp

{
Ỹ (t+ h)

}
−
(
exp {Y (t)}−exp

{
Ỹ (t)

})∣∣∣p) 1
p

≤ (E |Δ1 (Y )|pr1)
1

pr1 (E |V1|pr2)
1

pr2

+ (E |Δ2 (Y )|ps1)
1

ps1 (E |Δ3 (Y )|ps2)
1

ps2 (E |V2| ps3)
1

ps3

≤ hβ P̂
1
2

N,t c
1

pr1
pr1 2

1

pr2f1 exp
{p r2

2

(
f1ÂN,t + f2B (0)

)}
+
(
23−2βΛ2βh2βF (Λ)

) 1
2 c

1
ps1
ps1 Â

1
2

N,t c
1

ps2
ps2 2

1
ps3 exp

{ps3
2

(
e2ÂN,t + e1B (0)

)}
= hβ

[
P̂

1
2

N,t 2
1

2pr1 (pr1)
1
2 e−

1
2 2

1

pr2f1 exp
{pr2

2

(
f1ÂN,t + f2B (0)

)}
+
(
23−2βΛ2βF (Λ) ÂN,t

) 1
2

2
1

2ps1 (ps1)
1
2 e−

1
2 2

1
2ps2 (ps2)

1
2 e−

1
2 2

1
ps3

× exp
{ps3

2

(
e2ÂN,t + e1B (0)

)}]
.

Put f1 = e2, f2 = e1, r2 = s3. Taking into account 2
1

2pr1 ×2
1

pr2f1 ≤ 2
1
p ,

2
1

2ps1 2
1

2ps2 2
1

ps3e1 ≤ 2
1
p , we obtain:

(
E
∣∣∣ exp {Y (t+ h)}−exp

{
Ỹ (t+ h)

}
−
(
exp {Y (t)}−exp

{
Ỹ (t)

})∣∣∣p) 1
p

≤ hβ

[
P̂

1
2

N,t 2
1
p (pr1)

1
2 exp

{
pr2
2

(
f1ÂN,t + f2B (0)

)
− 1

2

}
+
(
23−2βΛ2βF (Λ) ÂN,t

) 1
2

2
1
p (ps1)

1
2 (ps2)

1
2

× exp
{pr2

2

(
f1ÂN,t + f2B (0)

)
− 1
}]

.

After elementary manipulation, the assumption of the lemma follows from the last

formula. �

LEMMA 6.6.– Let Y (t) be a homogeneous, centered, separable, continuous in mean

square Gaussian process with spectral function F (λ) . There exists spectral moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, partition DΛ of domain [0,Λ] , Λ ∈ R is such that λk−1 −

λk = Λ
N , N ∈ N. If

ŜN < α exp

⎧⎨⎩−
2r2

(
f1ÂN + f2B (0)

)
β

⎫⎬⎭ ,
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then

P

{
max

Bi∈B i=0, k−1
| pkY (Bi)− p̃kY (Bi) | > α

}

≤
(
p

p
2 + T

(
3β

2

) 1
β

pp+
1
β

)
exp

⎧⎨⎩−
r2

(
f1ÂN + f2B (0)

)
2

p2

⎫⎬⎭ , [6.30]

where

p =
ln α

ŜN

r2

(
f1ÂN + f2B(0)

) , ŜN = max
{
ŜN,1, ŜN,2

}
,

ŜN,1 =
2d

√
v1 (B (0)− F (Λ))√

e
,

ŜN,2 =
6d√
e

(√
r1P̂N +

√
23−2βs1s2Λ2βF (Λ) ÂN

)
,

P̂N = 25−4β

((
Λ

N

)β

+ 2β−1T
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) ,

ÂN = B (0) − F (Λ) + 22−2bT 2b

(
Λ

N

)2b

F (Λ) ,

b ∈ [0, 1] , f1, f2, s1, s2, s3, r1, r2 are such numbers that r2 = s3 = v2, 1
f1
+ 1

f2
= 1,

1
s1

+ 1
s2

+ 1
s3

= 1, 1
r1

+ 1
r2

= 1.

PROOF.– We now estimate the difference | pkY (Bi)− p̃kY (Bi) | by using the mean

value theorem for derivatives:

| pkY (Bi)−p̃kY (Bi) |=
∣∣∣∣∣exp {−μ (Bi)} (μ (Bi))

k

k!
− exp {−μ̃ (Bi)} (μ̃ (Bi))

k

k!

∣∣∣∣∣
= |μ (Bi)− μ̃ (Bi)|

1

k!
exp {−μ̂ (Bi)} (μ̂ (Bi))

k−1 |k − μ̂ (Bi)|

=

⎧⎪⎨⎪⎩
|μ (Bi)− μ̃ (Bi)|

1

(k − 1)!
e−μ̂(Bi) (μ̂ (Bi))

k−1≤|μ (Bi)−μ̃ (Bi)| , k≥ μ̂(Bi) ;

|μ (Bi)− μ̃ (Bi)|
1

k!
e−μ̂(Bi) (μ̂ (Bi))

k ≤ |μ (Bi)− μ̃ (Bi)| , k < μ̂ (Bi) .
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If k = 0, then

|p 0Y (Bi)− p̃ 0Y (Bi)| = |exp {−μ (Bi)} − exp {−μ̃ (Bi)}|
≤ |μ (Bi)− μ̃ (Bi)| |exp {−μ̂ (Bi)}| ≤ |μ (Bi)− μ̃ (Bi)| .

Therefore, the difference of probabilities |pkY (Bi)−p̃kY (Bi)| is estimated in

terms of |μ(Bi)−μ̃(Bi)| , and we obtain:

P { |pkY (Bi)− p̃kY (Bi)| > α} ≤ P {|μ (Bi)− μ̃ (Bi)| > α} , [6.31]

i = 0, k − 1. It is easy to check that

P

{
max

Bi∈B, i=0, k−1
|μ (Bi)− μ̃ (Bi)| > α

}

= P

⎧⎨⎩ max
Bi∈B, i=0, k−1

∣∣∣∣∣∣
∫
Bi

exp {Y (t)} dt−
∫
Bi

exp
{
Ỹ (t)

}
dt

∣∣∣∣∣∣ > α

⎫⎬⎭
≤ P

⎧⎨⎩ max
Bi∈B, i=0, k−1

∫
Bi

sup
t∈T

∣∣∣ exp {Y (t)} − exp
{
Ỹ (t)

}∣∣∣ dt > α

⎫⎬⎭
= P

⎧⎨⎩ max
Bi∈B, i=0, k−1

∫
Bi

dt · sup
t∈T

∣∣∣exp {Y (t)} − exp
{
Ỹ (t)

}∣∣∣ > α

⎫⎬⎭
= P

{
sup
t∈T

∣∣∣exp {Y (t)} − exp
{
Ỹ (t)

}∣∣∣ > α

d

}
. [6.32]

By virtue of lemma 6.4,

inf
0≤t≤T

(
E
∣∣∣exp {Y (t)} − exp

{
Ỹ (t)

}∣∣∣p) 1
p

≤ 2
1
p (B (0)− F (Λ))

1
2 (pv1)

1
2 exp

{
pv2
2

B (0)− 1

2

}
. [6.33]

By using lemma 6.5, we estimate the integral in theorem 1.16:

θγ0∫
0

N
1
p (ε)dε ≤

θγ0∫
0

⎛⎝T

(
ĜN,p

ε

) 1
β

⎞⎠
1
p

dε =
θ1−

1
pβ T

1
p ĜN,p

1− 1
pβ

,
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1 − 1
pβ > 0, where ĜN,p = ĜN,t,p

∣∣∣
t=T

. It is easy to check that the function

f (θ) = 1

θ
1
pβ (1−θ)

has its minimum value in the point θ0 = 1
pβ+1 and θ0 <

ϕ(T
2 )

ε0
.

After elementary manipulations, we obtain

inf
0<θ<1

1

θ
1
pβ (1− θ)

T βĜN,p

1− 1
pβ

≤ T
1
p ĜN,p

(pβ + 1)
1+ 1

pβ

pβ − 1
.

Taking into account [6.32] and [6.33], we obtain the estimation and inequality

(a+ b)
p ≤ 2p−1 (ap + bp); based on corollary 1.16, we get

P

{
max

Bi∈B, i=0, k−1
|μ (Bi)− μ̃ (Bi)| > α

}

2p (B (0)− F (Λ))
p
p

p
2 v

p
2
1 exp

{
pv2
2 B (0)− p

2

}(
α
d

)p +
2p−1TĜp

N,p
(pβ+1)

p+ 1
β

(pβ−1)p(
α
d

)p .

By using the definition of ĜN,p and taking into consideration that under pβ ≥
2
(

p
pβ−1

)p
≤ 2p

βp , (pβ + 1)
p+ 1

β ≤ (pβ)
p+ 1

β
(
3
2

)p+ 1
β and putting v2 = r2, after

elementary manipulation we obtain the following estimation:

P

{
max

Bi∈B, i=0, k−1
|μ (Bi)− μ̃ (Bi)| > α

}

≤
Ŝp
N,1p

p
2 exp

{
pv2
2 B (0)

}
αp

+
T Ŝp

N,2

(
3β
2

) 1
β

pp+
1
β exp

{
p2r2
2

(
f1ÂN + f2B (0)

)}
αp

≤
Ŝp
N

(
p

p
2 + T

(
3β
2

) 1
β

pp+
1
β

)
exp
{

p2r2
2

(
f1ÂN + f2B (0)

)}
αp

,

where ŜN = max
{
ŜN,1, ŜN,2

}
, ŜN,1 =

2d
√
v1(B(0)−F (Λ))√

e
, ŜN,2 = 6d√

e

√
r1P̂N+

6d√
e

√
23−2βs1s2Λ2βF (Λ) ÂN . By evaluating the value of the right-hand side at the

point p0 =
ln α

ŜN

r2(f1ÂN+f2B(0))
that are closed to the point of minimum of the

corresponding function, and taking into consideration that condition pβ ≥ 2
guarantees that 1 − 1

pβ > 0 holds true, the assertion of the lemma follows from

corollary 1.16 and [6.30]. �

THEOREM 6.4.– Let Y (t) be a homogeneous, centered, separable, continuous in

mean square Gaussian process with spectral function F (λ) . There exists spectral

moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, the partition DΛ of domain [0,Λ] , Λ ∈ R, such
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that λk−1 − λk = Λ
N , N ∈ N, then model of Cox process {ν̃ (B) , B ∈ B} ,

directed by log Gaussian process exp
{
Ỹ (t)

}
approximates process ν with accuracy

α and reliability 1− γ if the following inequalities hold true:

ŜN < α exp

⎧⎨⎩−
2r2

(
f1ÂN + f2B (0)

)
β

⎫⎬⎭ ,

(
p

p
2 + T

(
3β

2

) 1
β

pp+
1
β

)
exp

⎧⎨⎩−
r2

(
f1ÂN + f2B (0)

)
2

p2

⎫⎬⎭ < γ,

where p =
ln α

ŜN

r2(f1ÂN+f2B(0))
, ŜN , ÂN are defined in 6.6, b ∈ [0, 1] ,

f1, f2, s1, s2, s3, r1, r2 such number, that r2 = s3, 1
f1

+ 1
f2

= 1,
1
s1

+ 1
s2

+ 1
s3

= 1, 1
r1

+ 1
r2

= 1.

PROOF.– The assertion of theorem follows from definition 6.4 and lemma 6.6. �

Given the construction method of the models of the log Gaussian Cox processes

are easier in comparison with the previous. But this method gives worse accuracy,

especially in the case where one of the domains Bi consists of more than one point.

6.4. Simulation of the Cox process when density is generated by a
homogeneous log Gaussian field

In this section, the method of Cox processes simulation offered in the previous

section is expanded the case where density is generated by a homogeneous random

field.

Let
{
Y
(
�t
)
,�t ∈ T

}
be a centered, homogeneous, Gaussian field, simple

functions of which are measurable on T. By analogy with previous section, first we

simulate field Y
(
�t
)
, second we consider some partition DT of domain T, and on

each element of partition DT we construct the model of Poisson random variable

with the corresponding mean.

Let T = [0, T ] × . . . × [0, T ], T ∈ R+, and the partition DT is chosen in the

following way:

Bi1,...,in =
{[

ti11 , ti1+1
1

)
× . . .×

[
tinn , tin+1

n

) ∣∣ timm < tim+1
m ,

tim+1
m − timm = d =

T

k
, k ∈ N, m = 1, n, im = 0, k − 1

}
.
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We denote Ỹ
(
�t
)

by model of field Y
(
�t
)
, μ̃ (Bi1,...,in) =∫

Bi1,...,in

exp
{
Ỹ
(
�t
)}

d�t and ν̃ (Bi1,...,in) by model ν (Bi1,...,in), that is the model

of Poisson random variable with mean μ̃ (Bi1,...,in) .

Since ν̃ (Bi1,...,in) is the number of model points that belong to the domain

Bi1,...,in , we allocate these points at Bi1,...,in by any way. If ν̃ (Bi1,...,in) = 1, we

allocate one point at the center of the domain.

The partition of the domain T (that is d or k) we choose in such a way that the

inequality

P {ν (Bi1,...,in) > 1} < δ, [6.34]

holds true, where δ is defined beforehand.

THEOREM 6.5.– Let {ν (Bi1,...,in) , Bi1,...,in ⊂ B} be a Cox process, directed by log

Gaussian homogeneous field exp
{
Y
(
�t
)}

. The inequality [6.34] holds true if we set

d =
T

k
≤
[
2δ exp

{
−2B(�0)

}] 1
2n

.

PROOF.– The proof repeats the proof of theorem 6.3. �

DEFINITION 6.5.– The model of Cox process {ν (Bi1,...,in) , Bi1,...,in ⊂ B} directed
by log Gaussian homogeneous field exp

{
Y
(
�t
)}

approximates with accuracy α, 0 <
α < 1 and reliability 1− γ, 0 < γ < 1, if the following inequality holds true:

P

{
max

Bi1,...,in∈B
| pkY (Bi1,...,in)− p̃kY (Bi1,...,in) | > α

}
< γ.

LEMMA 6.7.– Let Y
(
�t
)

be a homogeneous, centered continuous in mean square

Gaussian field, then for all ∀p > 1, the following inequality holds true:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}

≤
2knW p

Np
p
2 exp

{
p2v2
2 B

(
�0
)
− p

2

}
αp

,

where

WN =
√
v1d

nJ
1
2

N ,

JN = 22−2an2a d2aΛ2a

N2a ν (Λn) +B
(
�0
)
− ν (Λn) ,

v2 = v1
v1−1 , v1 is any positive number more than one, a ∈ [0, 1].
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PROOF.–

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)− μ̃ (Bi1,...,in)| > α

}

≤
k∑

i1,...,in=0

P {|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α}

≤ kn max
Bi1,...,in∈B

P {|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α} .

It follows from the Tchebychev inequality that:

P {|μ (Bi1,...,in)− μ̃ (Bi1,...,in) | > α} ≤ E |μ (Bi1,...,in)− μ̃ (Bi1,...,in)|p
αp

.

By virtue of the generated Minkovski inequality:

E |μ (Bi1,...,in)− μ̃ (Bi1,...,in)|p

≤ E

⎛⎜⎝ ∫
Bi1,...,in

∣∣∣exp{Y (�t)}− exp
{
Ỹ
(
�t
)}∣∣∣ d�t

⎞⎟⎠
p

≤

⎛⎜⎝ ∫
Bi1,...,in

(
E
∣∣∣exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p) 1

p

d�t

⎞⎟⎠
p

That is, it follows from the last three inequalities that:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)− μ̃ (Bi1,...,in)| > α

}

≤
kn

( ∫
Bi1,...,in

(
E
∣∣∣exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p) 1

p

d�t

)p

αp
. [6.35]

Let us estimate E
∣∣∣ exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p. Let 1

v1
+ 1

v2
= 1. By using

first inequality |exp {x} − exp {y}| ≤ |x− y| exp {max (x, y)}, and then the Holder

inequality, we obtain:

E
∣∣∣ exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p

≤ E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣p exp{p max

(
Y
(
�t
)
, Ỹ
(
�t
))}
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≤
(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1) 1

v1
(
E exp

{
p v2 max

(
Y
(
�t
)
, Ỹ
(
�t
))}) 1

v2
.

[6.36]

By virtue of [6.3],

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 = cpv1

(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2)pv1

2

.

Since for the Gaussian, homogeneous, centered random field

E
(
Y
(
�t
))2

= B
(
�0
)

, E
(
Ỹ
(
�t
))2

= Φ(Λn), then

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2 = B

(
�0
)
+Φ(Λn)− 2EY

(
�t
)
Ỹ
(
�t
)
.

By using representation [4.9] of field Y
(
�t
)

and model [4.10], we obtain:

EY
(
�t
)
Ỹ
(
�t
)
= E

⎛⎜⎝ N−1∑
i1,...,in=0

∫
Δ(i1,...,in)

cos
(
�t, �λ
)
dZ1

(
�λ
)

+
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

sin
(
�t, �λ
)
dZ2

(
�λ
)

+

∫
Rn\Λn

cos
(
�t, �λ
)
dZ1

(
�λ
)
+

∫
Rn\Λn

sin
(
�t, �λ
)
dZ2

(
�λ
)⎞⎟⎠

×

⎛⎜⎝ N−1∑
i1,...,in=0

∫
Δ(i1,...,in)

cos
(
�t, �λ
(
λi1
1 , . . . , λin

n

))
dZ1

(
�λ
)

+
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

sin
(
�t, �λ
(
λi1
1 , . . . , λin

n

))
dZ2

(
�λ
)⎞⎟⎠

=
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

cos
(
�t, �λ
)
cos
(
�t, �λ
(
λi1
1 , . . . , λin

n

))
dΦ
(
�λ
)

+
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

sin
(
�t, �λ
)
sin
(
�t, �λ
(
λi1
1 , . . . , λin

n

))
dΦ
(
�λ
)
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=

N−1∑
i1,...,in=0

∫
Δ(i1,...,in)

cos
(
�t, �λ− �λ

(
λi1
1 , . . . , λin

n

))
dΦ
(
�λ
)
.

Thus, taking into consideration the above-presented relation:

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2 = 2Φ (Λn)− 2EY

(
�t
)
Ỹ
(
�t
)
+B

(
�0
)
− Φ(Λn)

=2
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

(
1−cos

(
�t, �λ−�λ

(
λi1
1 , . . . , λin

n

)))
dΦ
(
�λ
)
+B

(
�0
)
−Φ (Λn)

=4

N−1∑
i1,...,in=0

∫
Δ(i1,...,in)

sin2

(
�t, �λ− �λ

(
λi1
1 , . . . , λin

n

))
2

dΦ
(
�λ
)
+B

(
�0
)
− Φ(Λn)

≤4

N−1∑
i1,...,in=0

∫
Δ(i1,...,in)

(
�t, �λ− �λ

(
λi1
1 , . . . , λin

n

)
2

)2a

dΦ
(
�λ
)
+B

(
�0
)
−Φ(Λn) ,

a ∈ [0, 1] . By using inequality
(
�e, �f
)
≤
(

n∑
i=1

e2i

) 1
2
(

n∑
i=1

f2
i

) 1
2

and taking into

consideration that λm − λim
m ≤ λim+1

m − λim
m = Λ

N ,

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2

≤4
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

(
n∑

m=1
t2m

)a( n∑
m=1

(
λm−λim

m

)2)a

22a
dΦ
(
�λ
)
+B
(
�0
)
−Φ(Λn)

= 22−2a
N−1∑

i1,...,in=0

∫
Δ(i1,...,in)

(
nd2
)a(

n
Λ2

N2

)a

dΦ
(
�λ
)
+B

(
�0
)
− Φ(Λn)

= 22−2an2a d
2aΛ2a

N2a
Φ (Λn) + B

(
�0
)
− Φ(Λn) .

Hereby,

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 ≤ cpv1J

pv1
2

N ,

JN = 22−2an2a d
2aΛ2a

N2a
Φ(Λn) + B

(
�0
)
− Φ(Λn) . [6.37]
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Let us estimate E exp
{
p v2 max

(
Y
(
�t
)
, Ỹ
(
�t
))}

.

E exp
{
p v2 max

(
Y
(
�t
)
, Ỹ
(
�t
))}

≤ E exp
{
p v2Y

(
�t
)}

+E exp
{
p v2Ỹ

(
�t
)}

= exp

{
(p v2)

2

2
B
(
�0
)}

+exp

{
(p v2)

2

2
Φ (Λn)

}

≤ 2 exp

{
(p v2)

2

2
B
(
�0
)}

. [6.38]

Taking into considerations [6.37] and [6.38], it follows from [6.36] that

E
∣∣∣ exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p ≤ c

1
v1
pv1 J

p
2

N 2
1
v2 exp

{
p2v2
2

B
(
�0
)}

. [6.39]

The statement of the lemma follows from [6.39], [6.4] and [6.35]. �

LEMMA 6.8.– Let Y
(
�t
)

be a homogeneous, centered, continuous in mean square

Gaussian field. If WN < α exp
{

1
2 − v2B

(
�0
)}

, then the next inequality holds true:

P

{
max

Bi1,...,in∈B
| pkY (Bi1,...,in)− p̃kY (Bi1,...,in) | > α

}

≤ 2kn

⎛⎝ 1
2 − ln WN

α

v2B
(
�0
)
⎞⎠

1
2
−ln

WN
α

2v2B(	0)

exp

⎧⎨⎩−
(
1
2 − ln WN

α

)2
2v2B

(
�0
)
⎫⎬⎭ ,

where WN is defined in lemma 6.7, v2 = v1

v1−1 , v1 is any positive real number more

than one.

PROOF.– It was shown at the proof of lemma 6.6:

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}
≤ P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}
.
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By virtue of lemma 6.7:

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}

≤
2knW p

Np
p
2 exp

{
p2v2
2 B

(
�0
)
− p

2

}
αp

.

Let p0 =
1
2−ln

WN
α

v2B(�0)
and substitute this value in the right-hand side of the inequality

above. This point is near to the point of minimum. Taking into consideration that p0
must be more than 1, we obtain the assertion of the lemma. �

THEOREM 6.6.– Let Y
(
�t
)

be a homogeneous, centered, continuous in mean square

random field, then the model of Cox process {ν̃ (Bi1,...,in) , Bi1,...,in ⊂ B} , driven

by log Gaussian homogeneous field exp
{
Ỹ
(
�t
)}

, approximates it with accuracy α

and reliability 1− γ, if the following inequalities hold true:

WN < α exp
{

1
2 − v2B

(
�0
)}

,

2kn
(

1
2−ln

WN
α

v2B(�0)

) 1
2
−ln

WN
α

2v2B(	0)
exp

{
−

(
1
2−ln

WN
α

)2

2v2B(�0)

}
< γ,

where WN is defined in lemma 6.7, v2 = v1

v1−1 , v1 is any positive real number more

than 1.

PROOF.– The theorem is a corollary of definition 6.5 and lemma 6.8. �

EXAMPLE 6.1.– Let random field
{
Y
(
�t
)
,�t ∈ T

}
, T = [0, T ] × [0, T ], T ∈ R

satisfy assertions of theorem 6.6 and have spectral density

f (λ1, λ2) = exp
{
−β
(
λ2
1 + λ2

2

)}
. In Table 6.1, it is shown to find the value of N

for such a process under given accuracy α and reliability 1 − γ. All models are

constructed in the domain T = [0, 10]× [0, 10] .

In Figure 6.1 sample functions of Gaussian field Y (t) and generated models of log

Gaussian process ν(B) are shown in the case when β = 10 and the values δ, α, 1− γ
are taken from the last four rows of Table 6.1 respectively.

6.5. Simulation of log Gaussian Cox process when the density is
generated by the inhomogeneous field

In this section simplified method of simulation is considered in the case when

the density isn’t homogeneous field. That is as opposed to the case of homogeneous

field, procedure of simulation differs only by the way of construction of models of
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field Y
(
�t
)
. That is why we formulate main results without describing the simulation

procedure. Let
{
Y
(
�t
)
,�t ∈ T

}
be centered, Gaussian field, in which simple function

of them are measurable on T. The partition of domain T and all denotations remain

as in earlier section.

δ α 1− γ β d N

0.01 0.01 0.99 1 0.253928 12,386

0.01 0.01 0.97 1 0.253928 9,736

0.01 0.03 0.97 1 0.253928 3,015

0.01 0.05 0.95 1 0.253928 1,552

0.01 0.03 0.97 10 0.361579 95

0.01 0.05 0.95 10 0.361579 54

0.02 0.03 0.97 10 0.429992 156

0.02 0.05 0.95 10 0.429992 87

Table 6.1. The result of simulation of log Gaussian Cox process

Figure 6.1. Sample functions of Gaussian field and generated
models of log Gaussian Cox process

THEOREM 6.7.– Let {ν (Bi1,...,in) , Bi1,...,in ⊂ B} be a Cox process driven by log

Gaussian inhomogeneous field exp
{
Y
(
�t
)}

, the eigenvalue of integral equation

[4.11] is bounded,∣∣φk

(
�t
)∣∣ ≤ L, ∀�t ∈ T, ∀k ∈ N.

The inequality

P {ν (Bi1,...,in) > 1} < δ, [6.40]
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holds true if

d =
T

k
≤
[
2δ exp

{
−2L2

∞∑
k=1

1

λk

}] 1
2n

.

PROOF.– Since

P{ν (Bi1,...,in)>1}
=E (1−exp{−μ (Bi1,...,in)} −μ (Bi1,...,in) exp{−μ (Bi1,...,in)})

and under x > 0 1 − exp {−x} (1 + x) ≤ x2

2 , then it is sufficient to choose such a

partition that the following inequality holds true:

E [μ (Bi1,...,in)]
2
< 2δ.

By virtue of ξ=N
(
0, σ2

)
, the next relation holds true E exp {λξ}=exp

{
λ2σ2

2

}
,

we have:

E [μ (Bi1,...,in)]
2
= E

∫
Bi1,...,in

exp
{
Y
(
�t
)}

d�t
∫

Bi1,...,in

exp {Y (�s)} d�s

=
∫∫

Bi1,...,in×Bi1,...,in

E exp
{
Y
(
�t
)
+Y (�s)

}
d�td�s

=
∫∫

Bi1,...,in×Bi1,...,in

exp

{
E(Y (�t)+Y (�s))

2

2

}
d�td�s

=
∫∫

Bi1,...,in×Bi1,...,in

exp

{
E(Y (�t))

2

2 +EY
(
�t
)
Y (�s) + E(Y (�s))2

2

}
d�td�s.

By using representation [4.12] of correlation function of field Y
(
�t
)
,

E[μ (Bi1,...,in)]
2

≤
∫∫

Bi1,...,in×Bi1,...,in

exp

{
1

2

∞∑
k=1

1

λk

(
ϕ2
k

(
�t
)
+ 2ϕk

(
�t
)
ϕk (�s) + ϕ2

k (�s)
)}

d�t�s

=

∫∫
Bi1,...,in×Bi1,...,in

exp

{
1

2

∞∑
k=1

1

λk

(
ϕk

(
�t
)
+ ϕk (�s)

)2}
d�t�s

≤ d2n exp

{
2L2

∞∑
k=1

1

λk

}
.

The last inequality proof the theorem. �
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LEMMA 6.9.– Let Y
(
�t
)

be Gaussian, centered, continuous in mean square random

field with the eigenfunctions of integral equation [4.11] restricted:∣∣φk

(
�t
)∣∣ ≤ L ∀�t ∈ T, k ∈ N,

then ∀p > 1, the next inequality holds true:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}

≤
2knŴ p

Np
p
2 exp

{
−p

2 + p2v2L
2

2

∞∑
k=1

1
λk

}
αp

,

where

ŴN = Ldn v
1
2
1

( ∞∑
k=N+1

1

λk

) 1
2

,

v2 = v1
v1−1 , v1 is any positive real number more than 1.

PROOF.– It was shown under proof of lemma 6.7:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)− μ̃ (Bi1,...,in)| > α

}
≤

kn

( ∫
Bi1,...,in

(
E
∣∣∣exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p) 1

p

d�t

)p

αp
. [6.41]

E
∣∣∣ exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p

≤
(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1) 1

v1
(
E exp

{
p v2 max

(
Y
(
�t
)
, Ỹ
(
�t
))}) 1

v2
,

[6.42]

1
v1

+ 1
v1

= 1. By virtue of [6.4]:

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 = cpv1

(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2)pv1

2

.
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Taking into consideration that in representation [4.13] of field Y
(
�t
)
Eξkξl = δkl,

when δkl is a symbol of Kroneker, we have:

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2 = E

∣∣∣∣∣
∞∑
k=1

ξk√
λk

φk

(
�t
)
−

N∑
k=1

ξk√
λk

φk

(
�t
)∣∣∣∣∣

2

= E

∣∣∣∣∣
∞∑

k=N+1

ξk√
λk

φk

(
�t
)∣∣∣∣∣

2

=
∞∑

k=N+1

φ2
k

(
�t
)

λk
≤ L2

∞∑
k=N+1

1

λk
.

That is,

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 ≤ cpv1 L

pv1

( ∞∑
k=N+1

1

λk

)pv1
2

Let us estimate E exp
{
p v2 max

(
Y
(
�t
)
, Ỹ
(
�t
))}

.

E exp
{
pv2 max

(
Y
(
�t
)
, Ỹ
(
�t
))}

≤ exp

⎧⎨⎩ (pv2)
2

2
E

( ∞∑
k=1

ξk√
λk

φk

(
�t
))2
⎫⎬⎭

+ exp

⎧⎨⎩ (p v2)
2

2
E

(
N∑

k=1

ξk√
λk

φk

(
�t
))2
⎫⎬⎭

≤ 2 exp

{
(pv2)

2

2

∞∑
k=1

φ2
k

(
�t
)

λk

}
≤ 2 exp

{
(pv2L)

2

2

∞∑
k=1

1

λk

}
.

Taking into consideration two last inequalities, it follows from [6.42] that:

E
∣∣∣ exp{Y (�t)}− exp

{
Ỹ
(
�t
)}∣∣∣p

≤ c
1
v1
pv1 L

p

( ∞∑
k=N+1

1

λk

) p
2

2
1
v2 exp

{
p2v2L

2

2

∞∑
k=1

1

λk

}
.

Taking into consideration estimation [6.4], the assumption of the lemma follows

from [6.41]. �

LEMMA 6.10.– Let Y
(
�t
)

be a Gaussian, centered, continuous in mean square random

field, with eigenfunctions of integral equation [4.11] restricted:∣∣φk

(
�t
)∣∣ ≤ L ∀�t ∈ T, k ∈ N.
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If ŴN < α exp

{
1
2 − v2 L

2
∞∑
k=1

1
λk

}
, then:

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}

≤ 2kn

⎛⎜⎜⎝ 1− 2 ln ŴN

α

2v2L2
∞∑
k=1

1
λk

⎞⎟⎟⎠
1−2 ln

ŴN
α

4v2L
2

∞∑
k=1

1
λk

exp

⎧⎪⎪⎨⎪⎪⎩−

(
1− 2 ln ŴN

α

)2
8v2L2

∞∑
k=1

1
λk

⎫⎪⎪⎬⎪⎪⎭ ,

where ŴN is defined in lemma 6.9, v2 = v1

v1−1 , v1 is any positive real number more

than 1.

PROOF.– It was shown under proof of lemma 6.6:

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}
≤ P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}
,

that is why by virtue of lemma 6.9, we get:

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}

≤
2knŴ p

Np
p
2 exp

{
−p

2 + p2v2L
2

2

∞∑
k=1

1
λk

}
αp

Consider the point p0 =
1−2 ln

ŴN
α

2v2 L2
∞∑

k=1

1
λk

, that is close to minimum point of the right-

hand side of the last estimation. Since p0 is greater than one then we can substitute

p0 for p in the above inequality. After this manipulation the statement of the lemma is

completely proved. �

THEOREM 6.8.– Let Y
(
�t
)

be a Gaussian, centered, continuous in mean square

random field, with eigenfunctions of integral equation [4.11] restricted:∣∣φk

(
�t
)∣∣ ≤ L ∀�t ∈ T, k ∈ N,
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then the model of Cox process {ν̃ (Bi1,...,in) , Bi1,...,in ⊂ B}, generated by log

Gaussian inhomogeneous field exp
{
Ỹ (�t)

}
, approximates them with accuracy α and

reliability 1− γ if the following inequalities hold true:

ŴN < α exp

{
1
2 − v2 L

2
∞∑
k=1

1
λk

}
,

2kn

⎛⎝ 1−2 ln
ŴN
α

2v2L2
∞∑

k=1

1
λk

⎞⎠
1−2 ln

ŴN
α

4v2L
2

∞∑
k=1

1
λk

exp

⎧⎨⎩−

(
1−2 ln

ŴN
α

)2

8v2L2
∞∑

k=1

1
λk

⎫⎬⎭ < γ,

where ŴN is defined in lemma 6.9, v2 = v1

v1−1 , v1 is any positive real number more

than 1.

PROOF.– It is evident that the assumption of the theorem is a corollary of lemma 6.10

and definition 6.5. �

6.6. Simulation of the Cox process when the density is generated by the
square Gaussian random process

This section is a logical continuation of section 6.3. It uses a simplified method of

simulation. The difference is that the density of the Cox process μ (·) in this case is

generated by the square Gaussian process, that is μ (B) =
∫
B
Y 2 (t) dt, where Y (t)

is a centered, homogeneous, Gaussian process.

Since the procedure of the simulation was already described in section 6.3, we

formulate the result at once in the same way as in section 6.3.

THEOREM 6.9.– Let {ν (Bi) , Bi ∈ B} be a Cox process, driven by square Gaussian

process Y 2 (t) . The inequality

P {ν (Bi) > 1} < δ,

holds true if we set

d =
T

k
≤
(

2δ

3B2 (0)

) 1
2

.

PROOF.– It was shown under proof of theorem 6.3,

P {ν (Bi) > 1} ≤ E [μ (Bi)]
2

2
. [6.43]
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E [μ (Bi)]
2
= E

⎡⎣∫
Bi

Y 2 (t) dt

⎤⎦2

= E

∫
Bi

Y 2 (t) dt

∫
Bi

Y 2 (s) ds

= E

∫∫
Bi×Bi

Y 2 (t)Y 2 (s) dtds =

∫∫
Bi×Bi

EY 2 (t)Y 2 (s) dtds.

[6.44]

By virtue of the Isserlis formula:

EY 2 (t)Y 2 (s) = EY 2 (t)EY 2 (s) + 2 (EY (t)Y (s))
2

= B2 (0) + 2B2 (t− s) ≤ 3B2 (0) .

Taking into consideration the last estimation, the assertion of the theorem follows

from [6.43] and [6.44]. �

LEMMA 6.11.– Let Y (t) be a homogeneous, centered, continuous in mean square

Gaussian process with spectral function F (λ) , a partition DΛ of domain [0,Λ] , Λ ∈
R such that λk−1 − λk = Λ

N , N ∈ N, then(
Var
(
Y 2 (t)− Ỹ 2 (t)

)) 1
2 ≤ 8

4
√
2 exp {−1}B 1

2 (0) Â
1
2

N,t,

where

ÂN,t = B (0)− F (Λ) + 22−2bt2b
(
Λ

N

)2b

F (Λ) , b ∈ [0, 1] .

PROOF.– By using the Holder inequality,

(
Var
(
Y 2 (t)− Ỹ 2 (t)

)) 1
2

=

(
E
∣∣∣Y 2 (t)− Ỹ 2 (t)

∣∣∣2) 1
2

=

(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2 ∣∣∣Y (t) + Ỹ (t)
∣∣∣2) 1

2

≤
(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2v1
) 1

2v1
(
E
∣∣∣Y (t) + Ỹ (t)

∣∣∣2v2) 1
2v2

, [6.45]

1
v1

+ 1
v2

= 1. By virtue of [6.3] proofed in lemma 6.1:

E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2v1 = c2v1

(
E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2)v1

,

E
∣∣∣Y (t) + Ỹ (t)

∣∣∣2v2 = c2v2

(
E
∣∣∣Y (t) + Ỹ (t)

∣∣∣2)v2
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Under proof of lemma 6.4 it was shown that:

E
∣∣∣Y (t)− Ỹ (t)

∣∣∣2 ≤ ÂN,t,

where ÂN,t = B (0)− F (Λ) + 22−2bt2b
(
Λ
N

)2b
F (Λ) , b ∈ [0, 1] . It is evident that

E
∣∣∣Y (t) + Ỹ (t)

∣∣∣2 ≤ 4B (0) .

Thus, by estimating c2v1 and c2v2 it follows from [6.45] that:

(
Var
(
Y 2 (t)− Ỹ 2 (t)

)) 1
2

=
(
c2v1

Âv1

N,t

) 1
2v1

(c2v2 (4B (0))
v2)

1
2v2

≤
(√

2 (2v1)
v1 exp {−v1}

) 1
2v1

Â
1
2

N,t

(√
2 (2v2)

v2 exp {−v2}
) 1

2v2
2
√

B (0)

= 4
4
√
2 (v1v2B (0))

1
2 exp {−1} Â

1
2

N,t.

If we set v1 = v2 = 2, we obtain the assertion of the lemma. �

LEMMA 6.12.– Let Y (t) be a homogeneous, centered, continuous in mean square

Gaussian process with spectral function F (λ), there exists spectral moment
∞∫
0

λ2βdF (λ), 0 < β ≤ 1, a partition DΛ of domain [0,Λ] , Λ ∈ R such that

λk−1 − λk = Λ
N , N ∈ N, then the following inequality holds true:(

Var
(
Y 2 (t+ h)− Ỹ 2 (t+ h)−

(
Y 2 (t)− Ỹ 2 (t)

))) 1
2

≤ HN,th
β ,

where

HN,t = 23
1
4 exp {−1}

√
B (0)

(√
PN,t +

(
Λ

2

)β√
RN

)
,

PN,t = 25−4β

((
Λ

N

)β

+ 2β−1t
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) ,

RN = 8T 2 Λ
2

N2
F (Λ) + 8 (F (∞)− F (Λ)) .
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PROOF.–

(
Var
(
Y 2 (t+ h)− Ỹ 2 (t+ h)−

(
Y 2 (t)− Ỹ 2 (t)

))) 1
2

=

(
E
∣∣∣(Y (t+ h)− Y (t)) (Y (t+ h) + Y (t))

−
(
Ỹ (t+ h)− Ỹ (t)

)(
Ỹ (t+ h) + Ỹ (t)

)∣∣∣2) 1
2

=

(
E
∣∣∣[ Y (t+ h)− Y (t)−

(
Ỹ (t+ h)− Ỹ (t)

)]
(Y (t+ h) + Y (t))

+
(
Ỹ (t+ h)− Ỹ (t)

)
(Y (t+ h) + Y (t))

−
(
Ỹ (t+ h)− Ỹ (t)

)(
Ỹ (t+ h) + Ỹ (t)

)∣∣∣2) 1
2

≤
(
E
∣∣∣( Y (t+ h)− Ỹ (t+ h)−

(
Y (t)− Ỹ (t)

)) [
Y (t+ h) + Y (t)

]∣∣∣2) 1
2

+

(
E
∣∣∣( Y (t+ h)− Ỹ (t+ h) +

(
Y (t)− Ỹ (t)

)) [
Ỹ (t+ h)− Ỹ (t)

]∣∣∣2) 1
2

.

[6.46]

Let us estimate each of the two summands of the right-hand side of the last

estimation. For v1, v2 such that 1
v1

+ 1
v2

= 1, we have:

E
∣∣∣( Y (t+ h)− Ỹ (t+ h)−

(
Y (t)− Ỹ (t)

)) [
Y (t+ h) + Y (t)

]∣∣∣2
≤
(
E
∣∣∣ Y (t+ h)− Ỹ (t+ h)−

(
Y (t)− Ỹ (t)

)∣∣∣2v1
) 1

v1

×
(
E
∣∣∣Y (t+ h) + Y (t)

∣∣∣2v2) 1
v2

. [6.47]

It was shown under proof of lemma 6.2 that:

E
∣∣∣ Y (t+ h)− Ỹ (t+ h)−

(
Y (t)− Ỹ (t)

)∣∣∣2 ≤ h2βPN,t,
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where PN,t = 25−4β
((

Λ
N

)β
+ 2β−1tΛ

β+1

N

)2
F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) , 0 < β

≤ 1. This is why:

(
E
∣∣∣ Y (t+ h)− Ỹ (t+ h)−

(
Y (t)− Ỹ (t)

)∣∣∣2v2
) 1

v1

≤ c
1
v1
2v1

h2βPN,t [6.48]

Since E |Y (t+ h) + Y (t)|2 ≤ 4B (0) , we get:

(
E |Y (t+ h) + Y (t)|2v2

) 1
v2 ≤ c

1
v2
2v2

4B (0) . [6.49]

If we put v1 = v2 = 2 and taking into consideration [6.48] and [6.49] after

elementary manipulation, it follows from [6.47] that:

E
∣∣∣( Y (t+ h)− Ỹ (t+ h)−

(
Y (t)− Ỹ (t)

)) [
Y (t+ h) + Y (t)

]∣∣∣2
≤ 26

1
2B (0) exp {−2}PN,th

2β . [6.50]

It is evident that:

E
∣∣∣ Y (t+ h)− Ỹ (t+ h) +

(
Y (t)− Ỹ (t)

)∣∣∣2 ≤ RN ,

RN = 8T 2 Λ
2

N2
F (Λ) + 8 (F (∞)− F (Λ)) .

By using representation of process Y (t) , it is evident that:

E
∣∣∣Ỹ (t+ h)− Ỹ (t)

∣∣∣2 = 2F (Λ)− 2
N−1∑
k=0

∫ λk+1

λk

cosλkh dF (λ)

= 4

N−1∑
k=0

∫ λk+1

λk

sin2
λkh

2
dF (λ) ≤ 22−2βΛ2βF (Λ) h2β , 0 < β ≤ 1.

By virtue of the two last inequalities:

E
∣∣∣( Y (t+ h)− Ỹ (t+ h) +

(
Y (t)− Ỹ (t)

)) [
Ỹ (t+ h)− Ỹ (t)

]∣∣∣2
≤ 26

1
2−2β exp {−2}Λ2βF (Λ)RN h2β . [6.51]

Taking into consideration [6.50] and [6.51], the assertion of the lemma follows

from [6.46]. �
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LEMMA 6.13.– Let Y (t) be a homogeneous, centered, separable, continuous in mean

square Gaussian process with spectral function F (λ), there exists spectral moment
∞∫
0

λ2βdF (λ), 1
2 < β ≤ 1, a partition DΛ of domain [0,Λ] , Λ ∈ R such that λk−1 −

λk = Λ
N , N ∈ N, then:

P

{
max

Bi∈B i=0, k−1
| pkY (Bi)− p̃kY (Bi) | > α

}

≤ 24+
1
2β β2

(2β − 1)2

(
1− (

√
2− 1)α

UN

)− 1
2

× exp

{
−

(√
2− 1

)2
α2

2dmax (δ0,N , t0,N )UN
− (

√
2− 1)α

2UN

}
,

where:

UN = dmax (δ0,N , t0,N ) + (
√
2− 1)α,

δ0,N = 8
4
√
2 exp {−1}B 1

2 (0) Â
1
2

N ,

t0,N = 23
1
4−βT β exp {−1}

√
B (0)

(√
PN,T2

+

(
Λ

2

)β√
RN

)
,

ÂN = B (0)− F (Λ) + 22−2bT 2b

(
Λ

N

)2b

F (Λ) , b ∈ [0, 1] ,

PN,T2
= 25−4β

((
Λ

N

)β

+ 2β−2T
Λβ+1

N

)2

F (Λ) + 23−2β

∞∫
Λ

λ2βdF (λ) ,

RN = 8T 2 Λ
2

N2
F (Λ) + 8 (F (∞)− F (Λ)) .

PROOF.– It was shown under proof of lemma 6.6:

P

{
max

Bi∈B i=0, k−1
|pkY (Bi)− p̃kY (Bi)| > α

}
≤ P

{
max

Bi∈B i=0, k−1
|μ (Bi)− μ̃ (Bi)| > α

}
,
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that is for the square Gaussian Cox process, we have:

P

{
max

Bi∈B i=0, k−1
|pkY (Bi)− p̃kY (Bi)| > α

}
≤ P

{
sup
t∈T

∣∣∣Y 2 (t)− Ỹ 2 (t)
∣∣∣ > α

d

}
. [6.52]

Let us estimate the entropy integral from corollary 3.5. Using lemma 6.12, we

have: ∫ t0p

0

r
(
N
(
σ(−1)(v)

))
dv ≤

∫ t0p

0

⎛⎝T
H

1
β

N

v
1
β

⎞⎠ 1
2

dv =
T

1
2H

1
2β

N (t0p)
− 1

2β+1

− 1
2β + 1

,

− 1

2β
+ 1 > 0, HN = HN,t|t=T

2
.

Thus, after elementary manipulation:

r(−1)

(
1

t0p

∫ t0p

0

r
(
N
(
σ(−1)(v)

))
dv

)
≤ 8β2

(2β − 1)2p
1
β

, β >
1

2
.

Taking into consideration lemmas 6.11 and 6.12, the last inequality and by set

p = 1√
2
, the assertion of the lemma follows from [6.52] and corollary 3.5. �

THEOREM 6.10.– Let Y (t) be a homogeneous, centered, separable, continuous in

mean square, Gaussian process with spectral function F (λ) . There exists spectral

moment
∞∫
0

λ2βdF (λ), 1
2 < β ≤ 1, a partition DΛ of domain [0,Λ] , Λ ∈ R such that

λk−1 − λk = Λ
N , N ∈ N, then a model of Cox process {ν̃ (B) , B ∈ B}, generated

by square Gaussian process Ỹ 2 (t) , approximates them with accuracy α and reliability

1− γ if:

24+
1
2β β2

(2β − 1)2

(
1− (

√
2− 1)α

UN

)− 1
2

× exp

{
−

(√
2− 1

)2
α2

2dmax (δ0,N , t0,N )UN
− (

√
2− 1)α

2UN

}
< γ, [6.53]

where UN , δ0,N , t0,N are defined in lemma 6.13.

PROOF.– The assertion of the theorem follows from definition 6.4 and lemma 6.13.

�
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6.7. Simulation of the square Gaussian Cox process when density is
generated by a homogeneous field

In this section, we consider the square Gaussian Cox process when the density μ (·)
is generated by a homogeneous random field (μ (B) =

∫
B
Y 2
(
�t
)
d�t, where Y

(
�t
)

is

Gaussian, homogeneous random field). The simplified method of simulation described

in section 6.3 is used. Let us formulate the results.

THEOREM 6.11.– Let {ν (Bi1,...,in) , Bi1,...,in ⊂ B} be a Cox process, driven by

square Gaussian homogeneous field Y 2
(
�t
)
. The inequality

P {ν (Bi1,...,in) > 1} < δ,

holds true if we set

d =
T

k
≤

⎛⎝ 2δ

3B2
(
�0
)
⎞⎠ 1

2n

.

PROOF.– Proof is analogical to the proof of theorem 6.9. �

LEMMA 6.14.– Let Y
(
�t
)

be a homogeneous, centered, continuous in mean square

Gaussian field, and for all ∀p > 1 the following inequality holds true:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}

≤
√
2kndnp

(
4B
(
�0
)
v1v2

) p
2

J
p
2

Npp exp {−p}
αp

,

where

JN = 22−2an2a d
2aΛ2a

N2a
Φ(Λn) +B

(
�0
)
− Φ(Λn) ,

a ∈ [0, 1] , v1, v2 are such numbers that 1
v1

+ 1
v2

= 1.

PROOF.– Analogical to [6.35], we have:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)− μ̃ (Bi1,...,in)| > α

}

≤
kn

( ∫
Bi1,...,in

(
E
∣∣∣Y 2
(
�t
)
− Ỹ 2

(
�t
)∣∣∣p) 1

p

d�t

)p

αp
. [6.54]

By virtue of the Holder inequality for v1 and v2 such that 1
v1

+ 1
v2

= 1,

E|Y 2(�t)− Ỹ 2(�t)|p ≤ (E|Y (�t)− Ỹ (�t)|pv1)
1
v1 (E|Y (�t) + Ỹ (�t)|pv2) 1

v2 . [6.55]
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Since E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 = cpv1

(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2)pv1

2

, by using the

estimation from lemma 6.7 for E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2 , we have

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 ≤ cpv1J

pv1
2

N ,

JN = 22−2an2a d
2aΛ2a

N2a
Φ(Λn) + B

(
�0
)
− Φ(Λn) , [6.56]

a ∈ [0, 1] . It is evident that

E
∣∣∣Y (�t)+ Ỹ

(
�t
)∣∣∣pv2 ≤ cpv2

(
4B
(
�0
))pv2

2

. [6.57]

Taking into considerations [6.56] and [6.57] and also estimation [6.4] for cpv1
and

cpv2 after elementary manipulation, it follows from [6.55] that:

E
∣∣∣Y 2
(
�t
)
− Ỹ 2

(
�t
)∣∣∣p ≤

√
2
(
4B
(
�0
)
v1v2

) p
2

pp exp {−p}J
p
2

N .

Taking into consideration the last estimation, the assertion of the lemma follows

from [6.54]. �

LEMMA 6.15.– Let Y
(
�t
)

be homogeneous, centered, continuous in mean square of

a Gaussian field, then if α > 2dn
(
B
(
�0
)
JN

) 1
2

, then there is a valuation:

P

{
max

Bi1,...,in∈B
| pkY (Bi1,...,in)− p̃kY (Bi1,...,in) | > α

}

≤
√
2kn exp

⎧⎪⎨⎪⎩− α

2dn
(
B
(
�0
)
JN

) 1
2

⎫⎪⎬⎪⎭ ,

where JN is defined by the condition of lemma 6.14.

PROOF.– By using the proof in lemma 6.6 inequality, we get:

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}
≤ P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}
. [6.58]
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We find the minimum of function

√
2kndnp(4B(�0)v1v2)

p
2 J

p
2
N pp exp{−p}

αp on variable

p. By set v1 = v2 = 2, it is evident that the given lemma is a corollary of lemma 6.14.

�

THEOREM 6.12.– Let Y
(
�t
)

be a homogeneous, centered, continuous in

mean square Gaussian field, a model of random Cox process

{ν (Bi1,...,in) , Bi1,...,in ⊂ B} , driven by square Gaussian homogeneous field

Ỹ 2
(
�t
)
, approximates them with accuracy α and reliability 1 − γ, if the following

inequalities hold true:

α > 2dn
(
B
(
�0
)
JN

) 1
2

,

√
2kn exp

{
− α

2dn(B(�0)JN)
1
2

}
< γ,

where JN is defined in lemma 6.14.

PROOF.– It is evident that the theorem follows from definition 6.5 and lemma 6.15.

�

6.8. Simulation of the square Gaussian Cox process when the density is
generated by an inhomogeneous field

In this case, the algorithm of simulation of the square Gaussian Cox process differs

only by construction of the inhomogeneous field model
{
Y
(
�t
)
,�t ∈ T

}
.

THEOREM 6.13.– Let {ν (Bi1,...,in) , Bi1,...,in ⊂ B} be a Cox process, directed by

square Gaussian inhomogeneous field Y 2
(
�t
)
, with the eigenfunction of integral

equation [4.11] restricted,∣∣φk

(
�t
)∣∣ ≤ L, ∀�t ∈ T, ∀k ∈ N.

The inequality

P {ν (Bi1,...,in) > 1} < δ,

holds true if we set

d =
T

k
≤

⎛⎜⎝ δ exp {2}

8
√
2
(
L2
∑∞

k=1
1
λk

)2
⎞⎟⎠

1
2n

.
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PROOF.– Under proof of theorem 6.9 for the square Gaussian Cox process, we obtain

estimation:

P {ν (Bi1,...,in) > 1} ≤
∫∫

Bi1,...,in×Bi1,...,in

EY 2
(
�t
)
EY 2 (�s)

2
d�td�s.

By virtue of Holder inequality for u1, u2 such that 1
u1

+ 1
u2

= 1,

P {ν (Bi1,...,in) > 1} ≤
∫∫

Bi1,...,in×Bi1,...,in

(
EY 2u1

(
�t
)) 1

u1
(
EY 2u2 (�s)

) 1
u2

2
d�td�s.

[6.59]

Since by the use of representation [4.14],

EY 2
(
�t
)
= E

( ∞∑
k=1

ξk√
λk

φk

(
�t
))2

=
∞∑
k=1

φ2
k

(
�t
)

λk
≤ L2

∞∑
k=1

1

λk
,

then by virtue of [6.3],

EY 2u1
(
�t
)
= c2u1

(
L2

∞∑
k=1

1

λk

)u1

.

Analogically, EY 2u2 (�s) = c2u2

(
L2
∑∞

k=1
1
λk

)u2

. We estimate c2u1 and c2u2 by

using [6.4]. By set u1 = u2 = 2, the assertion of the lemma follows from [6.59]. �

LEMMA 6.16.– Let Y
(
�t
)

be a centered, continuous in mean square random field,

with the eigenfunction of integral equation [4.11] restricted,∣∣φk

(
�t
)∣∣ ≤ L, ∀�t ∈ T, ∀k ∈ N.

then ∀p > 1 the following estimation holds true:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)−μ̃ (Bi1,...,in)| > α

}

≤

√
2kndnp(v1v2)

p
2

⎛⎝2L2

√√√√( ∞∑
k=N+1

1
λk

)( ∞∑
k=1

1
λk

)⎞⎠p

pp exp {−p}

αp
,

where v1, v2 are such numbers that 1
v1

+ 1
v2

= 1.
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PROOF.– Under proof of lemma 6.14 for v1, v2 such that 1
v1

+ 1
v2

= 1, the following

inequality is proofed:

P

{
max

Bi1,...,in∈B
|μ (Bi1,...,in)− μ̃ (Bi1,...,in)| > α

}

≤
kn

( ∫
Bi1,...,in

(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1) 1

pv1
(
E
∣∣∣Y (�t)+ Ỹ

(
�t
)∣∣∣pv2) 1

pv2
d�t

)p

αp
.

[6.60]

Since E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1

= cpv1

(
E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2)pv1

2

, then by using

estimation E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣2 ≤ L2

∞∑
k=N+1

1
λk

obtained in lemma 6.9, we have:

E
∣∣∣Y (�t)− Ỹ

(
�t
)∣∣∣pv1 ≤ cpv1L

pv1

( ∞∑
k=N+1

1

λk

)pv1
2

. [6.61]

By using representations [4.13] and [4.14] of the field and their models, we get:

E
∣∣∣Y (�t)+ Ỹ

(
�t
)∣∣∣2 = E

∣∣∣∣ ∞∑
k=1

ξk√
λk

φk

(
�t
)
+

N∑
k=1

ξk√
λk

φk

(
�t
)∣∣∣∣2

= E

∣∣∣∣∣2 N∑
k=1

ξk√
λk

φk

(
�t
)
+

∞∑
k=N+1

ξk√
λk

φk

(
�t
)∣∣∣∣∣

2

= 4
N∑

k=1

φ2
k(�t)
λk

+
∞∑

k=N+1

φ2
k(�t)
λk

≤ 4L2
∞∑
k=1

1
λk

.

Taking into consideration the last inequality,

E
∣∣∣Y (�t)+ Ỹ

(
�t
)∣∣∣pv2 = cpv2

(
E
∣∣∣Y (�t)+ Ỹ

(
�t
)∣∣∣2)pv2

2

≤ cpv2 (2L)
pv2

( ∞∑
k=1

1

λk

)pv2
2

. [6.62]

By using [6.61] and [6.62] and also estimation [6.4] for cpv1 and cpv2 after

elementary manipulation, the assertion of the lemma follows from [6.60]. �
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LEMMA 6.17.– Let Y
(
�t
)

be a centered, continuous in mean square random field,

with the eigenfunctions of integral equation [4.11] restricted:∣∣φk

(
�t
)∣∣ ≤ L ∀�t ∈ T, k ∈ N.

If α > 4dnL2

√√√√( ∞∑
k=N+1

1
λk

)( ∞∑
k=1

1
λk

)
, then

P

{
max

Bi1,...,in∈B
|pkY (Bi1,...,in)−p̃kY (Bi1,...,in)| > α

}

≤
√
2kn exp

⎧⎪⎪⎨⎪⎪⎩− α

4dnL2

√(∑∞
k=N+1

1
λk

)(∑∞
k=1

1
λk

)
⎫⎪⎪⎬⎪⎪⎭ .

PROOF.– Find the minimum of function:

√
2kndnp(v1v2)

p
2

(
2L2

√(∑∞
k=N+1

1
λk

)(∑∞
k=1

1
λk

))p

αp
× pp exp {−p}

on variable p. If we put v1 = v2 = 2, it is evident that the given lemma is a corollary

of [6.58] and lemma 6.16. �

THEOREM 6.14.– Let Y
(
�t
)

be a centered, continuous in mean square Gaussian field,

with the eigenfunctions of integral equation [4.11] restricted:∣∣φk

(
�t
)∣∣ ≤ L ∀�t ∈ T, k ∈ N,

then the model of Cox process {ν̃ (Bi1,...,in) , Bi1,...,in ⊂ B} , generated by square

Gaussian inhomogeneous field Ỹ 2
(
�t
)
, approximates them with accuracy α and

reliability 1− γ, if the next condition holds true:

α > 4dnL2

√√√√( ∞∑
k=N+1

1

λk

)( ∞∑
k=1

1

λk

)
,

√
2kn exp

⎧⎪⎪⎨⎪⎪⎩− α

4dnL2

√(∑∞
k=N+1

1
λk

)(∑∞
k=1

1
λk

)
⎫⎪⎪⎬⎪⎪⎭ < γ.

PROOF.– The assertion of the theorem follows from lemma 6.17 and definition 6.5.

�



7

On the Modeling of Gaussian Stationary
Processes with Absolutely Continuous

Spectrum

A model of a Gaussian stationary process with absolutely continuous spectrum is

proposed that simulates the process with given reliability and accuracy in L2(0, T ).
Under certain restrictions on the covariance function of the process, formulas for

computing the parameters of the model are described.

Let ξ(t) be a Gaussian stationary random process, Eξ(t) = 0, with a continuous

covariance function R(τ) = Eξ(t + τ)ξ(t) and a spectral function F (λ), i.e.

R(τ) =
∞∫
0

cosλτ dF (λ). Assume that there exists an integral
λ∫
0

f(u) du, where f(λ)

is a spectral density of ξ(t).

Consider the model of the process in such way

ξN (t) =
N−1∑
k=0

τk
(
η
(1)
k cosλkt+ η

(2)
k sinλkt

)
, [7.1]

where η
(i)
k , i = 1, 2, are independent Gaussian variables such that Eη

(i)
k = 0 and

V arη
(i)
k = 1, and 0 = λ0 < λ1 < · · · < λN−1 < λN = Λ is a partition of the

interval [0,Λ]. We shall assume that λk − λk−1 = Λ/N , where Λ and N are chosen

so as to ensure a given accuracy and reliability of the model, and

τ2k = F (λk+1)− F (λk) =

∫ λ−k+1

λk

f(u) du

=
2

π

∫ ∞

0

(sinλk+1τ − sinλkτ)R(τ) dτ.
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Also, we shall suppose that the covariance function R(τ) is known, whereas f(λ)
cannot be computed explicitly in general. The essential results of [KOZ 94] will be

used to compute all parameters of model [7.1] for random processes for which R(0)−
R(τ) increases a neighborhood of zero.

Let F (u) be the distribution function of some random variable and let ϕ(t) be its

characteristic function.

LEMMA 7.1.– For any k > 0 and a > 0, the following equality holds:∫ 2a

0

( ∫ v2+a

v1−a

(∫ v2−a

v2−a

· · ·
(∫ vk+a

vk−a

(sign vk+1 −R(v(k+1)) dvk+1

)
dvk

)
· · · dv1

)
=

2k+1ak+1

π

∫ ∞

−∞

sink+2 u

uk+2

(
1− ϕ

(u
a

))
du, [7.2]

where R(v) = F (v)− F (−v).

PROOF.– For any distribution function F (v) and its characteristic function ϕ(t), the

relation

∫ 2a

0

[F (V )− F (−V )] dv =
1

π

∫ ∞

−∞

1− cos 2at

t2
ϕ(t) dt

=
2

π

∫ ∞

−∞

sin2 at

t2
ϕ(t) dt [7.3]

holds true. Now replace ϕ(y) by the characteristic function (sin at/(at))kϕ(t).
Observe that sin at/(at) is the characteristic function of the uniform distribution on

[−a, a]. Therefore, (sin at/(at))kϕ(t) is the characteristic function of the random

variable η = ξ +
k∑

s=1
θs, where ξ and θs, s = 1, 2, . . . , k, are independent random

variables. The distribution function of ξ is F (x). The random variables θs are

uniformly distributed on the interval [−a, a].

Let F1(x) be the distribution function of the sum ξ + θ1. Then

F1(x) =
1

2a

∫ a

−a

F (x− y) dy =
1

2a

∫ x+a

x−a

F (u) du

and

F1(−x) =
1

2a

∫ x+a

x−a

F (−u) du.
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Therefore, from [7.3] it follows that for k = 1

1

2a

∫ 2a

0

(∫ v1+a

v1−a

R(v2) dv2

)
dv1 =

2

π

∫ ∞

−∞

sin3 at

t2a
ϕ(t) dt. [7.4]

Now substitute the characteristic function (sin at/(at))ϕ(t) for ϕ(t) in [7.4] to

obtain

∫ 2a

0

( ∫ v2+a

v1−a

(∫ v2+a

v2−a

· · ·
(∫ vk+a

vk−a

R(vk+1) dvk+1

)
dvk

)
· · ·
)
dv1

=
2k+1

π

∫ ∞

−∞

( sin at
t

)k+2

ϕdt. [7.5]

If ϕ(t) ≡ 1, then

∫ 2a

0

( ∫ v2+a

v1−a

(∫ v2+a

v2−a

· · ·
(∫ vk+a

vk−a

sign (vk+1 dvk+1

)
dvk

)
· · ·
)
dv1

=
2k+1

π

∫ ∞

−∞

( sin at
t

)k+2

dt. [7.6]

since R(u) =sign u.

Next, by subtracting [7.5] from [7.6] and making a change in variables in the

integral on the right-hand side of the equality obtained, we obtain [4.2]. �

COROLLARY 7.1.– Let a random variable ξ have a symmetric distribution. Then, ϕ(t)
is an even real function and the following equality holds:

∫ 2a

0

(∫ v2+a

v1−a

(∫ v2−a

v2−a

· · ·
(∫ vk+a

vk−a

(sign vk+1 −R(v(k+1)) dvk+1

)
dvk

)
· · · dv1

)
=

2k+1ak+1

π

∫ ∞

−∞

( sin u

u

)k+2(
1 − ϕ

(u
a

))
du. [7.7]

LEMMA 7.2.– Let ϕ(t) be the characteristic function of a symmetric random variable

and let ψ(t) be a monotonically increasing function such that ψ(0) = 0 for 0 ≤ t < t0
and ψ(uv) ≤ ψ1(u)ψ2(v) for |uv| < t0, where ψi(u), i = 1, 2, are monotonically
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increasing functions such that ψi(0) = 0. If for |t| < t0 the inequality 1−ϕ(t) ≤ ψ(t)
holds, then for any a > t0 and k = 0, 1, 2, . . .∣∣∣ ∫ ∞

−∞

( sin u

u

)k+2(
1− ϕ

(u
a

))
du
∣∣∣ ≤ δk,ψ(a),

where

δk,ψ(a) = ψ1

(1
a

)(∫ 1

0

ψ2(u) du+

∫ at0

1

ψ2(u)

uk+2
du
)
+

2

(k + 1)(at0)k+2
.

PROOF.– By the properties of function ψ(uv), we obtain

∣∣∣ ∫ ∞

−∞

( sinu

u

)k+2(
1− ϕ

(u
a

))
du
∣∣∣

≤
∫ 1

0

∣∣∣( sinu
u

)k+2∣∣∣ψ(u
a

)
du+

∫ at0

1

ψ
(u
a

) 1

uk+2
du+

∫ ∞

at0

2

uk+2
du

≤ ψ1

(1
a

)∫ 1

0

ψ2(u) du+

∫ at0

1

ψ1

(1
a

)ψ2(u)

uk+2
du+

2

(k + 1)(at0)k+2
.

�

COROLLARY 7.2.– If for |t| < t0 and some functions ψs(t), s = 1, 2, . . . ,M ,

satisfying the assumptions of lemma 7.2, the inequality 1 − ϕ(t) ≤
M∑
s=1

ψs(t) holds,

then for a > t−1
0 the following inequality:∣∣∣ ∫ ∞

−∞

( sin u

u

)k+2(
1− ϕ

(u
a

))
du
∣∣∣ ≤ M∑

s=1

δk,ψ
a

is valid.

EXAMPLE 7.1.– If the assumptions of lemma 7.2 are satisfied for ψ(t) = cγ |t|γ ,

0 < γ ≤ 2, then for k > γ − 1

δk,ψ(a) =
cγ
aγ

( 1

γ + 1
+

1

k + 1− γ

)
+

1

(at0)k+1

( 2

k + 1
− cγt

γ
0

k + 1− γ

)
.

LEMMA 7.3.– Let R(v) = F (v) − F (−v), where F (v) is distribution function of

some random variable. Then for each a > 0, the following inequalities hold:∫ 2a

0

(sign v1 −R(v1)) dv1 ≥ (1−R(2a))2a, [7.8]
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∫ 2a

0

(∫ v1+a

v1−a

(sign v2 −R(v2)) dv2

)
dv1 ≥ (1−R(3a))3a2, [7.9]

and∫ 2a

0

(∫ v1+a

v1−a

(∫ v2+a

v2−a

(sign v3 −R(v3))dv3

)
dv2

)
dv1 ≥ (1−R(4a))

16

3
a3. [7.10]

PROOF.– Since the function R(v) is monotonically for positive values of v, we have∫ 2a

0

(sign v1 −R(v1)) dv1 =

∫ 2a

0

(1−R(v1)) dv1 ≥ (1−R(2a))2a.

Inequality [7.8] is proved. To derive the second inequality, we note that −a ≤
v2 ≤ 3a, since 0 ≤ v1 ≤ 2a. For v1 > a,∫ v1+a

v1−a

(sign v2 −R(v2)) dv2 =

∫ v1+a

v1−a

(1−R(v2)) dv2 ≥ (1−R(v1 + a))2a.

For 0 ≤ v1 ≤ a

∫ v1+a

v1−a

(sign v2 −R(v2)) dv2

=

∫ 0

v1−a

(−1−R(v2)) dv2 +

∫ v1+a

0

(1−R(v2)) dv2

=

∫ v1−a

0

(−1 +R(v2)) dv2 +

∫ v1+a

0

(1−R(v2)) dv2

=

∫ a+v1

a−v1

(1−R(v2)) dv2 ≥ (1−R(a+ v1))2v1.

Therefore,∫ 2a

0

(∫ v1+a

v1−a

(sign v2 −R(v2)) dv2

)
dv1

≥
∫ 2a

a

(1−R(v1 + a)) 2a dv1

+

∫ a

0

(1−R(v1 + a)) 2v1 dv1 ≥ (1−R(3a)) 3a2.

Inequality [7.9] is proved. Let us establish now inequality [7.10]. Set

I1(a, v2) =

∫ v2+a

v2−a

(sign v3 −R(v3)) dv3.
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It is not hard to see that for v2 > a

I1(a, v2) =

∫ v2+a

v2−a

(1−R(v3)) dv3.

For 0 ≤ v2 < a

I1(a, v2) =

∫ 0

v2−a

(−1−R(v3)) dv3 +

∫ v2+a

0

(1−R(v3)) dv3

= −
∫ a−v2

0

(1−R(v3)) dv3 +

∫ v2+a

0

(1−R(v3)) dv3

=

∫ a+v2

a−v2

(1−R(v3)) dv3.

Similarly, for −a ≤ v2 < 0

I1(a, v2) = −
∫ a−v2

a+v2

(1−R(v3)) dv3.

Set

I2(a, v1) =

∫ v1+a

v1−a

I1(a, v2) dv2.

For 0 ≤ v1 ≤ a,

I2(a, v1) =

0∫
v1−a

[
−

a−v2∫
v2+a

(1−R(v3)) dv3

]
dv2

+

a∫
0

( a+v2∫
a−v2

(1−R(v3)) dv3

)
dv2

+

a+v1∫
a

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2

=−
a−v1∫
0

( a+v2∫
a−v2

(1−R(v3)) dv3

)
dv2

+

a∫
0

( ∫
a−v2

a+ v2(1−R(v3)) dv3

)
dv2
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+

a+v1∫
a

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2

=

a∫
a−v1

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2

+

a+v1∫
a

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2.

For 0 ≤ v1 ≤ 2a,

I2(a, v1) =

a∫
a−v1

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2

+

a+v1∫
a

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2.

Therefore,

2a∫
0

( v1+a∫
v1−a

( v2+a∫
v2−a

(sign v3 −R(v3)) dv3

)
dv2

)
dv1

=

a∫
0

( a∫
a−v1

( a+v2∫
a−v2

(1−R(v3)) dv3

)
dv2

)
dv1

+

2a∫
a

( a∫
v1−a

( a+v2∫
a−v2

(1−R(v3)) dv3

)
dv2

)
dv1

+

2a∫
0

( a+v1∫
a

( v2+a∫
v2−a

(1−R(v3)) dv3

)
dv2

)
dv1

≥
a∫

0

( a∫
a−v1

(1−R(a+ v2)) 2v2 dv2

)
dv1

+

2a∫
0

( v1+a∫
v1−a

(1−R(a+ v2)) 2v2 dv2

)
dv1
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+

2a∫
0

( a+v1∫
a

(1−R(a+ v2)) 2a dv2

)
dv1

≥(1−R(2a))
[ a∫

0

( a∫
a−v1

2v2 dv2

)
dv1 +

2a∫
a

( a∫
v1−a

2v2 dv2

)
dv1

]

+(1−R(4a))

2a∫
0

2av1 dv1 ≥ (1−R(4a))
16

3
a3.

Inequality is proved. �

COROLLARY 7.3.– Let a random variable ξ have a symmetric distribution, h > o, and

R(h) = F (h)−F (−h), where F (x) is the distribution function of ξ. Then, following

inequalities hold true:

1−R(h) ≤ 2

π

∫ ∞

0

( sin u

u

)2(
1− ϕ

(2u
h

))
du, [7.11]

1−R(h) ≤ 8

3π

∫ ∞

0

( sin u

u

)3(
1− ϕ

(3u
h

))
du, [7.12]

and

1−R(h) ≤ 3

π

∫ ∞

0

( sin u

u

)4(
1− ϕ

(4u
h

))
du. [7.13]

The above inequalities are results of [7.7]–[7.10]. With the aid of [7.11]–[7.13]

and lemma 7.2, we may obtain estimates for 1−R(h).

LEMMA 7.4.– If the characteristic function of the symmetric random variable satisfies

the conditions of lemma 7.2, then for h > tk/t0, k = 1, 2, 3,

1−R(h) ≤ sk
π

δk,ψ

( h

tk

)
, [7.14]

where s1 = 2, s2 = 8/3, s3 = 3, t1 = 2, t2 = 3 and t3 = 4.

When analyzing example 7.1, it becomes apparent that in order to obtain a better

estimate for 1−R(h), given a value of γ, it is necessary to use [7.14] with appropriate

value of k.

Let us now estimate the increment of the spectral function, F (λ), of stationary

random processes. Let R(τ) be the covariance function. The function R(τ)/R(0) may
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be interpreted as the characteristic function of the symmetric random variable with the

distribution function G(λ) such that F (λ)/F (+∞) = G(λ)−G(−λ) for λ > 0. To

estimate F (+∞)− F (λ), lemma 7.4 may be applied.

THEOREM 7.1.– Let R(τ) be the covariance function of a stationary random process

ξ(t), and let F (λ) be the spectral function of ξ(t). If the function R(τ)/R(0) satisfies

the assumptions of lemma 7.2, i.e. 1 − R(τ)/R(0) ≤ ψ(τ), then for h > tk/t0 the

following inequality holds:

F (+∞)− F (h) ≤ F (+∞)
sk
π

δk,ψ

( h

tk

)
, [7.15]

where k = 1, 2, 3 and sk and tk are same as in [7.14].

This theorem follows immediately from lemma 7.2.

REMARK.– The assertion of corollary 7.2 is also applicable to the function

R(τ)/R(0).

Now we shall employ the estimate for the increment F (+∞)− F (λ) to construct

models of random processes. Let ξ(t) be a stationary random process whose

covariance function R(τ)/R(0) satisfies the assumptions of lemma 7.2 or

corollary 7.2. Following the method proposed in [KOZ 94], we construct the model

in the form [7.1], where λk = kΛ/N , k = 0, 1, 2, . . . , N − 1. In order that, given ε
and p, the inequality

P
{∫ T

0

(ξ(t)− ξN (t))2 dt > ε
}
≤ p

hold true, Λ and N may be chosen in the following manner suggested by formulas

from [KOZ 94]. Let zp/2 be a root of the equation exp{−z/2}(z + 1)1/2 = p/2.
Then, Λ is the minimal number satisfying

zp/2

(∫ T

0

∫ T

0

(∫ ∞

Λ

cosλ(t− s) dF (λ)
)2

dt ds
)1/2

+ T (F (+∞) − F (Λ)) ≤ ε/4.

Since(∫ T

0

∫ T

0

(∫ ∞

Λ

cosλ(t− s) dF (λ)
)2

dt ds
)1/2

≤ T (F (+∞)− F (Λ)),

Λ is the minimal number for which

T (F (+∞)− F (Λ))(zp/2 + 1) ≤ ε/4, [7.16]
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or by theorem, the minimal number for which

δk,ψ

(Λ
tk

)
≤ ε(4T (zp/2 + 1))−1.

Hence, N is the least number satisfying the inequality

N ≥ ((zp/2 + 1)T 3 Λ2 F (Λ) 4 (3ε)−1)1/2 + 1.

According to [7.16], N may be chosen in the following way:

N =
[
(zp/2 + 1)T 3Λ2

(
F (+∞)− ε

4T (zp/2 + 1)

)
4(3ε)−1

]
+ 1.

Thus, we have found all parameters of the model.



8

Simulation of Gaussian Isotropic
Random Fields on a Sphere

The models of Gaussian isotropic random fields on an n-measurable sphere are

constructed that approximate these fields with given accuracy and reliability in the

space Lp, p ≥ 2.

DEFINITION 8.1.– A random field ξ(x) on sphere Sn in n-measurable space is called
isotropic in wide sense if E ξ(x) = const (further we will suppose that E ξ(x) = 0)
and E ξ(x1)ξ(x2) = B(cos θ), where cos θ is the angular distance between x1 and
x2 [YAD 93].

We suggest that the field ξ = {ξ(x), x ∈ Sn} is Gaussian and continuous in mean

square. Random field ξ has a representation [5, p. 61].

ξ(x) =
∞∑

m=0

h(m,n)∑
l=1

ξlmslm(x), [8.1]

where ξlm is a sequence of independent Gaussian random variables such that E ξlm =
0, E ξlmξsr = bmδrmδsl , (m = 0, 1, 2, . . .; l = 1, . . . , h(m,n)), δrm is a Kronecker

symbol, bm > 0, slm(x) = slm(θ1, . . . , θn−2, ϕ) are orthonormal spherical harmonics

with degree m, h(m,n) = (2m+ n− 2) (m+n−3)!
(n−2)!m! is the number of such harmonics.

In addition,
∞∑

m=0
bmh(m,n) < ∞. Note that slm(x) are trigonometric polynomials

of n− 1 variables with degree l. The properties of slm(x) and the formulas for slm(x)
can be found in [BAT 53].
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Note that Pm(x) =
∑h(m,n)

l=1 ξlmslm(x). Hence,

ξ(x) =
∞∑

m=0

Pm(x). [8.2]

A simulation problem of the field ξ consists of a construction of some Gaussian

field ξ̂ = {ξ̂(x), x ∈ Sn}, that approximates in some sense random field ξ with given

accuracy and reliability [ZEL 88, KOZ 94, KOZ 94, KOZ 92]. Field ξ̂ has to accept

the possibility of computer simulation.

In this section, the model is constructed that approximates random field ξ with

given accuracy and reliability in space Lp(Sn), p ≥ 2, it means that the filed ξ̂ is

found that by known ε and δ inequality

P

{(∫
Sn

|ξ̂(x)− ξ(x)|p dx
) 1

p

> ε

}
< δ [8.3]

holds true.

As a model of random filed is proposed to choose such field

ξ̂(x) = ξN (x) =
N∑

m=0

h(m,n)∑
l=1

ξlmslm(x). [8.4]

Computer simulation of this random field does not present any difficulties.

The main problem is to find N such that inequality [8.3] is satisfied.

LEMMA 8.1.– Let ξ1, ξ2, . . . , ξn be independent Gaussian random variables E ξi = 0,

Dξi = Eξ2i = σ2
i , i = 1, . . . , n. Then, for arbitrary 0 ≤ u < 1 inequality

E exp

{
u

2
(∑n

i=1 σ
4
i

) 1
2

( n∑
i=1

ξ2i −
n∑

i=1

σ2
i

)}
≤ exp

{
−u

2

}
(1− u)−

1
2 [8.5]

holds true.

Lemma 8.1 is a particular case of (4) in paper [KOZ 94].
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REMARK 8.1.– It is easy to show that

n∑
i=1

σ2
i = E

( n∑
i=1

ξ2i

)
and 2

( n∑
i=1

σ4
i

) 1
2

=

(
2D

( n∑
i=1

ξ2i

)) 1
2

.

COROLLARY 8.1.– Let ξ1, ξ2, . . . be sequence of independent Gaussian random

variables such that E ξi = 0, E ξ2i = σ2
i . If

∑∞
i=1 σ

2
i < ∞, then for any 0 ≤ u ≤ 1

inequality

E exp

{
u

2
(∑∞

i=1 σ
4
i

) 1
2

( ∞∑
i=1

ξ2i −
∞∑
i=1

σ2
i

)}
≤ exp

{
−u

2

}
(1− u)−

1
2 [8.6]

holds.

PROOF.– It is clear that the convergence of series
∞∑
i=1

σ2
i provides convergence of

series
∞∑
i=1

ξ2i with probability one [LOE 60]. Moreover,

( ∞∑
i=1

σ4
i

) 1
2

≤
∞∑
i=1

σ2
i < ∞.

Hence, [8.6] follows from [8.5], taking a limit as n → ∞ and using the Fatou

lemma. �

LEMMA 8.2.– (The Nikolski Inequality ) [NIK 77]. Let T (�u), �u′ = (u1, . . . , ud),
0 ≤ ui ≤ 2π, i = 1, . . . , d, be trigonometric polynomials from d variables of the

power of �ν, �ν′ = (ν1, ν2, . . . , νd).

‖T‖p =

(∫ π

0

· · ·
∫ π

0

|T (�u)|p d�u
) 1

p

,

then for p > r > 1 inequality

‖T‖p ≤ 3d
( d∏

i=1

νi

)( 1
r− 1

p )

‖T‖r [8.7]

holds.

The following theorems give the possibility to find the number of items N in [8.4]

to construct the model of random field [8.1] with given accuracy and reliability in

Lp(Sn).
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THEOREM 8.1.– For any z > 0 inequality

P {‖ξ(x)− ξN (x)‖2 > (ANz +BN )
1
2 } ≤ R(z) [8.8]

holds, where

BN =
∞∑

m=N+1

h(m,n)bm, AN =

( ∞∑
m=N+1

h(m,n)b2m

) 1
2

,

R(z) = exp

{
−z

2

}
(z + 1)

1
2 .

PROOF.– The functions slm(x), x ∈ Sn, are orthonormal, that is why

‖ξ(x)− ξN (x)‖22 =
∞∑

m=N+1

h(m,n)∑
l=1

(
ξlm
)2
.

Since E (ξlm)2 = bm, l = 1, . . . , h(m,n), and ξlm are independent centered

Gaussian random variables, then from corollary 8.1 for any 0 ≤ u ≤ 1, we obtain

E exp

{
u
(
‖ξ(x)− ξN (x)‖22 −BN

)
2AN

}
≤ exp

{
−u

2

}
(1− u)

1
2 . [8.9]

It follows from the Chebyshev inequality that

P {‖ξ(x)− ξN (x)‖2 > (ANz +BN )
1
2 }

≤ P exp

{‖ξ(x)− ξN (x)‖22 −BN

AN
> z

}
≤ E exp

{
u
(
‖ξ(x)− ξN (x)‖22 −BN

)
2AN

}
exp

{
−uz

2

}
≤ exp

{
−u

2

}
exp

{
−uz

2

}
(1− u)−

1
2 .

Minimizing right-hand side of above inequality with respect to (u = z
z+1 ), we

obtain [8.8]. �

Define Rr
m(x) =

∑r
s=m Ps(x), if m < r. Let {ψ(k), k = 1, . . . ,∞}, ψ(k) > 0,

be some sequence. Define

Rr
m(x, ψ) =

r∑
s=m

ψ(s)Ps(x), Bs
m =

s∑
t=m

ψ2(t)bth(t, n),
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As
m = 2

( s∑
t=m

ψ4(t)bth(t, n)

) 1
2

.

THEOREM 8.2.– Let there exist monotonically non-decreasing sequence {ψ(k), k =
1, . . . ,∞}, ψ(k) > 0, ψ(k) → ∞,as k → ∞, and for any m > 0

∞∑
s=m

Bs
m(As

m)−
1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)
< ∞, [8.10]

where c(s) = 3n−1s(n−1)(1/2−1/p). Moreover, as s → ∞

Bs
m(As

M )−
1
2 c(s)(ψ(s))−1 → 0, [8.11]

then for any z > 0 and N > 0 inequality

P
{
‖ξ(x)− ξN (x)‖p >

(
z(V ∞

N+1)
2 + V ∞

N+1W
∞
N+1

) 1
2
}
≤ exp{−z}(2z + 1)

1
2 [8.12]

holds, where

W∞
N+1 =

∞∑
s=N+1

Bs
m(As

m)−
1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)
,

V ∞
N+1 =

∞∑
s=N+1

(As
m)

1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)
.

PROOF.– First note that from [8.10] follows that for any m > 0

∞∑
s=m

(As
m)

1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)
< ∞. [8.13]

Really, it is easy to see that As
m ≤ 2Bs

m, then (As
m)

1
2 ≤ 2Bs

m(As
m)−

1
2 . The

following relationship is fulfilled (Abelian transform):

Rr
m(x) =

r∑
s=m

Rs
m(x, ψ)

(
1

ψ(s)
− 1

ψ(s+ 1)

)
+Rr

m(x, ψ)
1

ψ(r + 1)
.

Then, we have

‖Rr
m(x)‖p =

r∑
s=m

‖Rs
m(x, ψ)‖

(
1

ψ(s)
− 1

ψ(s+ 1)

)
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+ ‖Rr
m(x, ψ)‖p

1

ψ(r + 1)
. [8.14]

Note that Rs
m(x, ψ) is trigonometric polynomial from (n − 1) variables of the

power of �ν, �ν′ = (s, s, . . . , s). Hence, lemma 8.2 implies that for p > 2

‖Rr
m(x, ψ)‖p ≤ ‖Rr

m(x, ψ)‖2. [8.15]

We denote

ϕ(s) = c(s)

[
1

ψ(s)
− 1

ψ(s+ 1)

]
, m ≤ s < r,

ϕ(r) = c(r)
1

ψ(r)
. [8.16]

then from [8.14]–[8.16] follows inequality

‖Rr
m(x)‖p ≤

r∑
s=m

ϕ(s)‖Rs
m(x, ψ)‖2. [8.17]

Let δs > 0 now be such numbers that
r∑

s=m
δs = 1, and L > 0 is a number that will

be defined later; [8.17] and the Hölder inequality yield the following inequality:

E exp
{(

L−1‖Rr
m(x)‖p

)2} ≤E exp

{(
L−1

r∑
s=m

ϕ(s)‖Rs
m(x, ψ)‖2

)2}

≤E exp

{ r∑
s=m

δs
(
ϕ(s)L−1δ−1

s ‖Rs
m(x, ψ)‖2

)2}

≤
r∏

s=m

(
E exp

{(
ϕ(s)L−1δ−1

s ‖Rs
m(x, ψ)‖2

)2})δs

.

[8.18]

Since

‖Rs
m(x, ψ)‖22 =

s∑
t=m

ψ2(t)

h(t,n)∑
l=1

(ξlt)
2, E ‖Rs

m(x, ψ)‖22 = Bs
m

and D ‖Rs
m(x, ψ)‖22 = 2−1(As

m)2, then by the condition

us = ϕ2(s)As
mL−2δ−2

s < 1 [8.19]
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from lemma 8.1, we obtain

E exp
{(

ϕ(s)L−1δ−1
s ‖Rs

m(x, ψ)‖2
)2}

= E exp
{
us)‖Rs

m(x, ψ)‖22(As
M )−1

}
≤ exp

{
Bs

mϕ2(s)

L2δ2s

}
exp

{
−us

2

}
(1− us)

− 1
2 . [8.20]

Hence, from [8.20], [8.18] and for such L and δs, [8.19] is satisfied, follows

inequality

E exp
{(

L−1‖Rr
m(x)‖p

)2}
≤

r∏
s=m

(
exp

{
Bs

mϕ2(s)

L2δ2s

}
exp

{
−us

2

}
(1− us)

− 1
2

)δs

. [8.21]

Denote now

δs = (As
m)

1
2
ϕ(s)

Lν
1
2

, 0 ≤ ν < 1, L = ν−
1
2

r∑
s=m

(As
m)

1
2ϕ(s),

then us = ν < 1. That is why [8.21] is transformed into inequality

E exp

{
ν‖R2

m(x)‖2p(∑r
s=m(As

m)
1
2ϕ(s)

)2}

≤ exp

{
ν
∑r

s=m Bs
m(As

m)−
1
2ϕ(s)∑r

s=m(As
m)

1
2ϕ(s)

}
exp

{
−ν
}
(1− ν)−

1
2 . [8.22]

Define

V r
m =

r∑
s=m

(As
m)

1
2ϕ(s), W r

m =

r∑
s=m

Bs
m(As

m)−
1
2ϕ(s).

Then, inequality [8.22] can be rewritten as follows

E exp

{
ν‖Rr

m(x)‖2p − V r
mW r

m

(V r
m)2

}
≤ exp

{
−ν

2

}
(1− ν)−

1
2 . [8.23]

[8.23] yields inequality (z > 0)

P

{‖Rr
m(x)‖2p − V r

mW r
m

(V r
m)2

> z

}
≤ E exp

{
ν‖Rr

m(x)‖2p − V r
mW r

m

(V r
m)2

}
exp{−νz}

≤ exp

{
−ν

2

}
(1− ν)−

1
2 . exp{−νz}.
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If we minimize the right-hand side of the above inequality with respect to ν, then

we obtain

P
{
‖Rr

m(x)‖2p − V r
mW r

m > z(V r
m)2
}
≤ exp{−z}(2z + 1)

1
2 . [8.24]

From [8.24], [8.13] and the conditions of theorem follows that ‖Rr
m(x)‖p → 0 as

m, r → ∞ in probability. This allows us to take in [8.24] a limit as r → ∞ and to

obtain the assertion of theorem if m = N + 1. �

The next theorem keeps all notation of previous one.

THEOREM 8.3.– Let there exist a monotonically non-decreasing sequence {ψ(k),
k = 1, . . . ,∞}, ψ(k) > 0, ψ(k) → ∞, as k → ∞, such that for any m > 0 the series

converges

∞∑
s=m

(Bs
m)

1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)
< ∞. [8.25]

Then, for arbitrary z > 0, N > 0 inequality

P

{
‖ξ(x)− ξN (x)‖p > z

∞∑
s=N+1

(Bs
m)

1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)}

≤ exp

{
−z2

2

}
e

1
2 z [8.26]

holds true.

PROOF.– First note that from [8.25] follows that

(Bs
m)

1
2 c(s)

1

ψ(s)
→ 0, when s → ∞. [8.27]

Really,

(Bs
m)

1
2 c(s)

1

ψ(s)
= (Bs

m)
1
2 c(s)

∞∑
k=s

(
1

ψ(k)
− 1

ψ(k + 1)

)

≤
∞∑
k=s

(Bk
m)

1
2 c(k)

(
1

ψ(k)
− 1

ψ(k + 1)

)
→ 0,

as s → ∞. Further, in expression [8.21], we denote

δs = (2Bs
m)

1
2ϕ(s)L−1ν−

1
2 , where 0 < v < 1,
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L = 2
1
2 ν−

1
2

r∑
s=m

(Bs
m)

1
2ϕ(s),

Then, us = As
m(2Bs

m)−1ν ≤ ν < 1, because of As
m ≤ 2Bs

m. Therefore,

inequality [8.21] is transformed into

E exp

{
ν

2
‖Rr

m(x)‖2p
( r∑

s=m

(Bs
m)

1
2ϕ(s)

)−2}

≤ exp

{(
ν

2

) 1
2 1

L

r∑
s=m

(Bs
m)

1
2ϕ(s)

}
exp

{
−ν

2

}
(1− ν)−

1
2

= exp

{
ν

2

}
exp

{
−ν

2

}
(1− ν)−

1
2 ≤ (1− ν)−

1
2 . [8.28]

By the Chebyshev inequality and [8.28], we obtain

P

{
‖Rr

m(x)‖2p > z2
( r∑

s=m

(Bs
m)

1
2ϕ(s)

)2}
≤ exp

{
−νz2

2

}
(1− ν)−

1
2 .

If we minimize right-hand side of above inequality with respect to ν, then we

obtain

P

{
‖Rr

m(x)‖p > z
r∑

s=m

(Bs
m)

1
2ϕ(s)

}
≤ exp

{
−z2

2

}
z e

1
2 . [8.29]

From [8.29], the same as in previous theorem, taking into account [8.27], we obtain

[8.26]. �

REMARK 8.2.– Theorem 8.2 gives a more precise estimation than theorem 8.3 but

under more restricted conditions. Moreover, the estimation of theorem 8.3 is more

convenient in the computation of N , which defines the accuracy of approximation. In

general, broad-brush estimations can be obtained by using the results of [ZEL 88].

8.1. Simulation of random field with given accuracy and reliability in
L2(Sn)

Consider accuracy of simulation ε > 0 and reliability 1 − δ, 1 > δ > 0. In

inequality [8.8], set z = zδ , where δ is a root of equation R(z) = δ. N we find

as minimal number for which the inequality (ANzδ + BN )
1
2 < ε is fulfilled. Since

AN < BN , then N can be found as a minimal number that√
BN ≤ ε(zδ + 1)−

1
2 .
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8.2. Simulation of random field with given accuracy and reliability in
Lp(Sn), p ≥ 2

Let ε be accuracy of simulation, and 1 − δ be reliability of simulation. If we use

inequality [8.12], then zδ is found as a root of equation exp{−z}(2z + 1)
1
2 = δ and

N is as minimal number that inequality

(
zδ(V

∞
N+1)

2 + V ∞
N+1W

∞
N+1

) 1
2 < ε [8.30]

holds.

Since the left-hand side of inequality [8.30] depends on the sequence ψ(k), then

choose ψ(s) = sβ , where β > (n− 1)
(
1
2 − 1

p

)
. Then,

W∞
N+1 =

∞∑
s=N+1

BN+1(A
s
N+1)

− 1
2 c(s)

(
1

ψ(s)
− 1

ψ(s+ 1)

)

≤ sup
s>N+1

(
Bs

N+1(A
s
N+1)

− 1
2

) ∞∑
s=N+1

3n−1s(n−1)( 1
2− 1

p )

(
1

sβ
− 1

(s+ 1)β

)

≤ sup
s>N+1

(
Bs

N+1(A
s
N+1)

− 1
2

)
(N + 1)α−β3n−1 β

β − α
.

where α = (n − 1)
(
1
2 − 1

p

)
. Similarly, V ∞

N+1 ≤ (A∞
N+1)

1
2 (N + 1)α−ββ(β − α)−1,

where

A∞
N+1 = 2

( ∞∑
t=N+1

t4βb2th(t, n)

) 1
2

.

In the same way, we can use inequality [8.26].
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