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Abstract 
 
In the paper we propose estimates for sub-Gaussian standard models of Gaussian stationary random 
processes. A model of Gaussian stationary random process in some Orlicz spaces is constructed with given 
accuracy and reliability. 
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1. Introduction 
 
The problem of modelling of stochastic process has been a matter of active research during the last 
decades. Descriptions of methods of modelling of random processes and fields can be found, for 
example, in books by Ogorodnikov and Prigarin (1996), Kozachenko and Pashko (1999), 
Kozachenko et al. (2016). In this article wedeal with the method of modelling of Gaussian stationary 
stochastic processes which is based on randomization of the spectrum. This method isdescribed in 
the paper byVojtyshek (1983). In this article we investigate the accuracy and reliability of models of 
Gaussian stationary random process in some Orlicz spaces. We used properties of random 
processes in Orlicz space described in articles byKozachenko and Pashko (1988), Tegza 
(2002),Antoniniet al (2002). 
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2. Basic Definitions and Statements 
 
Let },,{ PB be a standart probability space.  

Definition 2.1  A random variable  ξ  is called   sub-Gaussian,  if there exists a number 𝑎 ≥ 0, such 
that the inequality 
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holds true for all 𝜆 ∈ 𝑅. 
 
The class of all sub-Gaussian random variables defined on a standart probability space },,{ PB  is 

denoted by )(Sub . Consider the following numerical characteristic of a sub-Gaussian random 

variable  :  

 .,
2

exp}{exp:0inf=)(
22


















 R
a

Ea 


  (1) 

We will call )( the sub-Gaussian standard of the random variable  . By definition, )(Sub  if 

and only if .<)(   In the book by Buldygin and Kozachenko (2000) it is shown that the space 

)(Sub  is a Banach space with the norm ).(  

Let ),,( T , <)(T , be a measurable space. 

Definition 2.2 A stochastic process }),({= TttXX  is called sub-Gaussian if for any tT
)()( SubtX  and .<))((sup 



tX
t


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Let )(TUL  be the Orlicz space generated by an C -function }),({= RxxUU  . Remind that a 

continuous even convex function )(U  is called C - function if it is monotonically increasing, 

0=(0)U , and 0>)(xU  as 0.x  For example, 1}|{|exp=)( xxU , 1, is an C -function The 

Orlicz space generated by an C -function function )(xU  is defined as a family of functions 

}),({ Tttf  where for each function )(tf  there exists a constant r  such that  
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The space )(TUL  is a Banach space with the norm 
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The norm 
UL

f  is calledthe Luxemburg norm . 

Random processes in Orlicz spaces were introduced and studied in the paper by Kozachenko 
(1985). 

Let  TttXX ),(=  be a sub-Gaussian random process and let .<))((sup= tX
t

  

The following theorem is proved in the paper by Kozachenkoand Pashko (1988) .  
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Theorem 2.1 Let  RxxUU ),(=  be an C -function such that the function 

  21)( 1)(exp=)(  tUtGU  is convex for 1t . Then with probability one the process )(TULX  

and for all   such that  

   2
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the following inequality holds true 
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 where ),1).((=)(ˆ TT  max  

The proof of the theorem can be found in the book by Kozachenko et al. (2016). 
 

3. Problem Statement 
 

Let }),({= TttXX  be a Gaussian stationary real valued centered mean square continuous 

random process with the covariance function  

 
0

( ) ( ) = ( ) = cos( ) ( ) ,EX t X t r dF   


   

where )(F is a continuous spectral function of the process. It is known that the process )(tX  can 

be represented as in the form 

 ),()sin()()cos(=)( 2
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where )(1  , )(2   are independent centered Gaussian processes with independent increments. 

Let us represent the process )(tX in the form 

 ),()(=)( tXtXtX 
   

where  
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 As a model of the process )(tX we will take the process 

 ),)sin()cos((=)( 21

1

0=

tttX kkkk

M
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Here },,{= 0 M  is a partition of the set ][0, , such that 0=0 , 1< kk  , =M ;  

1k , 2k , k are independent random variables; 1 1 1 1( ) ( )k k k      , 2 2 1 2( ) ( )k k k       are 

Gaussian random variables such that 0== 21 kk EE  ,  



Yu.V. Kozachenko and A.M. Tegza / Journal of Applied Mathematics and Statistics 
(2017) Vol. 4 No. 2 pp. 70-77 

 

73 

 2 2 2
1 2 1= = ( ) ( )= , =0, , 1,k k k k kE E F F b k M       

k  -- are independent for any k , and are defined on ],[ 1kk   with cumulative distribution 

function 
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In the book by Kozachenko et al. (2016) it is proved that )(t  is a sub-Gaussian random process. 

 

4. Construction of a Model with Given Accuracy and Reliability 
 

Definition 4.1 A random process )(tXM
  approximates the process )(tX  with reliability )(1  , 

1<<0   and accuracy 0>  in the Orlich space UL , if there exists a partition },,{= 0 M    of 

the set ][0,  such that  
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We will describe conditions under which it is possibleto select a partition , such that the model 
MX approximates the centered Gaussian process )(tX  in the Orlicz space with given accuracy and 

reliability 
 Lemma  4.1 For 1.322>a  the inequalitysin ln(1 )x ax  holds true. 

 Proof:In the case 
2
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Lemma 4.2 For the sub-Gaussian process )(t determined by (6) the following inequality is 

satisfied  
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Proof: Using the corresponding results from papers by Buldygin and Kozachenko (2000)  and Tegza 
(2002) we have that for anySub-Gaussian random variable the following inequality holds true: 

)()( 1   ,  where 
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Since )(1  , )(2   are independent centered Gaussian processes we havethe followng 

inequalities: 
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Substituting the last inequality to (7), and using the equality from lemma 4.1 (with 1.5=a ), we will 
have 
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Finaly we have 
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Lemma  4.3  For thesub-Gaussian process )(tX defined by (4),  the next inequality is satisfied 
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holds true, where 1>x  is a root of the equation 
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 Proof: This statement follows from Theorem 2.1 and lemms 4.2 and 4.3. Indeed 
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2 (1)2,1)()(1

 UTmax  we have 
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,1)(

(1))(1
)(1>)(

2
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
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



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



 





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U
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where, according to Lemma 4.3: .)()(2=2  FF  

Thus, by Theorem 2.1, under the condition 












  21)(221)(1 (1))(2,1)(
1
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





  
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 
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  
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if inequalities 


x
Tmax

U
>

,1)(

(1)

1

1)(





 and 


x
Tmax

U
>

,1)(

(1))(1

2

1)(



 

are satisfied.   

 
The proof is completed. 
 
Example 4.1 Consider a particular case of the Orlicz space of random variables which is generated 

by C-function 1=)(
2
xexU . In this case we have .2ln=(1)1)(U  

Let 1,=T 0.5,= ,1=)(  eF 0.1,= 0.1.=  
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It follows from Theorem 4.4  that in this case 2.768=x , 1 0.015   and 2 0.015.   

Substitutingthese values to the corresponding formulas, we get that 
1

3 0.015
> ( ) 1

4 4 1
M exp

e





 
 

 
for >9.8 . In particularly, we get =197M  for 10= . 

Substituting to the model (5) this number M and simulating random variables ,1k ,2k k for

10,= Mk , it is possible to get a graphical representation of the considered process.   

 

5. Conclusion 
 

In this article we propose a method of construction of models of Gaussian stationary random 
processes in some Orlicz spaces with given accuracy and reliability. 
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